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Abstract: In this paper, a time-dependent queueing system containing two stages in tandem 
has been considered. Carriers carry jobs by bulks of various sizes and arrive at the first stage 
according to a Poisson distribution. There is a possibility of balking and, hence, jobs attend 
with some probability at an infinite size buffer, located at the entrance of the first stage. As 
the jobs attend, they will be placed randomly in the buffer with some type of identification 
for later to be served based on that order, that is, first-come – first-served rule. For jobs to 
be served by batches, they will be grouped with a minimum and a maximum limit and will 
be moved to be served by a single server. However, before being served, jobs must go 
through a procedure that causes service be performed with delay. There is also a possibility 
of a server breakdown that would require to be repaired, which will affect arrivals, that cause 
another possible delay in service. As a batch exits the first stage, some may leave the system 
at that point with some probability. The rest of the batch attend an infinite buffer at the 
second stage with the complement of the probability of leaving.  The attending batch es will 
be numbered and they will move to service as they are. As it can be anticipated for a time-
dependent case, the system is a complicated one. Nonetheless, the time-dependent 
probability generating function for the number of jobs at each stage and the system as a 
whole, as well as the first and the second moments are found. The probability generation 
function and convolution of exponential functions and generating functions have been used 
to obtain moments for each stage as well as the system. Several special cases have been 
illustrated to show the validity of the results. 

Keywords: Balking, batch, breakdown, bulk, delay, moments, probability generating 
function, Poisson, tandem time-dependent queue. 

1. Literature Review and Introduction  
Applications of queues with bulk arrival and batch service can be found in mass 

transportation such as buses and airplanes carrying passengers and trucks carrying all sorts 
of packages of groceries, cars, clothing, also groups of soldiers. Service in a queue by 
batches was presented by Bailey [3]. We, in this paper, view this type of queue from a 
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management viewpoint. For instance, for a hiring process that requires multiple interviews 
in tandem. We, in this paper, choose only two stages.  

Tandem queues, also, have many applications. Here are some examples: (i) in hospital 
emergency rooms, where patients are admitted by triage nurses before going on to have a 
number of medical tests and procedures, see Gans et al. [13], (ii) Haghighi and Mishev [16] 
studies a tandem queueing system with job-splitting, feedback, and blocking, and (iii) 
Haghighi and Mishev [20] include variety of applications in this book-chapter. There other 
authors who have studied tandem queues. For example, Le Gall [31] studied the stochastic 
behavior of networks of single server queues; Kim and Ayhan [28] studied tandem queues 
with subexponential service time distributions; Baruah et al. [4] considered two- stage 
queuing model where the server provides two stages of service one by one in succession; 
and so on. However, in most cases some authors study the stationary processes of the models 
they are presenting. 

A general class of bulk queues with Poisson input was studied by Neuts [35]. 
Continuing that pattern, Kleinrock [29] considered models that are equivalent to Erlang 
arrival systems. That is, cases such as parallel and parallel-series services. Recently 
Abhishek et al. [1] studies the transient and stationary queue length distributions of a class 
of service systems with correlated service times. He stated in its abstract that the 
classical / /1XM G queue with semi-Markov service times is the most prominent example 
in this class. The idea of a queue with bulk arrival and batch service and breakdown in the 
stationary case was studied by Madan et al. [34]. Chen et al. [8] discuss Markovian bulk-
arrival and bulk-service queues with general state-dependent control and answer the 
questions regarding hitting times and busy period distributions. A kind of generality of their 
model was studied by Jain et al. [25]. Using functional equation, Haghighi and Mishev [18] 
considered analysis of a two-node job-splitting feedback tandem queue with infinite buffers. 
Using functional equation, Haghighi et al. [19] considered a single-server Poisson queueing 
system with splitting and delayed-batch-feedback, the case that the batch size is 1. They 
considered this system as a tandem queue and offered an algorithm to find the solution. 

The first author who considered the time-dependent case of a single server Markovian 
queue was Takács, who starded his paper in [40], completed and published it in [42]. Griffiths 
et al. [15] studied the transition solution of M/Ek/1 queue. Also, Hayashi et al. [23] studies 
queueing models, where customers arrive according to a continuous-time binomial process 
on a finite interval. A total of K customers arrives in a finite time interval. They introduce 
the auxiliary model with non-homogeneous Poisson arrivals and show that the time-
dependent queue length distribution in the original model to analyze the time-dependent 
queue length distribution of this model. 

And recently, Ayyappan and Udayageetha [2] consider a transient priority queuing 
model. Gahlawat et al. [12] consider a two-state time-dependent bulk queue model with 
intermittently available Server. They show that time between arrivals, servicing time, and 
server availability time follows an exponential distribution. Also, Stolletz [39] studied an 
optimization of time-dependent queueing system, in which the author decisions in service 
operations, manufacturing, and logistics are supported using stationary queueing models. 
 

https://arxiv.org/search/math?searchtype=author&query=Hayashi,+K
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Study of a time-dependent tandem queue with blocking and a single server in each 
counter with no buffer between the stages was done by Prabhu [37]. In that case, the first 
station may be blocked if its server is busy at the end of a service at stage one. Hence, an 
idle period will be created and moving of a customer to the next station will be dependent 
upon the idle period. Thus, the process loses its Markovian property at such epochs. Thus, 
he concluded that although the idle period has a negative exponential distribution behavior 
and the state of station 1 will not change. Hence, he uses the first station as an M/G/1. 
Haghighi et al. [17] studied the transient probability distribution of a single-server queue 
with delay. They started by considering an M/G/1 with exponential and deterministic types 
of delayed service distributions. They found the busy period and the PGF of the queue length 
distribution. For the model they used, they considered the Erlang multi-stage distribution. 

2. The Model 
In this paper we study a time-dependent two-stage queueing network with variety of 

properties. Generally, there are two advantages of time-dependent analysis: (i) it will help 
us to understand the behavior of the system when the parameters involved are modified and 
(ii) it can contribute to the costs and benefits of operating the system.  

In today’s technologically oriented communication and manufacturing systems, 
performance evaluation is possible by modeling them as queueing networks. Parametric 
decomposition is one of the most popular and effective methods in queueing network 
approximations. It is a parametric decomposition which decomposes a network into single 
nodes and the interactions between these nodes are captured by a few parameters.  

In addition to the time dependence, the model we are considering has the following 
features:  

(1) arrivals to both stages are according to Poisson distribution, with bulks of various 
sizes,  

(2) there is a possibility of balking at both stages, 
(3) there is an infinite buffer in front of each stage, 
(4) there is a single server in each stage, 
(5) service is performed at each service station by a batch with limited size,  
(6) there is a delayed process before service starts in S1, 
(7) there is a possibility of service delay and breakdown in S1 that may require, and 
(8) only a part of severed jobs exiting SS1 enter S2. 
See Figure 1. 
The goals of this study are finding the time-dependent probability generating function 

for the number of jobs in each stage and the in the entire system, as well as, the first and the 
second moments. We will also discuss the output of the first stage, and offer some special 
cases in both stages.  

