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Abstract: Balancing the waiting times of passengers and the allocation of personnel and
facilities among different operations in an airport is a challenging problem. Queueing
models have been widely regarded as useful tools for evaluating the performance of a
service system because of their ability to provide quick and reasonably accurate values for
performance measures related to waiting times and queue lengths. Hence, the queueing
approach is an important tool to analyze and improve airport operations. This paper reviews
and categorizes the literature on the application of queueing theory to model the check-in,
security screening, and baggage claim processes at passenger terminals and the runway
service, taxi-out, and landing processes at aircraft terminals. In doing so, the paper also
identifies potential future research opportunities, some of which are motivated by new
airport technologies and processes.

Keywords: Check-in counters, departure process, landing process, queueing theory,
security screening.

1. Introduction

According to the Federal Aviation Administration [24], from 2019 to 2039, the U.S.
mainline carrier domestic revenue passenger miles (RPMs) and international RPMs are
expected to grow at average annual rates of 1.9% and 3.0%, respectively, while the domestic
and international enplanements are expected to increase at average annual rates of 1.6% and
3.1%, respectively. As more people choose to travel by air, the strain on airport facilities
will grow. More passengers and flights are likely to worsen the delay and congestion at the
airports (Brueckner [7]); hence, it is important to find ways to improve airport operations.

The COVID-19 global pandemic declared in March 2020 caused a sudden and dramatic
decline in demand for both business and leisure air travel. With the availability of effective
vaccines by the end of 2021, there was a slow but steady bounce back in especially leisure
air travel, with recent reports indicating that passenger air traffic levels were back to pre-
pandemic levels and projected to be around 2% higher in the first quarter of 2024 than in
2019 as per the International Civil Aviation Organization [38]. Of relevance to this article’s
theme are the new challenges for airport operations including screening procedures to verify
passenger’s vaccination or testing status before departure and upon arrival. Queueing
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models could certainly be an important tool for resource planning — e.g., the estimation of
staffing levels needed to ensure the smooth flow of passengers through multiple layers of
screening.

Passenger terminals and aircraft terminals are two important areas of any airport.
Enplaned passengers, who arrive according to their flight schedule, must be served
sequentially by check-in facilities and security screening facilities, employing airport and
airline personnel and equipment. Deplaned passengers with check-in baggage must go
through the baggage claim area to pick up their baggage. At the aircraft terminal, runways
serve the landing and departure of airplanes. Unlike other systems, most of the procedures
at an airport are time dependent. This non-stationary characteristic increases the difficulty
of evaluating the performance of airport operations. Queueing models can address the time-
dependent feature and provide analytical means to compute performance measures.

The main objective of this study is to summarize published research in modeling the
processes in airports using queueing theory and to identify future research opportunities. To
this end, this paper focuses on reviewing and categorizing the applications of queueing
theory to both passenger terminal and aircraft terminal operations. The taxonomy we have
developed for queueing applications in airports is shown in Figure 1. For the first group, the
focus is mainly on the check-in, security screening, and baggage claim processes. In the
second group, the focus is on the runway service, taxi-out, and landing processes. The many
research problems and the wide variety of queueing models that were applied to study those
problems in the passenger and aircraft terminals of an airport are summarized in Table 1.
Besides reviewing the existing research in each focused area, we also identified limitations
of current research studies in a few instances and provided suggestions for future research.

| Queueing Applications in Airports |

| Passenger Terminal Operations | | Aircraft Terminal Operations |—
|
X | Runway Service Process
Check-in Process Security Screening Process Koopman [44], Hengsbach and Odoni [34],
Marin ef al. [52], Olapiriyakul and Das [62], Daniel [20]. Shumsky [76].
Passenger Arrival Patterns N Lee Iaﬂd JaCOE_SO_n [4f] Pyrgiotis et al. [70], Caccavale ef al. [13], ...
— Martin-Cejas [54], Cabral [11,12]. Zhang et al. [87], Chiti et al. [14] ...

Bevilacqua and Ciarapica [3], ... Taxi-out Process

Hebert and Dietz [33], Idris er al. [36].
Choi and Hanaoka [16], Pujet et al., [69],

Allocation of Check-in Counters Simaiakis and Balakrishnan [77], ...
= Park and Ahn [64], Markovic ef al. [53],
Parlar and Sharafali [65], Stolletz [82]. ... Landing Process

Ndreca [57], Horangic [35], —
Biuerle et al. [2]. ...

Figure 1. A Taxonomy of Literature on Applications of Queueing Models in Airports
The rest of this paper is organized according to the taxonomy as follows. Section 2

introduces the methodological approach. The queueing applications in the passenger
terminal and aircraft terminal areas are reviewed in Section 3 and Section 4, respectively.
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Section 5 reviews the research studies related to bus services and immigration and customs
operations. Section 6 focuses on new technologies and processes being introduced at
airports and the need to incorporate their influence in the models developed. Section 7
concludes by discussing the main findings and summarizing future research directions.

2. Review Methodology

We used “queueing models”, “queueing theory”, and related keywords as shown in
Figure 1, and limited our selection to papers that discuss the problems within the two main
areas, namely, passenger terminal operations and aircraft terminal operations. Within each
main area, we considered key sub-areas. In passenger terminal operations, we considered
check-in, security screening, and baggage claim processes. In aircraft terminal operations,
we included runway service, taxi-out, and landing processes. Other operations such as
airport bus operations, and immigration & custom operations are categorized as
miscellaneous applications.

With the above scope in mind, we identified papers published in major journals and

proceedings in transportation management and operations management, such as the ones
listed below.
Transportation Science, Transportation Research Record, Journal of Transportation Engineering,
Journal of Aircraft, Air Traffic Control Quarterly, Journal of Air Transport Management,
Transportation Research Part A: Policy and Practice, Transportation Research Part B:
Methodological, Transportation Research Part C: Emerging Technologies, Transportation
Research Part E: Logistics and Transportation Review, Transportation Planning and Technology,
Research in Transportation Business & Management, Queueing Models and Service
Management, Management Science, Operations Research, European Journal of Operational
Research, Journal of the Operational Research Society, AIAA Guidance, Navigation, and Control
Conference, and American Control Conference.

From these sources, we selected articles published mainly after 1983, in which the
authors applied queueing theory to address problems in the focus areas of this paper. Table
1 categorizes the problems studied in each focus area and the queueing models applied to
investigate these problems.

