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Abstract: This paper presents a new algorithm for computing the performance measure of a
two-tier service queueing model. In such a system, one service provider offers service with
unlimited waiting space and the other offers a finite waiting space. Due to the two queue
feature, the system is formulated as a state dependent quasi-birth-and-death (QBD) process.
The customer choice behavior and the observable queues make the QBD process to have a
large number of boundary states. Such a structure motivates us to develop a more efficient
algorithm than the classical rate matrix iteration algorithms. With the special structure of
the infinitesimal generator matrix for the two-tier service system, we propose a more ef-
ficient and innovative K-matrix based algorithm for computing the stationary distribution.
As the buffer size increases, the improved accuracy and computational efficiency of the K-
matrix method become significant compared with the classical Geometric-Matrix method.
We demonstrate the advantages of the new algorithm with numerical examples.

Keywords: Finite buffer queue, quasi-birth-death process, two service channels.

1. Introduction

In this paper, we consider a queueing system with two service providers (SPs) for cus-
tomers to choose. One SP offers free service with unlimited waiting space and the other
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SP offers a toll service and only admits a finite maximum number of customers to wait.
There are waiting costs for customers in both lines. We develop a computational model for
evaluating the impact of the customer choice on the performance measures. We formulate
a state dependent quasi-birth-and-death (QBD) process for such a two-tier service system.
By exploring the structure of the infinite generator of the QBD process, a new K-matrix
based algorithm is proposed for computing the stationary distribution more efficiently and
accurately compared with the classical rate matrix iteration algorithms.

The model considered in this paper belongs to a class of service systems with customer
choice and delay. For a comprehensive survey in this area, see Hassin[11]. Most of the
past studies focused on single-tier free or toll service system with customer choice under
different information scenarios (observable or unobservable queue). There are some recent
works on the two-tier service. Guo et al. [10] considered a two tier service system where
customers make their joining decisions on toll or free channel based on long term statistics
without real-time information of queue lengths. Hua et al. [13] studied the competition
and coordination in a two-tier service system with customer choice behavior. Again they
assumed that the customers make their decisions based on long-term statistics rather than
real-time queue length information. Chen et al. [2] conducted an empirical analysis on the
two-tier system based on the real data set verified by a two-queue model without real-time
delay information for customers. The real-time queue length information will make the ar-
rival process depend on the state of the system. Such a dependence will greatly complicate
the analysis and make some analytical methods mathematically intractable. However, there
do exist some practical situations where customers make their service selection according
to real-time queue lengths of the two service providers. Unfortunately, to the best of our
knowledge, there is very few studies in the literature focusing on a more realistic two-tier
service system with heterogeneous delay sensitive customers and real-time queue length in-
formation. Formulating the system as an quasi-birth-and-death (QBD) process is possible,
but the computing the stationary distribution with a realistic buffer size and traffic intensity
(usually quite high) can become an issue. Our focus is on developing a more efficient algo-
rithm to compute the stationary performance measures for the two-tier service system with
customer choice and the real time queue length information (observable queues). Specifi-
cally, we consider the case where heterogeneous customers, after joining the queue, are not
allowed to switch between the two service providers. This system has been modeled as a
two-dimensional state space QBD process. Since the infinitesimal generator matrix of the
QBD process has a special structure due to customer choice, an innovative K-matrix based
algorithm is proposed to solve for the stationary distribution. With such an algorithm, we
can compute the performance measures more efficiently and accurately compared with the
classical rate matrix iteration algorithms.

In literature, a number of methods were suggested to solve QBD models with special
structures. For example, Latouche and Neuts [15] used matrix analytic methods and Kon-
heim and Reiser [14] proposed generating function methods. In particular, Grassmann [6]
applied generalized eigenvalues to analyze certain tridiagonal matrix polynomials. Such a
method is used for counting the number of sign changes in the Sturm sequence involving
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Figure 1. A Two-tier Service System with Strategic Customers

eigenvalues. Solving QBD models by a generalized eigenvalue method has been used suc-
cessfully in related models in Grassmann and Drekic [8], Drekic and Grassmann [4], and
Grassmann [7]. These studies showed the instances where eigenvalue methods are much
more efficient than other methods. In addition, Grassmann and Tavakoli [9] also provided a
survey paper comparing different approaches dealing with QBD models with low-rank sub-
matrices. Investigating the property of low-rank matrices, we derive in this paper an explicit
equation for solving the eigenvalue which is independent of the number of boundary states,
implying that the computational effort is reduced significantly to an order of a linear function
of the size of a submatrix.

The paper is organized as follows. In Section 2, we formulate a QBD model for a two-tier
service system, a class of service systems with customer options. In Section 3 we present a
new and efficient approach with an eigenvalue to solve the stationary probability distribution
of the queue sizes for the two-tier service system. In Section 4, we compare the computa-
tional efficiencies of the two solution schemes that solves the model numerically. The paper
is concluded with a summary in Section 5.