As a real-world application of the model consider a travel agency taking groups of 
tourists to different parts of the world for site seen and educational tourism. The process 
involves creating, organizing, and managing tours and experiences for tourists. Research and 
planning are the bedrock of any successful business. Thus, understanding the processing time and 
other aspect of the tour are important to determine the const of the travel for tourist and benefits 
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for the company. Hence, what our model contribute in the calculation is to keep the management 
inform of the probability of how many tourist are in the tour at any time so that the company can 
calculate the expenses having the number  to take care of, not only the traveling part about the 
wellness of the tourist know how long passing through traveling requirements such as checking 
passport, or going through gate , museum, etc. will take and, hence, the cost of hotel emergencies, 
etc. On the other hand, the income based on the number will help the management be able to 
estimate the profit at any time. 

 
Figure 1. The Model. 

Accordingly, our model shows the arrival of potential tourists via planes, ships, trains 
or busses to an airport, a port, a train station, or a bus station, of the city that the travel is to 
start, say Houston, Texas in the United States, with varying number of passengers, say, 
, 1, 2,3, , ,i i n=   .n →∞  Before a vessel arrives to its station, it may not be able to land or 

dock, or pulls into the station or arrive at the bus station due to natural disaster such as 
Southern California’s wildfires (Palisades) in January 2025, terror activities, mechanical 
matter, etc. and thus will not be able to arrive and has to leave. Otherwise, arrives and walk 
into a specified terminal or are moved by shuttles, etc., after the plane has stopped. Then, 
they have to go to the gate to check their passports, etc., before going to the next pane to go 
for the destination. The travel process now follows the model described by Figure 1 and 
Figure 2. 

   
Figure 2. Arrivals with possible balking. 
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Due to the limitations of closed form solutions and exact algorithms to analyze general 
queueing networks, approximations are the tools researchers are focusing on. In most such 
queueing systems, the approximations are used, usually, on a few parameters such as the 
interarrival and service time distributions and the first two moments. Hence, large errors in 
many conditions are possible. Girish and Hu [14] develop higher order approximations for 
the single server and tandem queues with infinite waiting buffer, general interarrival and 
service time distributions and focused on the phenomena of splitting, merging and feedback. 
Although manufacturing and communication systems have only finite buffers, they 
expressed their hopes that their results lead to solutions for the finite buffer systems in the 
future. They illustrated the gains and the accuracy of these methods and offered numerical 
examples.  

For a network queue, and in particular, time-dependent ones, Haghighi and Mishev [21] 
have considered different types of BMAP queueing models in tandem. One of the problems 
in tandem queues is the arrival into the next station in series. For example, Beutler and 
Melamed [5] consider decomposition of customer stream of feedback networks queues in 
equilibrium.  

In addition to the above characteristic of our model, there are now and in the recent past 
many studies of a class of queueing systems with catastrophes in which not only the servers 
fail, but all jobs are demolished and in some cases no arrival is allowed while servers are 
not back to serve. We will explain how our system works in S1(i) and S1(ii) below. 

Thus, our model consists of two stages and the first stage has two cases. We will first 
discuss the first stage, referred to as the Stage 1 or S1, with both cases S1(i) and S1(ii), then 
the second stage, referred to as the Stage 2 or S2, and finally, the entire system. 

3. Stage 1 (S1) Description 
Jobs arrive according to Poisson distribution with mean rate λ , 0λ >  in batches of 

variable sizes that can be modeled as a point process. The batch sizes are represented by a 
random variable X with probability iβ , that is,  

 { } , 1, 2,3, ,iP X i iβ= = =    (3.1) 

with mean value of batch sizes as ( ) .E X X≡  The balking occurs with probability 1b   and 
attendance occurs with probability 1a  such that 1 1 1 10 ,  1, 1.a b a b≤ ≤ + =  Thus, the batches 
attend according to a time-homogeneous compound Poisson process with parameter 1 ,iaλ β     

where, 0 1,iβ≤ ≤  and 
1

1.ii
β∞

=
=∑  We assume that both mean and variance of X are 

positive and finite. 
An infinite size buffer, denoted by B1, is available for attending batches. Jobs exit an 

attending batch individually and are placed randomly in B1 with some types of identification 
for the purpose of servicing as first-come first-served.  
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Letting { }1( ), 0t tζ ≥  representing the number of jobs in S1 at time t, including the ones, 

if any, being served, results the process { }1( ), 0t tζ ≥  to be a Markov process on the state 
space.  

S1 contains a service station, referred to as the Service Station 1 (or SS1) with a single 
server. The jobs in B1 are called, in the order of their placement (FCFS) and forming batches 
of varying sizes between a minimum k and a maximum K. That is, if there are m jobs 
available in B1, then the service works as follows: 

(a)  if  0 ,m k≤ <  service will not start,  
(b)  if ,k m K≤ < the server will pick up the entire m jobs and starts the servicing, and 
(c)  if ,m K≥  the server will pick up K jobs and starts servicing.  
It should be noted that the case 1k K= =  is a case of service being performed singly. 

If arrivals also arrive singly, then the S1 will be a time-dependent [ ] / /1XM M  queue with 
balking. Some authors such as Liu and Song [33], who derived the probability generating 
function of the stationary queue length of such a model. However, we will present the time-
dependent special case of 1k K= = with a single-arrivals. 

Service in S1 is performed independent of arrivals and with two types of possible delays 
as follows:   
S1(i) As a batch enters SS1, before its service starts, it is required to go through 

registration and other clerical processes.  The totality of these processes will cause 
a delay in service. For this case, we refer to Stage 1 as S1(i). In this case, the external 
jobs continue to arrive while SS1 is going through the delay process without 
interruption. The service time, however, will be the sum of the times of 
registration and the actual service. Hence, the effect of interruption in this case is 
causing delay in the service time of jobs being in SS1.  

 S1(ii) The same as S1(i) except while a service is performing, either the server becomes 
disabled, or the machine experiences a breakdown and fails to continue to work. 
For this case, we refer to Stage 1 as S1(ii). In this case, B1 closes and no job can 
arrive until the repair is done and the server is back to work. Thus, there is a 
possibility of the service breakdown or server incapacitation during the interval 
( , ]t t t+ ∆  with probability .tω∆  In this case, the effect of delay not only is on the 
sojourn time of the interrupted jobs in service and those in B1, but, also, on the 
number of jobs in S1, since some potential arrivals will be lost during the service 
breakdown. This type of phenomenon is almost unavoidable in real-life situations 
these days with all electronic equipment and Internet use. It is not practical that the 
server be available in the system on an enduring basis.  

It should be noted that the model for the S1 that we have develped is similar to Madan 
[34] with two main differences. Firstly, he considered the stationary processes, while we are 
considering the time-dependent case. Secondly, he considered two separate probabilities for 
the numbers in queue; one when the server is offline and one when it is operational. 
However, he did not mention if his stem stops accepting arrivals while server is in repair, 
otherwise the distinction is unnecessary. But we do separate the cases as in S1(i) and S1(ii). 
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Stationary case of the S1 without either service delay or breakdown, which is an 
[ [ ( , )/ /1,X k KM M  has been studied by Haghighi and Mishev [20]. Shanthi et al. [38] has 

considered the computational aspect of time-dependent [ ] ( , )/ /1X a bM M  with a standby 
server which is published in a proceeding of a conference. Lastly, Haghighi and Mishev [22] 
have considered a one-stage time-dependent case of [ ] ( , )/ /1X k KM M  with Reneging  and 
Setup Time for Service. 