3. Passenger Terminal Operations

At an airport passenger terminal, enplaned passengers must complete check-in and
security screening before boarding. Airline companies now offer online check-in services
and self-check-in kiosks at airports, which help reduce congestion and wait times.
According to the 2017 Passenger IT Trend Survey, about 54% passengers used self-service
check-in (SITA [79]). However, self-service has not been able to replace the counter service
offered by airline staff. Many passengers still must go to the check-in counters to drop off
their check-in luggage and obtain their boarding passes, especially for international travel.
Besides, almost all passengers have to go through the security check point, except for those
special persons who are exempt from airport security checks (O'Keefe [60]). The
characteristics of the passenger arrival process and the nature of check-in, security screening,
and baggage claim services will influence the capacity of the three procedures. Inadequate
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Table 1. A Categorization of Problems Studied and Queueing Models Applied

Problem Area

Models

References

Passenger Arrival Patterns

Poisson arrivals
Group arrivals

Time-dependent arrivals

M/M/1; M/M/C
M*/M/c

M(t)/M/c(t); G(t)/DIc(t);
M(t)/G/c(t)

Martin-Cejas [54]; Cabral [11, 12]

Martin-Cejas [54]; Kabak [41]; Cromie et al.
[19]; Srinivasan and Renganathan [80]

Markovic et al. [53]; Park and Ahn [64];
Stolletz [82]

Allocation of Check-in Counters

Assignment of check-in counters

Performance of the check-in system

G(O/G(0)/c(t); MEO/MIC(Y);
G(t)/Dlc(t)
M/M/1; M()/G/c(t)

Parlar and Sharafali [65]; Markovic et al. [53];
Park and Ahn [64]
Martin-Cejas [54]; Stolletz [82]

Security Screening Process

Two-stage inspection

One-stage inspection with multiple
risk levels

M/M/1; M/PH/2; GIM/c

M/M/c

Olapiriyakul and Das [62]; Zhang et al. [87];
Chiti et al. [14]
Lee and Jacobson [46]; Lazar Babu et al. [45]

Baggage Claim Process

Deciding the capacity

Brunetta et al. [8]; Enoma et al. [22]; Browne
et al. [6]; de Barros and Wirasinghe [21]

(Continued)
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terminal capacity and inappropriate utilization of terminal facilities are major factors
causing congestion and delays at airport passenger terminals (Park and Ahn [64]).
McKelvey [55] applied a multi-channel queueing approach to study the performance of
passenger “processors” under different capacity levels. The airport terminal was modeled
as a series of passenger “processors” that were linked together to form a sequenced network.
The service feature of each “processor” could be easily adjusted without changing the
network itself.

Tosi¢ [84] presented a review of Operations Research models for the analysis of
passenger terminal operations between the entrance/exit at the terminal building and the
gates, which included demand for space and service, single service counter-type facilities,
baggage processing, and gate assignment. However, To$i¢’s [84] review did not focus on
the applications of queueing theory. Especially for the two main processes, check-in process
and security screening process, only the queueing applications published before 1983 were
reviewed. Thampan et al. [83] reviewed the approaches for evaluating service quality in
airport passenger terminals. In contrast to the papers of Tosi¢’ [84] and Thampan et al. [83],
we mainly focus on the applications of queueing models to the check-in and security
screening processes. Table 2 provides a summary of the reviewed papers’ research aims and
objectives, models and results, and the focus area covered in passenger terminal operations.
The need for airport security increased dramatically after the September 11, 2001 terrorist
attack on the US, because planes could now be weapons in the hands of terrorists who
manage to take control of a flight. Extensive security screening procedures have been
introduced to screen individuals for potential weapons and keep them off airplanes
(Birkland [4]).

3.1. Check-in process
Passenger Arrival Patterns

The passenger arrival patterns, the number of check-in counters, and the service rate at
each counter will influence the performance of the check-in process. Researchers have used
simple stationary queueing models as approximations to evaluate the non-stationary check-
in process. Martin-Cejas [54] applied the M/M/1 model to evaluate the check-in mechanism
for regular flights at Gran Canaria airport; for charter flights, the arrivals were considered
as groups of fixed size L, and the average waiting time at the check-in counter is L/2u, where
u is service rate. Kirby and Jones [43] demonstrated that an extension of the M/M/1 model
can also be applied to study the scenario where passengers cut in line trying to avoid missing
the flight. Typically, multiple check-in counters are used for one flight. If there is
uncertainty about the service rate of each server, the check-in process can be modeled by an
M/M/c queue with heterogeneous servers (Cabral [11], [12]). The group arrival case is
common. The group size can be deterministic or random. The research on group arrivals
reported in papers by Briere and Chaudhry [5], Cromie et al. [19], and Srinivasan and
Renganathan [80] has indicated that the M*/M/c queueing model with group size X is
applicable for such situations, where X is a random variable with distributions such as
Poisson and Geometric or sometimes a fixed value.
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However, because of the high variability in the number of arrivals and departures during
a typical day, it is more appropriate to assume passenger flow is time-dependent or flight-
dependent. In their survey paper on time-dependent queueing systems, Schwarz et al. [74]
presented several references that provided applications and solution approaches for time-
dependent passenger arrivals. Kim et al. [42] focused on estimating passenger volume over
a day by developing a statistical model based on the distribution of dwelling time.
Accurately describing passenger arrival patterns is very important as it influences the
number of check-in counters required, e.g., see Bevilacqua and Ciarapica [3] and Park and
Ahn [64].

Allocation of Check-in Counters

Another important issue associated with the check-in process is the allocation of
counters among different flights, which can be considered as deciding the number of servers
for each flight. At least half an hour before the scheduled departure time, each flight has a
dedicated number of check-in counters open. The earliest work on determining airline
check-in counter capacity was conducted by Lee [47] who suggested the use of an M/M/c
queueing model. Later, the work of Newell [58] on diffusion approximations conducted in
the late 1960s and early 1970s was applied to analyze the check-in counter operations, e.g.,
see Lewin [48] and Piper [67].