4. Analysis of S1(i) 
Let us denote by ( )mP t  the probability of the Stage 1 be in state , 0,m m ≥  in case (i), 

where m is the number of jobs in B1 and in service, represented by a random variable 
1( ) ( ).i tς  Without loss of generality, we assume that initially there is no job in the system, 

that is,  

 0

1, 0,
(0)

0, 0,j j

j
P

j
δ

=
= =  ≠

 (4.1) 

where 0 jδ  is the Kronecker delta.  
Let us denote the service and the delay time by two independent random variables S and 

D, respectively. Then, the total time for a job to spend in SS1 is the sum of these two random 
variables that we denoted it by Y. That is,  

 .Y D S= +        (4.2) 
We also assume that each of random variables S and D is exponentially distributed with 

parameters σ  and ,υ respectively, 0, 0,σ υ> >  and 0.y ≥ Thus, the pdf of Y is the 
convolution of pdfs of S and D, which becomes the pdf of the two-parameter 
hyperexponential distribution. In other words, if we denote Df  and Sf  as the pdf of D 
and S, respectively, defined as:  

                             ( ; ) , 0,
0, 0,

t
Df t e t

t

υυ υ − = ≥


<
 and ( ; ) , 0,

0, 0,

t
Sf t e t

t

σσ υ − = ≥


<
      (4.3) 

then 

                      
( ) ( )

( )

( ; ) ( ; )

.

y y
D S Y

y y

f t f t e e

e e

σ υ

υ σ

υ συ σ υ σ σ υ
υ σ σ υ

υσ
σ υ

− −
+

− −

+ = + = +
− −

= −
−

                   (4.4) 

Also, since the expected value of a sum is the sum of the expected values, the expected 
value of a hyperexponential random variable with two parameters is:  

 1 1( ) .E Y υ σ
υ σ υσ

+
= + =     (4.5) 



© Haghighi, Mishev 

42 

Note that if ,φ υ σ≡ =  then Y  becomes a two-parameter Erlang or gamma random 
variable, and from (4.5), with mean 2 / .φ  Hence, the parameter of pdf of Y in this special 
case will be / 2.φ  

Now, we consider S1(i), that is, the time-dependent case of ( , )/ /1X k KM M  under 
conditions mentioned above. For the sake of convenience, we define the parameter  

 .υσψ
σ υ

≡
+

       (4.6) 

Thus, the transient system of differential-difference equations (or the forward 
Kolmogorov equations) for the number of jobs governing S1(i) would be as follows: 

 '
0 0( ) ( ) ( ),

K

i
i k

P t P t P tλ ψ
=

= − +∑   0,t ≥                 (4.7) 

 '
1

1
( ) ( ) ( ) ( ),

m K

m m i m i m i
i i k

P t P t a P t P tλ λ β ψ− +
= =

= − + +∑ ∑  1 1, 0,m k t≤ ≤ − ≥          (4.8) 

 ( )'
1

1
( ) ( ) ( ) ( ),

m K

m m i m i m i
i i k

P t P t a P t P tλ ψ λ β ψ− +
= =

= − + + +∑ ∑  , 0.m k t≥ ≥                (4.9) 

5. The Time-dependent Solution of the System of Equations for S1(i) 
Theorem 5.1. Let the probability generating function (PGF) of ( )mP t , represented by a 
random variable 1( ) ( ),i tς  be denoted by 

1(i )
( ), 0,G t tζ ≥  and define it as: 

           ( ) { }1( )

1( ) 1( )
0 0

( , ) ( ) ( ) , 1.i

i

m m
i m

m m
G w t E w P t m w P t w wζ

ζ ζ
∞ ∞

= =

= = = = ≤∑ ∑                (5.1) 

Then, under the condition that the S1(i) is empty at time 0, (4.1), the distribution of the 
number of jobs in S1(i) at any time t will be: 

           1( )

1( )

( )
( )

0

( , )1 1( ) (0, ) ,
! !

i

i

m
m

m m

w

G w t
P t G t

m m w
ξ

ξ

=

∂
= =

∂
                              (5.2) 

where 
1(i )

( , )G w tζ  is given as: 

[ ] [ ]1 1

1(i )

1
( ) ( )

0 00

( , ) 1 ( ) ( ) .
t k K

a A w t a A w u m m
m m i

m m i k
G w t e e P u w P u w duλ ψ λ λ ψ λ

ζ ψ
− ∞

− + − + −
+

= = =

  = + +    
∑ ∑∑∫    (5.3)  

Proof. We first need to show that (5.3) is true. For this purpose, we will use the PGF to 
solve of the system (4.7) through (4.9). Thus, we multiplying (4.7) by Kw and multiplying 
(4.8) and (4.9) by .mw  Then, summing each product from 1 to ,∞  with constraints on m. 
Then, with some calculations, we will have:  
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1

1

( )
( )

1
1 1 1

( , )
( , ) ( ) ( )

( ) ( )

K
i m

i m m
m k m k

m K
m m

i m i m i
m i m i k

G w t
G w t P t P t w

t

a P t w P t w

ξ
ξλ ψ ψ

λ β ψ

∞

= =

∞ ∞

− +
= = = =

∂
= − + −

∂

+ +

∑ ∑

∑∑ ∑∑
 

or 

      

1( )

1

1

0

1
1 1 1

( , )
( ) ( , ) ( ) ( )

( ) ( ) .

i
K k

m
m m

m k m
m K

m m
i m i m i

m i m i k

G w t
G w t P t P t w

t

a P t w P t w

ξ
ξλ ψ ψ ψ

λ β ψ

−

= =

∞ ∞

− +
= = = =

∂
+ + = +

∂

+ +

∑ ∑

∑∑ ∑∑
      (5.4) 

We denote the PGF of iβ  by ( ),A w which is defined as: 

                                       2
1 2

1
( ) ,i

i
i

A w w w wβ β β
∞

=

= = + +∑            (5.5) 

from which 

          
1

(1) 1.i
i

A β
∞

=

= =∑           (5.6)  

Hence, based on a well-known fact regarding product of two PGFs, we obtain: 

     [ ]
1( )

0 0
( , ) ( ) ( )

i

m
m

i m i
m i

G w t A w P t wζ β
∞

−
= =

   =     
∑ ∑ =

1

*

1 1
( ) ( ) ( , ).

m
m

i m i
m i

P t w A w G w t
ξ

β
∞

−
= =

=∑∑       (5.7) 

Applying (5.7) on (5.4), and rearranging the terms leads to: 

( )1(i )

1( i )

1

1
0 0

( , )
( ) ( , ) ( ) ( ) ( ) .

K k K
m m

m m m i
m k m m i k

G w t
a A w G w t P t P t w P t w

t
ζ

ζλ ψ λ ψ
− ∞

+
= = = =

∂  + + − = + + ∂  
∑ ∑ ∑∑    (5.8) 

To solve (5.8), it should be noted that although it is a partial differential equation, it is really 
a linear ordinary differential equation with respect to t in the form of ' ( ) ( ),y p t y f t+ =
where: 

 ( ) ( )p t A wλ ψ λ= + −  and 
1

0 0
( ) ( ) ( ) ( ) ,

K k K
m m

m m m i
m k m m i k

f t P t P t w P t wψ
− ∞

+
= = = =

 = + +  
∑ ∑ ∑∑          (5.9) 

Thus, the integrating factor, denoted by ,ν  will be: 

                                   
( )1 10

( ) ( ) .
t

a A w du a A w te e
λ ψ λ λ ψ λν   
+ − + −∫= =                             (5.10) 

Therefore, using (5.10), the solution of (5.8) will be: 
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[ ] [ ]1 1

1(i )

1
( ) ( )

0 00

( , ) ( ) ( ) ,
t k K

a A w t a A w u m m
m m i

m m i k
G w t e c e P u w P u w duλ ψ λ λ ψ λ

ζ ψ
− ∞

− + − + −
+

= = =

  = + +    
∑ ∑∑∫   (5.11)  

where c in an arbitrary constant.  

Using the fact that 
1( )

0
(1, ) ( ) 1,

i m
m

G t P tξ

∞

=

= =∑ and the initial condition at 0,t = that is, (4.1), 

equation (5.11) leads to  

 
1( ),

0
(1,0) (0) 1.

i m
m

G Pξ

∞

=

= =∑   (5.12) 

Applying (5.12) on (5.11), we will have:      

  
1(i )

(1,0) 1 .G cζ = =      (5.13) 

Substituting c from (5.13) into (5.11), we obtain (5.3), from which (5.2) will be obtained 
and the proof is completed. 

6. Moments of Number of Jobs in S1(i) 
Now that we have the PGF of the time-dependent S1(i) given by Theorem 5.1, we move 

to find the first two moments of 1(i) ( ).tζ  The mean and variance of the number of jobs in 
S1(i) can be found by the first and the second derivatives of (5.3) with respect to w, and 
being evaluated at 1,w =  that is, 

           ( ) 1( )

1

'
1( ) ( )

1

( , )
( ) (1, ) i

i i

w

G w t
E t G t

w
ξ

ξξ
=

∂
= =

∂ and    ( ) 1( )

2
2

1( ) 2

1

( , )
( , ) .i

i

w

G w t
E w t

w
ζξ

=

∂
=

∂
    (6.1) 

In other words, 

 ( )1(i) ( ) (1, )wE t G tζ = and  ( ) ( )2
1(i) ( ) (1, ) (1, ) (1, )ww w wVar t G t G t G tζ = + −         (6.2) 

Theorem 6.1. The mean of the number of jobs in S1(i) in case of the time dependent case 
is: 

( ) { }'
1( ) 1 1 1 1 10 0

1 (1) (1) (1) ,
t tt u u

iE e a X t e R du e a X R R duψ ψ ψζ λ λ ψ−    = + − −   ∫ ∫       (6.3) 

where 
1

1 0
1 1

(1) ( ) ( ) ( ) ( ) ,
K k K

m i m i
m i k m i k

R P u P u P u P uψ
∞ −

+
= = = =

 = + + +  
∑∑ ∑ ∑                   (6.4) 

and 
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+
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 = +  
∑∑ ∑                   (6.5) 

Also, the second moment of the number of jobs in S1(i) in case of the time dependent case 
is:  
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 − − 
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∑ ∫

∫

∑∫

  

(6.6)                                                                                                                                      
where 

                              
1

''
1

1 1
(1) ( 1) ( ) ( 1) ( ) .

K k

m i m
m i k m

R m m P u m m P uψ
∞ −

+
= = =

 = − + −  
∑∑ ∑                   (6.7) 

The variance can be obtained using (6.2). 

Proof. To find the derivatives, we need some manipulations such as: 

[ ] ( )
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1 1 1 1

1 1 1
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Hence, 
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Thus, after some more manipulations, algebra and taking the second derivative, the 
proof will be completed. 

7. The Steady-state Solution of the System of Equations for S1(i) 
In Section 5, thorough Theorem 5.1, we found the transient PGF of the number of items 

in S1 for the case S1(i). Now we want to let t to approach infinity and find the steady-state 
PGF of the same. This is the case that the derivatives on the left-hand side of the system 
(4.7) – (4.9) are to be zero and t should be dropped on the right-hand side of it.  

Thus, for such a case, we can find 0P  from the first equation after the derivative on the 
let is set to zero, that is: 

                                                         0 .
K

i
i k

P Pψ
λ =

= ∑           (7.1) 

The stationary case of S1(i) is similar to the first station of Haghighi and Mishev [20], 
Stochastic three-stage hiring, [ ] ( , ) [ ]/ /1 / /1 ,X k K Y

rM M M E− −∞  equation (3.8) Going 
through the derivation of (3.8) for our case with balking, we will have the stationary PGF 
for our case S1(i) will be as follows: 
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1(i )
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0 0
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( ) .
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−
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   −  
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  (7.2) 
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where 

1( )
0

( ) , 1,
i

m
m

m
G w P w wζ

∞

=

= ≤∑            (7.3) 

Finite sums in the numerator of (7.2) may be found using the standard argument of 
applying Rouche’s theorem. That is, knowing A(w), the number of zeros of denominator of 
(7.2) within and on the unit- circle is the same as the ones of the numerator. The application 
of Rouche’s theorem assures us that the denominator of (7.2), keeping in mind that 

1 1,K

k
K k= − +∑  has 1K k− +  roots on or inside the unit circle 1.w =  Thus, the 

numerator must have the same roots. Hence, we will have K  linear equations in terms of 
,  0,1, 2, , ,iw i K=   which are sufficient to determine all the K  unknowns. Therefore, the 

probability generating functions in (7.2) can be completely determined, from which mean 
and variance in this case can be obtained. See, for example, Madan [34]. 

8. Special Cases of S1(i) 

8.1.  Case when k = K = 1   with single arrivals 
For a special case 1,k K= =  we consider two cases: (a) no balking and (b) with balking.  

(a) Case when k = K = 1 , with single arrivals and no balking 
The difference between our case and the standard transient M/M/1 is the service rate 

due to the delay factor. Hence, using the known information about M/M/1, we can find the 
distribution of the queue size for this special case of S1(i). Information about the standard 
M/M/1 system can be found in Takács [41, 43], which contains complete discussion of 
transient M/M/1, including busy period, waiting time, and the queue size. Also, Jain and 
Meitei [25] discussed computation of the transient solution of M/M/1 queue, as was 
mentioned earlier. We will use their method in this part. 