Researchers have begun to address the check-in process more realistically. Bevilacqua
and Ciarapica [3] developed a statistical queueing model to evaluate the performance of the
check-in process. To realistically capture the queueing features in the check-in process,
Monte Carlo simulation was applied to achieve the steady state of the system. Park and Ahn
[64] presented an assignment model to determine the most appropriate number of check-in
counters and the duration for each counter based on the time-dependent passenger arrival
patterns. Later, by applying the assignment model at the Seoul Gimpo International Airport
in Korea, they showed that the assignment model could improve the efficiency of check-in
counter operations by assigning the appropriate number of counters to meet passenger
demand. Unlike Park and Ahn [64], Parlar and Sharafali [65] emphasized the finite
population characteristic of check-in process in their model. They developed a multi-server,
single queue model with the assumption that the finite number of arriving passengers
booked a specific flight forming a "death process”, and the service rate depended on the
number of passengers and the number of opened counters. With this queueing model, the
expected number of passengers in the system and the probability of an empty system at any
time were computed. Parlar and Sharafali [65] developed a queueing optimization approach
by combining a stochastic dynamic programming model with a queueing model to further
capture the characteristics of time-dependent arrivals. Markovic et al. [53] studied similar
problems with a computational model. They combined a non-stationary queueing model
and a parallel genetic algorithm with an integrated fourth-order Runge-Kutta numerical
method; this approach provided far more precise results than simulation. Stolletz [82]
argued that the check-in system should be modeled as a dynamic and stochastic queueing
system. Stolletz extended the stationary backlog carryover (SBC) approach (Stolletz [81) to
approximate the performance measures of the M(t)/G/c(t) system with a single queue.
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Numerical results showed that the SBC approach overcomes the shortcomings of the
stationary independent period by period approach (Green et al. [31]) and the fluid approach.

To reiterate, describing the passenger arrivals realistically is the first step to better
evaluating the check-in processes. As the passenger volume is usually highly time
dependent or flight dependent, it is important to capture the non-stationary characteristics
of the passenger arrivals. Many of the early research studies modeled the check-in process
as a single queue, multi-server system. M/M/1 and M/M/c models were the basic models
used for studying the problems related to passenger arrival patterns and allocation of check-
in counters. When we consider the fact that passenger arrival rate and the number of open
service counters are time-dependent, a time factor is added to the models. To capture the
dynamic aspects and the fact the number of passengers arriving for a flight is finite,
optimization approaches such as stochastic dynamic programming have been integrated
with queueing models to optimally allocate service counters.

3.2. Security screening process

According to a survey conducted by the Bureau of Transportation Statistics (BTS) in
2004, the average time for passengers without disabilities to get through the security
checkpoint was 20 minutes, and about 11 minutes for persons with disabilities (Bureau of
Transportation Statistics [9]). Recently, due to the emphasis on enhanced airport security,
the service rate of security checkpoints has decreased. In 2011, an average of just 149 people
were cleared at airport checkpoints per hour, down from 220 people an hour five years ago.
During a peak travel period like Christmas, the number is as few as 60 an hour at certain
airports (Clark and Mouawad [18]). The Transportation Security Administration (TSA)
tested a new screening procedure with a closer check on carry-on items at 10 airports in
2017. This new policy could mean longer waiting time at security screening points as
discussed in Gillies [30]. Long waiting times are likely to cause congestion at airports and
negatively impact passenger experience. At the security screening point, the service
facilities must always be available, the screening procedures (service) must be correct, and
all passengers must accept this service without any exception. For a queueing analysis of
the security screening operation, the parameters are passenger screening (service) rate, the
number of screening channels (servers), and passenger arrival rate at the security screening
checkpoint as mentioned in Gilliam [29].

Some research studies have focused on the number of required screening stages and
server features. Olapiriyakul and Das [62] developed a two-stage queueing inspection model
with one server at each stage for a given arrival rate to minimize the total waiting time and
the inspection process costs. The arriving passengers are first inspected at the first stage,
and a proportion of them are cleared. The remaining passengers continue to complete the
inspection at the second stage. Each inspection stage is characterized by the service rate and
the inspection accuracy. The two-stage queueing model is also adopted by Zhang et al. [87]
to examine the trade-off between maximizing the security screening level and minimizing
the expected customer delay. In the model developed by Zhang et al. [87], the service time
at the first stage is assumed to follow a two-phase Coxian distribution and exponential
distribution at the second stage. To further confirm the advantage of the two-stage model,

58



Queueing Models and Service Management

they also compared the two-stage system with a one-stage system, which is treated as
M/PH/2 queue with 2 servers, and the passengers only need to go to one server. Marin et al.
[52] focused their research on server behavior, addressing that servers may change their
behavior in response to queue length. They demonstrated that servers process faster when
queues are longer using empirical analysis. Chiti et al. [14] proposed a model based on the
M/M/c queueing system with a focus on the operations in the second stage. The accuracy
of this model was validated using data collected at Pisa airport.

Lazar Babu et al. [45] studied the benefits of classifying the passengers into different
groups before the security screening process conditioned on their threat probability. They
also developed a model to decide the optimal number of groups. Lee and Jacobson [46]
studied the security screening as a one-stage problem with a research objective similar to
Zhang et al. [87]. They considered the security screening as a multi-level security system,
where passengers are assigned to different security classes (servers) according to their
perceived risk level. The security class service rate follows an exponential distribution, with
rates g1 > M2 > ... > um > 0, where M is the number of security classes. Passengers with
lower (higher) level security are screened by faster (slower) security classes. With this
model, they computed the results that minimized the steady state expected waiting time for
a passenger in the system.

As discussed above, researchers have focused on the application of single-stage and
two-stage queueing models to analyze the security screening process. The two-stage model
iIs more traditional with all passengers placed in one security class and the second level
(stage) of screening is needed only for those passengers who do not clear the first level. The
single-stage model places the passengers into multiple security classes with class-specific
service rates.

3.3. Baggage claim process

Baggage handling at the airport passenger terminal accounts for a large portion of the
operating costs as noted in Ghobrial et al. [28], and baggage claim is the most critical step
of the inbound baggage handling system. The number of passengers waiting at the baggage
claim area depends on the deplaned passenger arrival rate, the baggage processing rate, and
the number of aircraft arriving at that time, e.g., see Brunetta et al. [8] and Enoma et al. [22].