Now, let ( )M t  denote the number of jobs in S1(i) at time t. Assume that the initial 
numbers of jobs in S1 at 0t =  is i, that is, in B1 and SS1. In other words, 

 0

0, 0,
(0)

1, 0,i i

i
P

i
δ

=
= =  ≠

 (8.1) 

where 0iδ  is the Kronecker delta. Then, using the transition probabilities 

{ }( ) ( ) | (0)ijP t P M t j M i= = = , the probability generating function, the Laplace transform, 
the renewal structure, and the busy period density, Kijima [27] shows that there is a 
probability density function, say ( )p t , such that:  

                                                         00 0
( ) 1 ( )

t
P t p u duρ= − ∫ ,                               (8.2) 
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where: 

      1.Xλρ
ψ

= <     (8.3) 

Also, for the case 1,k K= =  S1(i) becomes a time-dependent M/M/1, whose solution 
is well known. Takács was the first to consider this case in his book [43], where he offers 
the transition distribution function for the number of jobs is the system at time t with initial 
number i. These findings can be found in his Theorem 1 in term of integral and in Theorem 
2 in term of the modified Bessel function of order r, which is given as: 

 
2

0

1( ) , 0,1, 2, ,
( 1)!( )! 2

l r

r
l

zI z r
l l r

+∞

=

 = = + +  
∑ 

 (8.4) 

where l and z are a real and a complex number, respectively, in Chapter 1, pages 22 - 26. 
Further, Leguesdron et al. [32] study the same case but with a different approach through 
PGF and its inversion. And Brockwell [6] considered a similar case when the batch sizes 
are fixed, and they are served as they arrive. With that assumption, he found the probability 
of the number in the system using the output distribution and the distribution of the system 
being empty, its Lagrange expansion and the method of continued fractions. Jain and Meitei 
[25] consider the computation of the transient solution of M/M/1. Based on their solution, 
for our special case, the solution is as follows: 

 
( ) ( )

( )

( ) 2

2
( )

1

( ) 2 2

2 ,

m j
t

i m m i m i

l

t m
l

l m i

P t e I t I t

le I t
t

λ ψ

λ ψ

ρ λψ λψ

ρρ λψ
ψ

−
− +

− +

−
∞

− +

= + +

 = − 

+ ∑
         (8.5) 

where ρ  is given in (8.3) and ( )mI z  is the modified Bessel function of order m, given in 
(8.4). After applying some properties of the modified Bessel function,   

(b) Case when k = K = 1 , with single arrivals and with balking 
Parthasarathy [36], based on Ledermann and Reuter [30], the combinatorial method of 

Champernowne [10] and the difference equation technique of Conolly [11], in a two-page 
paper, presented the distribution of the number in the system for standard M/M/1 in a simple 
way. Based on his method, and our assumptions of M/M/1 with delayed service rate 

/ ( ),ψ υσ σ υ≡ +  and balking, the system of difference equations (4.7) to (4.9) reduces to 
the following system: 

             '
0 0 1( ) ( ) ( ),P t P t P tλ ψ= − +  0,t ≥                      (8.6) 

             ( )'
1 1 1( ) ( ) ( ) ( ),m m m mP t P t a P t P tλ ψ λ ψ− += − + + +  0, 1, 2, ,t m≥ =               (8.7) 
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For this case, we assume that initially there are i jobs in S1, as was defined in (8.1). 
Thus, after going through the PGF manipulation with his way, we find the following result 
for our case: 

 ( )
0

1

1( ) ( ) ( ),
m l mm

t
m l

l
P t e q t P tλ ψ λ λ

ψ ψ ψ

−
− +

=

   
= +   

   
∑  (8.8) 

where 

 ( )
0 0 10
( ) ( ) ,

t u
iP t q u e duλ ψδ − += + ∫  (8.9) 

0iδ  Kronecker delta defined in (8.1), and: 
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m i m i

I t I t
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λ λψ δ λψ
ψ ψ

λλ λψ λ ψ
ψ
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    
= − −            

   + −     

 (8.10) 

where ( )rI x  is the modified Bessel function of the first kind with , 1, 2, .r rI I n− = =   

9. Analysis of S1(ii) 
In case of S1(ii), as mentioned above, when a breakdown occurs or the server becomes 

incapacitated, the service of jobs in SS1 stops and resumes as soon as it is repaired, or the 
server’s condition is back to normal. No job can enter SS1 during the breakdown. Hence, 
we assumed that the delay times in this case are iid random variables according to an 
exponential distribution with parameter 0η > . 

Let { }1( ) ( ), 0ii t tζ ≥  be the random variable represent the number of jobs in S1(ii) at 

time t. Let us, also, define ( )mO t  and ( )mB t as follows: 
1. Let ( )mO t  be defined as the probability of S1(ii) in state , 0,m m ≥  where m is the 

number of jobs in B1 and the batch being served, when the service process is operational. 
Without loss of generality, we assume that initially there is no job in the system, that is,  

 
1, 0,

(0)
0, 1.m

m
O

m
=

=  ≥
 (9.1) 
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2. Let us also define ( )mB t  as the probability of S1(ii) be in state , 0,m m ≥  where m is the 
number of jobs in B1 and the batch being processed, when the service process 
experiencing a breakdown. We also assume that:  

 
1, 0,

(0)
0, 1.m

m
B

m
=

=  ≥
 (9.2) 

The governing system of the differential-difference equations with respect to time t, in 
this case for S1(ii) would be as follows: 

'
0 0 0( ) ( ) ( ) ( ) ( ),  0,

K

i
i k

O t O t O t B t tλ ω σ η
=

= − + + + ≥∑          (9.3) 

'

1
( ) ( ) ( ) ( ) ( ) ( ), 1 1, 0,

m K

m m i m i m i m
i i k

O t O t O t O t B t m k tλ ω λβ σ η− +
= =

= − + + + + ≤ ≤ − ≥∑ ∑     (9.4) 

'

1
( ) ( ) ( ) ( ) ( ) ( ), , 0,

m K

m m i m i m i m
j i k

O t O t O t O t B t m k tλ σ ω λβ σ η− +
= =

= − + + + + + ≥ ≥∑ ∑           (9.5) 

'
0 0 0( ) ( ) ( ) ( ),  0,B t B t O t tλ η ω= − + + ≥                        (9.6) 

'

1
( ) ( ) ( ) ( ) ( ), 1, 0.

m

m m m i m i
i

B t B t O t B t m tλ η ω λβ −
=

= − + + + ≥ ≥∑         (9.7) 

To interpret the system (9.3) through (9.8), for instance, (9.3) means that for the system 
in working condition to have a 0 job in it, no job should arrive, no breakdown should occur, 
if there are i jobs, , 1, , ,i k k K= +   all have to be served and out of Station 1, and no repair 
should be in process. The rest may be interpreted the same way.  

Note that, in a special case of time-dependent when arrival is singly according to 
Poisson with parameter ,λ  service is one at a time, that is, 1k K= =  and there is no 
breakdown possible, then 1, 1,2, ,i iβ = =   1 ,λ λ= 0,η =  and ( ) 0.mB t =  Hence, the time-
dependent system of equations (9.3) – (9.7) becomes the system of equation for time-
dependent M/M/1, solution of which was first given by Takács [40, 42].  