Research on the baggage claim process mainly focuses on deciding its capacity. Browne
et al. [6] investigated the baggage claim area of the Kennedy airport in New York. They
developed a model to compute the maximum expected lengths of passenger queue and
baggage queue at the baggage claim area. In their model, both passengers and baggage were
assumed to arrive uniformly but at different rates. The delay between the beginning of
passenger arrivals and baggage arrivals was considered, but only for the situation where a
passenger has only one bag. Ghobrial et al. [28] modeled the delay as a function of
congestion occurring at the baggage claim area based on the principle that it is more difficult
for the passengers to get their baggage on the device if the claim area is more congested.
The congestion is measured by the passengers per square meter at the claim area. Then the
delay is a linear function of passengers per square meter. However, the passengers traveling
in clusters were ignored in the research of Browne et al. [6] and Ghobrial et al. [28]. To
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overcome the drawback of the aforementioned works, de Barros and Wirasinghe [21]
grouped the passengers into clusters that have i bags in total to reach an objective similar to
Brown et al. [6] by using deterministic queueing theory. In this way, their model captures
the correlation between the arrival times of baggage for a cluster and the impact of clusters
on the area requirements.

The queueing models used to study passenger terminal operations including check-in,
security screening, and baggage claim processes are summarized in Table 1. In addition,
Table 2 provides a summary of the reviewed papers’ research aims and objectives and their
key contributions in the focus areas.

4. Aircraft Terminal Operations

According to the Bureau of Transportation Statistics [10], the on-time arrival rate for
the nation’s largest carriers during 2010 was 79.8%; and in the first half of 2012, it was
83.7% for the 15 largest carriers. In addition, only 4 domestic tarmac delays longer than 3
hours between January and June in 2012 were reported, while the corresponding number
for the same period in 2011 was 35 as reported by the Bureau of Transportation Statistics
[10]. In 2018, the average on-time arrival rate for U.S. airlines was about 79.8% according
to the Office of Aviation Enforcement and Proceedings [61]. Flight delays have significant
negative effects on the performance of airline companies. Especially, the tarmac delays,
where flights are delayed whilst passengers are on board, could cause significant passenger
dissatisfaction and irritation. To reduce the costs of aircraft terminal operations and decrease
the waiting time for aircraft landing or departing, researchers have applied queueing theory
to study these operations. Table 3 provides a summary of the reviewed papers’ aims and
objectives, and their key contributions in modeling aircraft terminal operations. Aircraft
terminal area can be considered a service facility that provides complex services depending
on the availability of controllers, runways, taxiways, and gates of the area (The reader is
referred to Figure 1 in Simaiakis and Balakrishnan’s [77] paper for a schematic of the airport
system). The aircraft, which may experience queueing while waiting for their turn to land
or waiting for clearance to take off, are the users of the system. In this paper, we focus on
the application of queueing models to the runway service process, taxi-out process, and
landing process.

4.1. Runway service process

Both in the US and Europe, departures and landings are scheduled according to the
capacity of the runways, and the assumption that each aircraft would land in a very narrow
time window, e.g., see Ndreca [57]. Koopman [44] was among the first to develop queueing
models for a runway under time-dependent arrivals. M(t)/M/1/N and M(t)/D/1/N models
were adopted to study the aircraft awaiting to land or takeoff in a single common queue.
The results of the two models showed that the expected number of planes in the system is
greatly sensitive to the distribution of the “service” time. Later, Hengsbach and Odoni [34]
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Focus Area(s)

the security screening
oint.

was effective even when the threat probability
is assumed constant across all passengers.

Reference Aims and Objectives Models and Results Passenger| Check-in |Security | Baggage
Arrival | Counters | Screen | Claim
Brunetta et al. [To estimate the capacity |A simple landside aggregate model was
[8] and delays at the baggage|proposed to estimate the facility capacity
claim area. under different operating conditions and the X
associated level of service. The effectiveness
of the model was demonstrated via
applications at two airports.
Park and Ahn [To assign the appropriate |An assignment model was developed and
[64] number of check-in applied at the Seoul Gimpo International
counters and deicide the |Airport in Korea. It showed that the
O . ! - X X
operating time duration jassignment model supported efficient
of each counter. operations of time-to-time check-in counter
assignments.
de Barros and  [To estimate the size of  |A model was proposed to describe the
Wirasinghe [21] paggage claim device and|correlation between the arrival times of bags
the surrounding area. within the same passenger cluster and the
influence of passenger cluster on the area X
requirements The results suggested the use of
two claim devices could potentially reduce the
claim area requirements.
Kim et al. [42] [To estimate passenger  |A statistical model based on the dwelling time
volumes over a day with |distribution was developed to estimate the X
behavioral differences of |departing passenger volume in each period.
individuals.
Lazar Babu et [To investigate the benefit[The number of groups was determined based
al. [45] of classifying passengers |on the objective of minimizing the number of
into different groups at  [false alarms. The passenger grouping method X

(Continued)
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Focus Area(s)

experience

gueueing model to predict the waiting time
and the number of required security control
counters.

Reference Aims and Objectives Models and Results Passenger | Check-in | Security |Baggage
Avrrival Counters | Screen | Claim
Stolletz [82] To analyze the passenger |A stationary backlog carryover method is
queueing processes at the |developed to approximate the performance
check-in system. measures of a time-dependent and stochastic X
check-in system. Moreover, the tradeoffs
between the utilization of servers and
service level were analyzed.
Zhang et al. [87][To investigate a security- |A two-stage queueing model was developed
check system with both  with the first-stage inspection following a 2-
customer service and phase Coxian distribution. Robust closed-
security goals and form approximations of the performance X
address the tradeoff measures were developed to achieve a
between the service level |balance of the security level and service
and the expected quality goals.
customer delay.
Markovic et al. [To optimize the number [The check-in process was modeled as a
[53] of counters for dedicated |nonstationary Markov chain and together
check-in and their with a parallel genetic algorithm was used
) . L . . g X X
opening and closing to optimize the check-in service. The airline
times. costs are minimized while providing the
desired service level.
Chiti et al. [14] [To enhance the airport  |An integrated service software platform
management efficiency  with a focus on security screening
and passenger travel operations was proposed based on a X
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extended these single-server models to multi-server models, namely the M(t)/M(t)/c/N
model and the M(t)/D/c/N model. Their study illustrated the usefulness of the two models
in clarifying the issues related to air traffic congestion. Daniel [20] expanded the M(t)/D/c/N
model by integrating a bottleneck model to describe and estimate the congestion prices and
capacity for large hub airports. Shumsky [76] developed a queueing model to describe the
runway service process based on the assumption that aircraft are allowed to accumulate in
a departure queue when the system is saturated. However, this model did not reflect the
stochastic nature of the process. Pyrgiotis et al. [70] studied the system-wide effects of delay
propagation in a network with major airports. They modeled the runways at each airport in
the system as a server. To estimate the delay at an individual airport, M(t)/Er(t)/1 model
with a non-stationary Poisson arrival process and time-dependent rth-order Erlang service-
time distribution was applied. They also demonstrated that the M(t)/Er(t)/1 model provides
a reasonably accurate estimation of local delays by applying this model to the following
airports - Logan International, Newark Liberty International, and Charlotte Douglas
International — in the US. The research conducted by Jacquillat and Odoni [39] and
Jacquillat et al. [40] also applied M(t)/E«(t)/1 model to control arrival and departure service
rate to dynamically optimize runway capacity allocation. Mori and Aoyama [56] studied
dependent runway operations with four runways at the Tokyo International Airport. Runway
B is independent, and can be modeled as a M/G/1 queue; aircraft landing on runway D are
affected by the departure flights on runways A and C; and departure aircraft on runways A
and C take off when there is no traffic on runway D. Even though the runway operations are
dependent, the expected waiting time on each runway is consistent with the M/G/1 model.
Instead of considering the inbound air traffic as Poisson process, Caccavale et al. [13]
argued that Poisson process is a poor model for arrivals at a hub airport since the actual
arrivals stream is a mixing-up of the fixed schedule affected by random delays. They
proposed the Pre-Scheduled Random Arrivals (PSRA) process to describe the arrival
process. Besides delays, the PSRA process also considers the possibility of the flights’
cancellation. Caccavale et al. [13] research provided a new direction to study the air traffic
setting. The reader is also referred to the survey paper by Schwarz et al. [74], which includes
a nice summary of models used for the analysis of runways considering the time-dependent
nature of air traffic. Investigating delays on airport runways under heavy snowfall, staffing
air traffic controllers, and congestion-based pricing for airport capacity are some of the
unique applications of time-dependent queueing models reviewed in Schwarz et al. [74].

4.2. Taxi-out process

Taxi-out time of an aircraft is the time interval between leaving a terminal gate
(pushback) and takeoff. The taxi-out delay is the greatest among all aviation delays and
contributes significantly to fuel cost and other direct operating expenses. The average taxi-
out delay is approximately twice the airborne delay in minutes-per-flight as per Atkins and
Walton [1].

Hebert and Dietz [33] developed three queueing models of the airport departure process
based on the data collected from La Guardia Airport located in New York City in June 1994.
In their models, the departure demand was modeled as a nonhomogeneous Poisson process.
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For different taxi-out times, the models were as follows - Exponential model, Erlang-k
model, and Erlang-k model with server absences. Evaluation showed that the Erlang-k
model performed best in terms of simplicity, accuracy, and computational efficiency. To
analyze the taxi-out delay, it is important to find out the factors that cause the delay. Before
building the model, Idris et al. [36] identified the main factors, such as the runway
configuration, distance between gates and runway, the downstream restrictions, and the
takeoff queue size, that affect the taxi-out time. A queueing model was developed to
estimate the taxi-out time at the Logan International Airport based on queue size estimated.
The model assumed that the number of departure aircraft (N) present at the pushback time
was known and estimated the takeoff queue size (Q) given N. Then the taxi-out time (T)
was modeled as a function of the take-off queue size. The queueing model reduced the
mean absolute error by one minute and improved the accuracy rate by 10% compared to a
fourteen-day moving average model.

Research on taxi-out is not limited to modeling the service processes and identifying
the factors that may affect the taxi-out time. Researchers have also attempted to build
models to predict the taxi-out time. Pujet et al. [69] proposed a dynamic queueing model of
busy airport departure operations to predict the taxi-out times. They modeled the taxi-out
time as the sum of runway waiting time and travel time, where travel time is the time needed
to reach the runway after pushback. Gaussian-like probability density functions were used
to model the travel time by considering the factors that may cause variability. Upon reaching
the runways, the airplanes were served according to a probabilistic service process. Later,
Simaiakis and Balakrishnan [77] presented a new queueing network model to better estimate
the travel times and describe the service process at the runways. In contrast to the model
proposed by Pujet et al. [69], their paper modeled the taxi-out time as the sum of the time
spent in the departure process if it is the only aircraft on the ground, the time delay due to
aircraft interactions on the ramp and taxiways, and the time spent in the departure queue.
To decide the saturation-point of the runway, they followed the same approach as Pujet et
al. [69], wherein they used the number of departing aircraft on the ground as the indicator
for the loading of the departure runway. However, the runway service time was assumed to
be random having three possible outcomes, which were one minute, two minutes, and the
next minute increment that satisfies certain conditions. In this way, Simaiakis and
Balakrishnan [77] not only simplified the model but also accounted for the probabilistic
nature of the runway service process. In a recent paper, Simaiakis and Balakrishnan [78]
indicated that taxi-out time is affected by the total number of aircraft pushing back when a
flight pushes back, and the traffic added while it is traveling to the runway. They
investigated the taxi-out process by dividing it into two modules, traveling from the gates
to the departure runway and queueing process at the departure runway, with a known
pushback schedule. The departure queue was modeled as a D(t)/Ex(t)/1. The expected
travelling time calculated was used for the arrival process at the departure queue, and service
time was assumed to follow an Erlang distribution.

Besides the taxi-out prediction research during normal operations, Choi and Hanaoka
[16] investigated the mean taxi-out waiting time at co-operating airports in an immediate
disaster response situation using the open Jackson queueing network model, where each
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airport (node) is modeled as an M/M/1 queue, and airplanes are considered as customers.
The problems studied in runway service process and taxi-out process and the corresponding
queueing models applied are summarized in Table 1.