To solve the system of time-dependent equations (9.3) through (9.7), we multiply (9.3), 
(9.4), and (9.6) by mw  and sum over m from 1 to ∞ .  Then, apply the Laplace transform on 
the new equations, using the following fact: 

          0 (0) 1O =  implies that 0(0) 0, (0) 1, and (0) 0,m mO B B= = =                 (9.8) 

we obtain the following: 
* * *
0 0( ) ( ) 1 ( ) ( ),

K

i
i k

s O s O s B sλ ω σ η
=

+ + − = +∑                               (9.9) 
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1 1 1 1
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 (9.11) 

* *
0 0( ) ( ) 1 ( ),s B s O sλ η ω+ + − =                                             (9.12) 

* * *
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To solve the system (9.9) through (9.13), as standard, we define the probability 
generating functions of  * ( ),mO s  and * ( ),mB s respectively, as follows: 
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with ( ) and (1)A w A  defined in (5.5) and (5.6), and 
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Thus, using the aforementioned on the system (9.9) through (9.13), we will have: 
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and 

 



© Haghighi, Mishev 

52 

( ) [ ]
[ ]

1(ii )

*

1
*

0

*1
* 0

1 1

1( , )
( ) ( )

( ) ( )
( ) ( ) ( ) ( ( ) 1)

( ( ) 1)
( )

[ ( ) 1]

1 ( )( ) 2
( )

B

k
m

m
m

k m
m

j m j
m j

G w s
s A w s A w

s A w
s A w s A w s

A w s
O s w

A w s

O sO s w
s

ζ
ω

λ η λ λ η λ

λ η λ
λ η λ σ λ ω λ

λ
σ

λ η

ωλ β υ
λ η

−

=

−

−
= =

 
= +  + + + + + + 
 + + 
 + + + − − + + 
  + +
× × − + + + +  


+ + + + + + 

∑

∑∑

.







    (9.17) 

Again, the Laplace transform of mean and variance of the number of jobs in S1(ii) can 
be found by the first and the second derivatives of (9.16) and (9.17) with respect to w, 
evaluated at 1,w =  according to their relations.  

As a final assumption on Stage 1, we assume that the inter-arrival times of batches, the 
service times of batches, the delay times and the repair times are all independent of each 
other. With the new assumption, the first stage becomes an ( , )/ /1X k KM M  with delayed 
service time due to the possible breakdown. 

10.  The Output Process of S1  
The case of a tandem queues, generally, the arrivals into the next stage are the output of 

the immediate previous stage. In our model, arrivals could be from either S1(i) or S1(ii). 
There are cases when the new external arrival for each stage is possible. Thus, generally, 
the distribution of arrivals to the next stage is not known, unless, otherwise, it is either 
proven or assumed. For example, for a stationary tandem M/M/1, Burke [7] has proved that 
the output of the first stage is Poisson with the same rate as the arrival. Also, depending 
upon the service distribution being exponential or unknown, the model could be a G/M/x, 
GI/M/x, or G/G/x, where x is the number of servers. There is a variety of these types of 
models. For example, Takács[43], Kleinrock [29], Chen and Whitt [9] and Hora [24]. 

For our case, however, there might be an attempt to accept the output distribution from 
S1 as Poisson, based on Burke’s [7] theorem and Takács [43] that essentially is for 
stationary M/M/1 and M/M/c from infinite sources. However, recently, Tsitsiashvili and 
Osipova [45] defined a time-dependent model / / /nA M M n≡ ∞  as a queueing system with 
input flow intensity 0,λ >  and the service time with parameter 0,µ >  where 1 .n≤ < ∞   
They defined , ( ), 0,k nP t k ≥  to be the transition probability from state k to state n at the 
epoch t. They, then, proved that the output flow from nA  is Poisson with intensity 

,0
( ) ( ) min( , ).k nk

a t P t k nµ
>

=∑   Thus, they have given a generalization of the Burke’s 
theorem. In other words, the output distribution is yet Poisson, but with different parameters. 

Although, it seemed as though the model / / /M M n ∞  of Tsitsiashvili and Osipova is 
to help our model to assume the arrival to S2 as a compound Poisson distribution, but in 
fact, that is not the case. What Tsitsiashvili and Osipova are doing is making the Poisson 
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arrival process a non-homogenous rather than the stationary case of Burke or Takács. Thus, 
we will try a different way.  

11.  The Second Stage (Stage 2 or S2)  
The second stage starts as the jobs exit SS1. We referred to this stage as Stage 2 or S2. 

There is an infinite-sized buffer at the beginning of S2, that we refer to as B2. Now, after 
service of a batch in SS1 is completed and the batch is to exit, some jobs may have to leave 
the system for whatever reason, with probability 2q . Hence, the output from S1 constitutes 
potential arrivals for S2. At this point, the remaining jobs will attend B1, with probability 

2 2 2, 1,p q p+ =  as a batch of a varying size, represented by the variable Q with probability 
randomly with probability , 1, 2, , ,j j Kπ =   that is, 

 { } , 1, 2,3, , ,jP Q j j Kπ= = =          (11.1) 

with mean value of batch sizes as ( ) .E Q Q≡  When a batch attends B1, it will be placed 
with an identification tag for the service since the service will be first-come first-served. 

There is also a service station in S2, referred to as SS2. Jobs batches in B2 will be called 
in order of their arrivals, and move to SS2 for service. The service times in SS2 are iid 
random variables having negative exponential distribution, ( ),H θ  with parameters µ   
where µ  is a positive real number, that is,  

 1 , 0,
( )

0, otherwise,
e

H
µθ θ

θ
− − ≥

= 


 (11.2) 

and independent of { }.nτ  Thus, Stage 2 is an infinite-buffer time-dependent 
[j] [j]G / M / 1,  j = 1,2,3,L ,K,  type queueing model. This model is a generalization form 

of GI/M/1 that many authors have addressed. For example, see Tian and Zhang [44]. Also, 
Zhao [46] has considered the steady-state case of / / .XGI M c  

12.  Analysis of Stage 2 
Similar to S1, for S2, let 2 ( ), 0,t tζ ≥  be the random variable representing the number 

of jobs in S2 (the queue size) at time epoch t, including the batch being served; that is, in 
buffers and in the service station. Hence, the process { }2 ( ), 0t tζ ≥   forms a non-Markov 
process on the state space.  