4.3. Landing process

It is significantly more expensive to keep an aircraft in the air than on the ground. Since
the 1970s, most researchers have considered the aircraft arrival process as a Poisson process,
overlooking the uncertainty present during arrivals. Time-varying stochastic properties
provide a more comprehensive description of this uncertainty according to Whitt [86].
Horangic [35] considered different implementations for the transient analysis of a
conceptual single-server queueing model to analyze the delays during aircraft landing at
Boston’s Logan International airport. The conceptual model had time-varying demand rates,
a finite FIFO queue, and time-varying service rates. The different implementations were the
fluid flow model (D(t)/D(t)/1), steady-state approximation model (M/G/1), difference
equation models (M(t)/M(t)/1, M(t)/D(t)/1, M(t)/Er(t)/1), interpolated model (M(t)/E«(t)/1)
and Kivestu approximation model (M(t)/E«(t)/1). The results showed that the model with
time-dependent Poisson arrivals and Erlangian service time was the most useful one for
investigating the landing delays on the runways. However, Horangic [35] also concluded
that the Poisson arrival assumption may be questionable under certain circumstances.
Peterson et al. [66] developed a Markov/semi-Markov queueing model to study the aircraft
landing problem at a busy hub airport, where a set of runways were treated as a single server.
The demand process in a certain time interval was assumed to be deterministic. The number
of runways opened in each time interval was modeled as one of values 1, Y2, ..., Us taken
from some finite S capacity states with p1 < p2<... < ps. As the weather changed, the landing
capacity would switch from one state to another. Bé&uerle et al. [2] applied M/SM/1 queues
with aircraft type-dependent service times to model the landing procedure of aircraft on a
single runway. The stability condition and average waiting time were derived based on this
M/SM/1 model. Moreover, to demonstrate that the M/SM/1 model would provide a better
approximation to the real situation, the authors also compared the results with the M/G/1
and M/D/1 models. On the other hand, in a situation when an arriving airplane finds the
runway occupied and it needs to fly an extra circle around the airport before trying to land
again later, retrial queueing models would seem to be the most appropriate.

Some researchers also doubt the accuracy of the Poisson assumption for the aircraft
arrival process. Ndreca [57] argued that the actual flight arrivals are slightly less random
than Poisson arrivals. Only when the time scales are smaller than the standard deviation of
aircraft delays, the pattern of arrivals is very similar to a Poisson process. Each airport gets
the daily flight schedules in advance. With this schedule information, the airport can better
fit the arrival intervals to a proper distribution to describe aircraft arrival process more
accurately. Table 1 includes a summary of the problems studied and queueing models
applied in the landing process.

Table 3 provides a summary of the reviewed papers’ research aims and objectives and
their key contributions in the aircraft terminal focus areas of runway service process, taxi-
out process, and landing process.
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Table 3. Applications in Aircraft Terminal Operations

Focus Area(s)

Reference | Aims and Objectives Models and Results Runway | Taxi .
X Landing
Service | out
Koopman [To quantitatively study the[The queueing behavior of an airport with k independent
[44] waiting-line situations to [runways can be bounded by the characteristics of the X
improve capacity and M(t)/M(t)/k and the M(t)/D(t)/k queueing models, which are
reduce delays. the “worst-case” and “best-case” estimates, respectively.
Hengsbach [To estimate the delays and|The detailed analysis of congestion at a specific airport was
& Odoni  |delay costs at major provided, and the total delay costs were computed. The study X
[34] airports. also illustrated the concept of marginal delay costs.
Daniel [20] [To describe and estimate [The expected time in queue, early and late operating times,
congestion prices and and total expected cost of an arrival and departure for each X
capacity for large hub aircraft were determined. In addition, the possibility of
airports. internalizing the delays was also investigated.
Caccavale et[To describe and forecast [The proposed queueing model with Pre-Scheduled Random
al. [13] the inbound air traffic overArrivals (PSRA), PSRA/D/1 was demonstrated to have a X
a congested hub. great fit with the real data from London Heathrow airport.
Pyrgiotis et [To study the propagation [Delays at each airport was captured by a stochastic and
al. [70] of delays in a large dynamic queueing model, and a delay propagation algorithm X
network of major airports. was developed to update the flight schedules and demand
rates in the network.
Mori & To estimate the expected [The average waiting time on each runway is consistent with
Aoyama  waiting time on multiple the M/G/1 model. X
[56] dependent runways.

(Continued)
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Focus Area(s)

and to compare them to the
Poisson process.

process

Reference | Aims and Objectives Models and Results Runway | Taxi .
. Landing
Service | out
Simaiakis & [To analyze the aircraft A queueing model of the departure runway system is developed
Balakrishnandeparture process. using transient analysis of D(t)/Ex(t)/1queueing systems. Using
[78] pushback schedule as input the model can predict expected X X
runway schedule and pushback times and expected taxi-out time
and queueing delay for each flight. A case study based on
Newark Liberty International Airport was presented.
Choi & To estimate the mean An open Jackson network model is developed. Numerical study
Hanaoka  |waiting time among results showed that by adjusting the transition probability
[16] cooperating airports in (proportion of aircraft from one airport to another) to meet the X
immediate disaster airport’s service rate is preferable to drastic role re-assignment.
response.
Horangic  [To analyze air traffic The assumption of Poisson arrival may be questionable under
[35] delays. certain circumstances. Delays were found to be more sensitive to
. I . L X
the variance of service time when the system is underutilized, but
not when the system is saturated.
Peterson et [To study the congestion  |A Markov/semi-Markov queueing model was presented to
al. [66] problems of aircraft estimate the queue length and waiting time. The model’s
. . . . X
landings at a busy hub estimates were shown to be reasonable by implementing the
airport. model using data for the Dallas-Fort Worth International Airport.
Ndreca [57] [To study the features of the |[Only when the time scales are smaller than the standard deviation
arrival process of aircraft |of aircraft delays, the arrival pattern is very similar to a Poisson X
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5. Miscellaneous Applications

Clearly, the focus of almost all research studies has been operations at the passenger
terminal and aircraft terminal areas. Other airport operations such as airport bus services,
border crossing/immigration, and airport customs have received very little attention. We
found only one paper, a study by Selvi and Rosenshine [75] that modeled bus service
operations that transport travelers between terminals and gate/runway locations. Since bus
travelers arrived in bulk at fixed time intervals to a service facility with multiple servers,
Selvi and Rosenshine [75] applied the D*/M/c queueing model with batch size X to study
this problem and presented its steady-state solution.

Delays experienced at immigration and customs operations constitute another important
issue at international airports. Some researchers have investigated these operations using
simulation, and a few have applied queueing models. Littler and Whitaker [51] studied the
immigration staffing requirements under a guaranteed service level based on stochastic
simulation of passenger arrivals. Gantt [27] considered customs as one operation of their
simulation model to determine the facility changes in a hub airport. Chiu and Walton [15]
studied the impact of large aircraft on passenger flow with an integrated simulation method.
Immigration and customs are two stages in their simulation model, while a queueing
network is used to model the passenger arrival stage. Lin et al. [50] applied M/Ex/c model
and a more general BMAP/PH/c model with a Batch Markovian Arrival Process (BMAP)
and phase type (PH) service to estimate the border crossing delay based on the data collected
at the Peace Bridge, a major US-Canada border crossing. Even though Lin et al.’s [50]
research did not use data from an airport, it still shows the potential of using queueing
models to analyze the immigration and customs operations at an airport. Nikoue et al. [59]
investigated the factors affecting passenger delay at immigration using data collected from
January 2012 to May 2013 at the Sydney Airport. They modeled the immigration process
as an M(t)/M(t)/c(t) queueing model. They used passengers’ average walking speed to
estimate arrival rates, and the observed throughput and number of active service counters to
estimate the service rate. Table 4 provides a summary of the research aims and objectives
of the reviewed papers, along with their key contributions to the other airport operations
discussed in this section.

6. New Airport Technologies, Processes, and Data Sources

As airports continuously introduce new technologies and processes to reduce wait times
and improve the passenger experience, it is important for researchers to incorporate the
impact of these developments into their models and modeling approaches. Security
screening and check-in processes are the two main areas in passenger terminal operations
where significant wait times can occur. The introduction of online check-in has allowed
domestic passengers with no check-in luggage to completely bypass the airport check-in
process. This reduces the arrival rate to the check-in counters and could reduce the number
of personnel needed for domestic flight check-in. Automated kiosks are available in almost
all major airports to assist passengers with check-in luggage. One airline employee can
typically tend to multiple self-check-in kiosks. Models for the check-in process must
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Table 4. Applications in Other Airport Operations

Reference Aims and Objectives Models and Results Focus Area
Selvi & . . . The steady-state system size densities were obtained by Bus service
. To study airport bus operations using . . )

Rosenshine the D¥/M/c queueing system using the steady-state equations and Neuts’ method of

[75] . solving GI*/M/c.

Littler & To estimate the requirement of Approximate staffing requirements were determined based | Immigration

Whitaker immigration staff at an international on the stochastic simulation of passenger arrivals and the and customs

[51] airport terminal to meet the given iterative algorithm embedded within the deterministic
processing target. time-based simulation.

Gantt [27] | To determine the facility changes and | Simulation can be applied to study the existing and Immigration
operational policies to meet the planned Federal Inspection Service facilities. For an and customs
required service level. existing facility, the impact of changes in staffing levels

and layout/flow changes could be evaluated. For a planned
facility, the size of facility, e.g., number of Immigration
and Naturalization Service nspection booths, bag
carousels, USCS and USDA inspection stations can also
be decided.

Chiu & To investigate the impact of large Immigration and customs are two stages in the simulation | Immigration

Walton aircraft on passenger flow using an model, while a queueing network is used to model the and customs

[15] integrated simulation method. passenger arrival stage.

Linetal. To estimate the border crossing delay | M/Ei/c model and a more general BMAP/PH/c model with | Immigration

[50] based on the data collected at Peace a Batch Markovian Arrival Process (BMAP) and phase and customs

Bridge, a major US-Canada border
crossing.

type (PH) service were applied to get the estimates.
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consider these newer developments while estimating the wait times for passengers who need
to use the physical check-in process.

Security screening is different — all passengers must be screened, and no regular
passenger can bypass the physical screening process. There is a need to develop more
comprehensive models that include the different classes (regular, PreCheck, and CLEAR)
of passengers and multiple stages in the screening process. TSA PreCheck
(https://www.tsa.gov/precheck) reduces the physical screening time, while CLEAR
(https://www.clearme.com) expedites the document/identity verification process. Given
that the same number of passengers (or arrivals) must be screened, airports have begun to
pilot test ways to reduce the variability in the arrival process, to reduce passenger wait times
at security screening. One approach is to allow passengers to make screening appointments.
In the US, Seattle’s SeaTac airport had an innovative pilot program from May 4, 2021, to
August 31, 2021, called the “SEA Spot Saver Program” as reported in Schlappig [72], which
allowed a passenger who did not have priority screening options such as TSA PreCheck and
CLEAR to reserve a time they wanted to clear security. Seattle’s airport made this
reservation system permanent in September 2021, and airports in Los Angeles and Dallas-
Fort Worth have started piloting reservation systems according to Pohle [68]. Incorporating
such newer approaches in models of the security screening process is a potential future
research area.

With the development of new technologies, it is now convenient to collect data from
different areas of an airport. Researchers can access airport data through sources such as
Federal Aviation Administration [25], International Air Transport Association [37],
OpenFlights [63], and the database maintained by United Kingdom’s Civil Aviation
Authority [17]. Furthermore, starting January 1, 2020, almost all the airports were reserved
only for aircraft equipped with an Automatic Dependent Surveillance — Broadcast (ADS-B)
system. This enables airports to use inexpensive receivers to monitor operations at the
runway/taxiway system and on the apron (including parking positions) (FAA, 2023).
Schultz et al. [73] applied ADS-B data to study the aircraft inbound flow into Zurich airport,
clustering of ground trajectories, runway occupancy, and taxi times.

With the availability of large volumes of data, data analytics, and machine learning
techniques can both supplement queueing/simulation analysis and vyield alternative
approaches. Descriptive and predictive analytics techniques can be used to identify
distributions to fit real-world data. When these distributions are used in queueing/stochastic
models, it could lead to improving their prediction fidelity. For example, Li et al. [49] used
real data collected from Shenyang Taoxin International Airport to better understand the
distributions of the inter-arrival and service times. Li et al. [49] studied six different
queueing network structures at the security checkpoint and illustrated how the passenger
data collected could be used to simulate passenger behavior.