Since “G” in [ ] [ ]/ /1j jG M stands for an arbitrary general distribution, we choose it as a 
Poisson. The authors have presented their justification of this choice in Haghighi and 
Mishev [22]. We assume the arrival rate 2λ   Also, [j] in this case stands for a batch of fixed 
size j. Thus, now the system becomes [ ] [ ]/ /1j jM M , not quite similar to the case of S1. 
Hence, let us denote by ( )nP t   the probability of the number of jobs, n, in Stage 2, that is S2 
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be in state , 0,n n ≥  where n is the number of jobs in B2 and in service, represented by a 
random variable 2 ( ).tς  For this case, we assume that at time 0, there is l jobs in S2, that is,  

 0

0, 0,
(0)

1, 0,l l

l
P

l
δ

=
= =  ≠

 (12.1) 

where 0lδ  is the Kronecker delta. The process { }2 ( ), 0t tζ ≥  is a homogenous Markov 
chain. Thus, the system of differential difference equations under these assumptions 
mentioned will be: 

         '
0 2 0

1
( ) ( ) ( ),

K

j
j

P t P t P tλ µ
=

= − +∑  0,t ≥          (12.2) 

        ( )'
2 2

1 1
( ) ( ) ( ) ( ),

n K

n n j n j n j
j j

P t P t P t P tλ µ λ π µ− +
= =

= − + + +∑ ∑    1, 0.n t≥ ≥                     (12.3) 

Theorem 12.1. Let the PGF of { }2( ) ( ) ,nP t P t nζ≡ = denoted by 
2 ( ) ( , ),tG v tς  be defined as: 

 
2

2
( ) 0 1 2

0
( , ) ( ) ( ) ( ) ( ) ( ) ,n n

t n n
n

G v t P t v P t P t v P t v P t vς

∞

=

= = + + + + +∑    (12.4) 

The PGF of the probability of the number of jobs in S2, represented by the random variable 
2 ( ), 0,t tζ ≥  that is, ( ),nP t { }2( ) ( ) ,nP t P t nζ≡ =  is obtained from the governing system of 

differential difference equations for S2 given by (12.2) and (12.3) as follows: 

    

( ) ( )2 2
1 1

2

1 11 ( ) 1 1 ( ) 1

( ) 0
1

10 1 2
1 2

1

1( , ) 1 1

( )( ) ( ) ( ) ( ) ,

K K

j j
j j

F v F v u Ktv v
t j

j

K
j

jj j j
j

G v t e e
v

P uP u P u P u P u du
z z z z

λ µ λ µ

ς µ

µ

= =

      
      − − + − − + −

            

=

−
− −

=

∑ ∑   = + −  
   





  − + + + + +  
   



∑∫

∑ 

    (12.5) 

where 

 
1

( ) , 1.j
j

j
F v v zπ

∞

=

= <∑  (12.6) 

Proof. We solve the system (12.2) and (12.3) using the PGF defined in (12.4), whose first 
partial derivative with respect to t is: 
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2

' ' ' ' 2 '
( ) 0 1 2

0
( , ) ( ) ( ) ( ) ( ) ( ) .n n

t n n
n

G v t P t v P t P t v P t v P t v
t ς

∞

=

∂
= = + + + + +

∂ ∑    (12.7) 

Now, we multiply both sides of (12.3) by nv and sum from 1 to n, as appropriate to obtain: 

 '
2 2

1 1 1 1 1 1
( ) ( ) ( ) ( ) ( ) .

n K
n n n n

n n j n j n j
n n n j n j

P t v P t v P t v P t vλ µ λ π µ
∞ ∞ ∞ ∞

− +
= = = = = =

= − + + +∑ ∑ ∑∑ ∑∑  (12.8) 

Similar to (5.7), we write: 
and 

 
2 ( )

1 1
( ) ( ) ( , ).

n
n

j n j t
n j

P t v F v G v tςπ
∞

−
= =

=∑∑                (12.9) 

Thus, simplifying and rewriting (12.8), we will have: 

 

2

2 2

2

( )
2 0

1

2 ( ) 0 2 ( )

( ) 0 1
1

( , )
( ) ( )

( ) ( , ) ( ) ( ) ( , )

( , ) ( ) ( ) ( ) ,

K
t

j
j

t t

K
j

t jj
j

G v t
P t P t

t

G v t P t F v G v t

G v t P t P t v P t v
v

ς

ς ς

ς

λ µ

λ µ λ

µ

=

=

∂
+ −

∂

 = − + − + 

 + − − + + 

∑

∑ 

 

which after some manipulations, we will obtain: 

 
( )2

2

( )
2 ( )

1

10 1 2
1 2

1 1

( , ) 11 ( ) 1 ( , )

( )( ) ( ) ( )( ) ( ) .

K
t

tj
j

K K
j

j jj j j
j j

G v t
F v G v t

t v

P tP t P t P tP t P t
v v v v

ς
ςλ µ

µ µ

=

−
− −

= =

 ∂  
+ − + −  ∂    

 
= − + + + + + 

 

∑

∑ ∑ 

 (12.10) 

Equation (2.10) is an ordinary linear differential equation with respect to t, whose solution 
is (12.4) and hence, the proof is completed.  

12.1. Moments of number of jobs in S2 
As before, having the PGF of S2 given by Theorem 12.1, we find the first two moments 

as: 

 

( )

[ ]

2 (1) (1)
2

01

(1)

0

( , )
( ) '(1) 1 (1)

                                          '(1) (1) '(1) ,

t
r t r u

v

t
r u

G v t
E t e r t e D du

v

e r uD D du

ζζ −

=

∂  = = − +  ∂   


+ + 


∫

∫
        (12.11) 
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and 

    

[ ]{ }
[ ]

( )
( )

2

2
2(1)

2 0
1

(1) (1)

0

2

(1) (1)
20

( , )
'(1) "(1) 1 (1)

2 '(1) '(1) (1) '(1)

'(1) (1) "(1) (1)
,

2 '(1) (1) "(1)

tr t

z
tr t r u

tr t r u

G v t
e r t r t D du

v

e r t e r uD D du

r u D r uD
e e du

r u D D

ζ −

=

−

−

∂  = − − +  ∂

− +

 +
 +
 + + 

∫

∫

∫

 (12.12) 

where: 

 2 2 3

1 1 1 1( ) (1 ( )) .Kr v F v
v v v v

λ µ µ  = − + − + + + 
 

  (12.13) 

 (1) (1 ).r Kµ= −       (12.14) 

 2 2 3 1

1 2'( ) '( ) .K

Kr v F v
v v v

λ µ +

 = − − − − − − 
 

  (12.15) 

 ( )2 1 2 3
( 1)'(1) 2 3 .

2j
K Kr jλ π π π π µ +

= − + + + + + +        (12.16) 

 2 3 4

2 2 3 ( 1)"( ) "( ) .
2

K Kr v A v
v v

λ µ ⋅ + = − − + + + 
 

       (12.17) 

 
( )

( )
2 2 3 4"(1) 2 3 2 4 3 ( 1)

2 3 2 4 3 ( 1) ( 1) .

j

j

r j j

j j K K

λ π π π π

µ π

= − + ⋅ + ⋅ + + − +

− + ⋅ + ⋅ + + − + + +

 

 

    (12.18) 

2 10 1
1 2

0 1

( ) ( )( ) ( )( ) ( ) ( ) .
K K

j j
j jj j

j j

P u P uP u P uD v P u P u
v v v v

µ − −
−

= =

   = − + + + + +  
   
∑ ∑        (12.19) 

0 1 2 1
0 1

(1) ( ) ( ) ( ) ( ) ( ) ( ) .
K K

j j j j
j j

D P u P u P u P u P u P uµ − −
= =

 
 = − + + + + +  

 
∑ ∑ 

      (12.20) 

0 1 2 2 11 1 3 2
1

1 2 2 1'( ) ( ) ( ) ( ) ( ) ( ) .
K

j jj j j
j

j j jD v P u P u P u P u P u
v v v v v

µ − −+ −
=

− − + − + − − =− + + + + +  
∑    (12.21) 

0 1 2 2 1
1

'(1) ( ) ( 1) ( ) ( 2) ( ) 2 ( ) ( ) .
K

j j
j

D jP u j P u j P u P u P uµ − −
=

 = − + − + − + + + ∑        (12.22) 

0 1 2 12 1 3
1

1 ( 1)( ) ( 2)( 1) 2"( ) ( ) ( ) ( ) ( ) .
K

jj j j
j

j j j j jD v P u P u P u P u
v v v v

µ −+ +
=

− − − − − − + − = + + + +  
∑     (12.23) 
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0 1 2 2 1
1

"(1) ( ) ( 1) ( ) ( 2) ( ) 2 ( ) ( ) .
K

j j
j

D jP u j P u j P u P u P uµ − −
=

 = − + − + − + + + ∑              (12.24) 

The variance of 2 ( )tς  can be obtained by 

             ( )
2 2 2

22

2 ( ) ( ) ( )2
1 11

( ) ( , ) ( , ) ( , ) .t t t
z zz

Var t G z t G z t G z t
z z zς ς ςζ

= ==

 ∂ ∂ ∂
= + −  ∂ ∂ ∂ 

     (12.25) 

13.  Special Case, M/M/1, j =1 
Let { }2( ) ( )nP t P t nζ≡ =  denote the probability of n jobs in S2 at time t and B2 being 

empty at 0.t =  This special case is a well-known system; whose system of differential 
difference equations is: 

      '
0 2 0 1( ) ( ) ( ),P t P t P tλ µ= − +  0,t ≥                (13.1) 

      ( )'
2 2 1 1 1( ) ( ) ( ) ( ), 1, 0.n n n nP t P t P t P t n tλ µ λ π µ− += − + + + ≥ ≥                (13.2) 

We solve the system (13.1) and (13.2) similar to the general system (12.2) and (12.3). 
Thus, we will have: 

         
2 2

2

1 1(1 ) 1 (1 ) 1

0
0

1( , ) 1 1 ( ) .
tv t v u

v vG v t e e P u du
v

λ µ λ µ

ζ µ
      − − + − − + −            

   = + −  
   

∫            (13.3)      

Note that the system (13.1) and (13.2) is similar to the one of Parthasarathy [36]. Based 
on his method, he finds the PGF (according to his notations and our parameters) as: 

 
2 2

2 1
0

( , ) ( ,0) ( ) ( ) ,
ts t s t

s sH s t H s e q y e t y dy
µ µλ λ

ζ µ
   + +   
   = − −∫               (13.4)      

where  

 ( , ) ( ) ,n
n

n
H s t q t s

∞

=−∞

= ∑  (13.5) 

 [ ]0 2( ,0) (1 ) ,l
lH s s sµ δ λ= − −  (13.6) 

and 

 
( ) [ ]2

2 1 1( ) ( ) , 1, 2, ,
( )

0, 0, 1, 2, .

t
n n

n
e P t P t n

q t
n

λ µ µ λ π+
−

 − == 
= − −





  (13.7) 

Accordingly, we obtain the probability of the number, n, of jobs in S2 for this special 
condition and the initial value as: 
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 ( )2 2 2
0

1

1
( ) ( ) ( ),

n i nn
t

n j
j

P t e q t P tλ µ λ λ
µ µ µ

−

− +

=

= +
   
   
   

∑  (13.8) 

where  

 ( )2
0 10
( ) 1 ( ) ,

t uP t q u e duλ µ− += + ∫  (13.9) 

 
1

2
2 1 2 1 2( ) (2 ) (2 ) ,

n

n n nq t I t I tλλ λ µ λ µ
µ

−

+ −

 
 = −    

 
  (13.10) 

 ( )2 2
22 ,

s t
s

n
n

e I t
µλ λ λ µ

µ

  ∞+ 
 

=−∞

 
=   

 
∑  (13.11) 

and ( )nI t  is a modified Bessel function of the first kind, with the fact that 
, 1, 2,3, .n nI I n− = =    

13.1. Moments of the special case 
Now, from (13.3), the mean number of jobs in S2 will be: 

 ( ) ( )2 1 2 1

2

1 1
2 1 00

1

1( , ) 1 ( ) ,
tt t

z

G v t e e P u du
z vζ

λ π λ πλ π µ− − −

=

∂   = − −  ∂   
∫  (13.12) 

or 

 ( )2 2 00
( ) ( ) .

t
E t P u duς λ µ µ= − + ∫  (13.13) 

From (13.12), the second partial can be found as: 

 
( ) {

( ) }
2 1

2

2 1

2
1 2

2 12
1

1
2 1 00

( , ) ( ) 2

                            2 ( 1) ( ) .

t

z

t t

G v t e t
v

e P u du

ζ

λ π

λ π

λ π µ µ

µ λ π µ

− −

=

−

∂  = − + ∂

 + − −  ∫
     (13.14) 

From (13.13) and (13.14) the variance can be obtained.  

14.  The Entire System 
So far, we have found PGF of the number of jobs in each stage S1 and S2.  We have 

already defined the random variables 1( )tζ  and 2 ( )tζ  representing the number of jobs in 
S1 and S2, respectively. We have also defined 

1( )
( , ),

i
G w tζ  

1( )
( , ),

ii
G z tζ  and 

2
( , , ),G w z yζ as 

the PGF of S1(i), S1(ii) and S2, respectively. It is well-known that if 1, nX X  are 
independent discrete random variables taking on non-negative integer values, with 
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corresponding probability generating functions 
1
( ), , ( ),

nX XG s G s then 

1 1
( ) ( ) , ( ).

n nX X X XG s G s G s+ + =


 In other words, the PGF of an independent sum is the 

product of the PGFs. Thus, we should be able to find the PGF of the sum of 1( )tζ and 2 ( )tζ , 
two independent variables, which gives the PGF of the total number of jobs in the system. 
For a special case discussed in Sections 8 and 14, the mean of number of jobs in the entire 
system we can add (6.3) and (13.7) at any particular time t. 

15.  Conclusion 
In this paper, a two-stage tandem time-dependent queue was considered. At Stage 1, 

two separate scenarios were studied. In case S1(i), the breakdown did not affect the arrival 
of jobs, hyperexponential distribution was used to set up the system of differential difference 
equations and linear first order differential equation was used to obtain the probability 
generating function. In the real-world, this type of scenario occurs when a computer is used 
and it fails at times, or a persona becomes absent from the job with variety of reasons. In 
case S1(ii) of Stage 1, while a service is performing, either the server becomes disabled, or 
the machine experiences a breakdown and fails to continue to work, we also obtained the 
probability generating function for this case. Hence, for S1, the PGF for the distribution and 
the moments of number of jobs in S1 have been found. The stationary probability generating 
function for this part has also been given. Further, the output of S1 was discussion that 
resulted the input of S2. Then, the PGF of S2 was calculated. Convolution of PGF of 
distributions of the number in the entire system was argued and mentioned how it can be 
obtained. What would be needed for future work are the waiting time, busy period and 
variation of the second stage. Due to the length of the paper, they were not address in this 
paper.  
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