An example of an alternative approach is presented by Scarpel and Pelicioni [71], where
a Mixture-of-Experts learning model was developed to predict congested days at the Séo
Paulo International Airport using data provided by the Brazilian National Civil Aviation
Agency. Data from January 2010 to May 2014 and from August 2014 to November 2014
were used to develop the model and data from December 2014 to July 2016 were used to
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validate the model built. Another recent study by Guo et al. [32] used data sources available
at Heathrow to forecast the connection times of passengers for international flights. The data
sources available at Heathrow can be classified into two categories: flight-level data and
passenger-level data. The flight-level data provides detailed information on departures,
arrivals, and aircraft features (e.g., aircraft body type) for individual flights. The passenger-
level data records each passenger’s travel information, such as their travel class. Based on
Guo et al.’s [32] prediction results, the Gamma distribution fits the passengers’ connection
time in more than 80% of the cases. They developed a two-phased approach, wherein the
first phase predicted the connection times, and the second phase forecasted passenger
arrivals to immigration and security checkpoints. Devising ways to combine the versatility
of the data-centered machine learning approaches with the modeling power of physics-
based queueing/simulation approaches is likely to be a fertile area for future research.

7. Conclusions and Future Research Opportunities

The applications of queueing models to operations in airport passenger and aircraft
terminals were reviewed and categorized in this paper. With the increasing number of air
travelers and aircraft in service, improving the performance of airports remains an important
goal. Reducing the waiting time for passengers and aircraft while increasing the efficiency
of facilities will not only enhance the productivity of the system but also reduce costs. With
the performance measures computed using the queueing models, airports and airline
companies can identify current problem areas, and find ways to improve the facilities and
procedures and increase passenger satisfaction.

Tosi¢’s [84] review was broader in scope as it covered the application of Operations
Research models. However, for the two main processes, check-in, and security screening,
only queueing applications published before 1983 were reviewed. Our review is narrower
in scope as we focus on queueing applications. We have covered many papers that have
been published since 1983 and identified several future research opportunities. We created
three useful summaries of the literature reviewed — a taxonomy presented in Figure 1, a
categorization of problems studied, and queueing models applied in Table 1, and a summary
of the research objectives, key contributions, and focus areas of the research studies in
Tables 2, 3, and 4, for passenger terminal operations, aircraft terminal operations, and other
airport operations, respectively. The research opportunities in each focus area are
summarized below.

Check-in Process

Check-in systems with multiple lines serving different classes of passengers have
received very little attention. Considering the presence of multiple passenger types — priority
and regular, and multiple counter types — regular check-in, self-service kiosks, and bag drop
would more accurately model the check-in process. It is common to have a separate priority
check-in line for premium class passengers. When the priority check-in queue is empty, that
counter can also serve other regular passengers. Another direction for future research is
incorporating the check-in for multiple flights during a certain time interval. Passengers on
different flights that have close departure times usually arrive at the check-in counters at the

74



Queueing Models and Service Management

same time. In such situations, the queueing discipline may alternate between first-come,
first-served and priority for passengers on the flight with the earliest departure time.
Integrating queueing models with other mathematical models should be further explored to
expand the decision-making capability; an example is the work of Markovic et al. [53]
combined queueing models with a parallel genetic algorithm to optimize the number of
check-in counters and the workforce schedule. Another example is the work of Parlar and
Sharafali [65], who adapted a stochastic dynamic programming model to their time-
dependent multi-counter queueing model to decide the optimal number of counters needed
over a specified time window.

Security Screening Process

Categorizing passengers into different classes would help improve the performance of
security screening, e.g., see Lazar Babu et al. [45] and Zhang et al. [87]. The security
screening is usually implemented as a 3-stage procedure, including ID verification,
screening, and further inspection if needed. In addition, passengers are segregated into two
classes — regular and pre-check passengers. Investigating security screening problems using
open queueing network models (Whitt [85]) with multiple passenger classes (regular, pre-
check, and airline crew), multiple stages/nodes with probabilistic routing (ID verification,
security screening, and optional additional inspection), and class-dependent screening times
could be a promising direction to explore in the future. Although limited to steady-state
analysis, these models allow us to easily model variability in arrival and service processes
and are excellent tools for planning resource capacities and staffing levels.

Baggage Claim Process

Considering the time difference between passenger arrivals and baggage arrivals is
important in deciding the number of passengers waiting in the baggage claim area. Besides
considering the baggage arrival as a one-step event, we can also investigate it as a multi-
stage problem, since it requires four steps to move the baggage from the aircraft to the
baggage claim area — unloading from the aircraft, transporting to the terminal airside,
loading onto claim devices, and conveying to the claim area — the baggage arrival process
could be modeled as a serial network with four stages.

Runway Service and Taxi-out Processes

In the departure process, an aircraft needs to leave the gate first, enter taxiways if needed,
and then enter the runway for departure. The procedures at each part may affect others.
Therefore, to capture the interaction among the procedures at the gates, taxiways, and
runways, applying queueing network models may be a promising research direction.
Furthermore, departure delays are not only caused by issues at the departure airport, such
as takeoff queue length and bad weather, but also by similar issues at the destination airports.
For example, if the destination airport has air traffic control or weather issues, then that
airplane will most likely not take off until those issues have been resolved. The research
studies reviewed earlier have mainly focused on factors at the departure airport. To capture
the departure process more realistically, the influence of the destination airport should be
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included. This would most likely add another conditional delay at some stage of the taxi-
out process and may necessitate a return to the gate.

Landing Process

The current research papers model the landing process as a service provided by a single
server. Even when there are multiple landing runways, the model still treats those runways
collectively as a single server. This way of modeling may provide some analysis
convenience, especially when considering the influence of weather and other flights.
However, at most big airports, more than one plane can land at the same time. For example,
Dallas/Fort Worth International Airport (DFW) has 7 runways, without crossing each other.
DFW airport can accommodate 6 landings at the same time. Under that situation, the
runways are operating as multiple, parallel servers. In the multi-server system, the idle
runways are the available servers, and the arriving flights are directed to the corresponding
runways. Once all the runways are occupied, then a queue will be generated. Modeling
landing processes using multi-server queueing models is an area for future research.

Miscellaneous Applications

There is very little research on applying queueing models to study and improve
passenger experience at immigration and customs operations. Queueing models could be a
great tool to evaluate the performance of service processes there. In addition, the models
should consider the presence of multiple passenger types (citizens/permanent residents,
visitors, etc.), self-service stations, multiple stages of service, and more importantly, bulk
arrivals.

Finally, as airports introduce new technologies and processes to enhance the passenger
experience and improve operational efficiency, it is important for researchers to ensure that
the models incorporate these developments.
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