2. A Two-tier Service Model

Consider a two-tier service system offering both fast toll service and regular free ser-
vice to customers arriving according to a Poisson process with rate A as shown in Figure
1. When a customer arrives at the system, he or she is provided with the real-time queue
length information for both queues (observable queues). To ensure that the expected waiting
time of a customer choosing the toll service is no more than an upper bound, we assume
that the toll queue has a finite buffer of size M. For a two-tier healthcare system, the toll
system may represent a private hospital which usually emphasizes the fast service delivery
with a guaranteed maximum delay. In practice, limiting the number of waiting customers
can also improve the service efficiency as avoiding overly long wait list usually reduces or
eliminates the ’no-show” rate. We assume that whenever the buffer is full, the customer
has to join the free lane. This assumption is reasonable if the customer’s service utility is
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large enough. We also assume that the service times are exponentially distributed with rates
oy and . for the free and toll SPs, respectively. The customer time value (waiting cost)
parameter, denoted by 6, is randomly distributed with a cumulative distribution function of
Fy. A customer makes the SP selection based on the expected costs of the two queues and
becomes indifferent if the following condition holds at an arrival instant ¢:

OX¢(t)(1/1g) = p+ 0Xc(t)(1/ 1), ()

where X((t) and X,(¢) are the queue lengths (including the customer in service) of the free
and toll systems, respectively, and p is the toll price. We assume that an arriving customer
makes the following decisions: if X (¢)(1/pr) < p + 6X.(t)(1/p.), he chooses the free
system; if 0.X¢(t)(1/py) > p + 0X.(¢)(1/p.) and X (t) < M, he joins the toll system;
otherwise, he will join the free system. Note that here we assume that all customers will
get service or there is no balking. The system state is defined as (X((t), X.(¢)) on the state
space
Q={(n,m):n=0,1,...m=0,1,.... M}

Under the stability condition (Proposition 2.1), the system reaches the steady-state. That
is limy_,o, P{X;(t) = n,X.(t) = m) = pum. Denote the equilibrium arrival rates to the
free and the toll systems as As(n, m) and A.(n, m), respectively, at state (n, m). Obviously,
based on customer choice, we have

#)
n/:uf —m/He 7

p
Aol m) = A (1 o = m/uc)) ’

for states with m < M. In this model, we assume that both free and toll services are iden-
tical in service quality. The only competitive advantage for the toll system is that the ex-
pected waiting time is upper bounded compared with the free system. This advantage can
be, as mentioned above, modeled as a queue with a finite buffer size M. Note that since
m is bounded by M, as n becomes very large or the free queue is very long, As(n, m) will
approach to zero as long as the toll system buffer is not full (m < M). Thus due to the
customer’s self-interest choice behavior, there exists a threshold value for the free queue,
denoted by ng such that A¢(n,m) < ¢ whenever n > ng and m < M, where ¢ is a small
positive value. The lower bound n( can be determined by

Ar(n,m) = AFy(

Phy M
— + =M.
Fyl(e/A) - pe

We use the uniform distribution Fy over (0,U) to develop a Quasi-Birth and Death
(QBD) model (other distributions can be used at the expense of more complicated formulas).
It is easy to find that in this case

, A
no = int (%%Jr(M—l)%). @)

ng >
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State Transition Diagram for M=5 case

Figure 2. State Transition Diagram for a Two-tier Service System with Real-time Delay
Information

It is thus reasonable to assume that if the free system is highly congested and the toll system
is still not full (i.e., n > ng,m < M), all customers will join the toll system. Using this
property, we can develop a level independent QBD process to model the two-tier service
system with any desired accuracy (¢ value). The buffer size of the toll system, M, determines
the number of phases for each state and ny determine the number of boundary states of the
QBD process. The arrival rates to free and toll systems, respectively, can be written as

A ifn <m x (ug/pe) orm=M,
Ar(n,m) = %(%) ifm x (pup/pe) <n <ngandm < M,
0 ifn =ngand m < M.

A(n,m) = A—=Xi(n,m).

The states of the system can be classified into three categories based on the arriving cus-
tomer’s choice behavior. From the state transition diagram in Figure 2, the states in region I
are “all join the free system” states; the states in region II are ”join either the free or the toll
system” states; and the states in region III are “all join the toll system”.

Based on the classification of the states, we specify the infinitesimal generator matrix Q
for the QBD process as follows:
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where all elements are (M + 1) x (M + 1) matrices. For 0 < n < M,

—A
/J[’C _(A + /‘Lc)
COO - ‘. . )
L ILLC _(A + lj’c)
[ A
A01 - - AI
i A
[y
Dy = = :U/flu
L 223
_(Mf+A) /\0(17 0)
He _(A + Mc+pf>
Cll = ..
L He _(A+:uc+:uf)
[ As(1,0)
A
Ap =
i A
1233
D21 = = /Lf[,
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Forn > ny,
[ iy
D = = ,LLfI = Di,i—h for ¢ > 1.
L Ky
e —(A+ptpy) A
C = . . )
L He _(A_{_“c_‘_:uf)

A:{A}

Under the stability condition (12) in Proposition 2.1, the stationary probability vector is
defined as

Ty = [ﬂ-n0>7rn17 "'77TnM]7

where 7, = lim;_,o. P{X;(t) = n, X.(t) = m}. We know that from Neuts [17] when
n > ng, the matrix geometric solution for such a QBD process is given by

i1 = TR, 4)
where R is the rate matrix. For 0 < n < ny, the probability vector 7r,, can be obtained by
solving a set of equations. Let m = (7o, 1, ..., Tpy—1, Tngs Tng+1,--.). From 7Q = 0
and (4), the state vectors my, 7, .. ., and 7, can be derived from the boundary conditions

7o Coo + ™D =0, Q)

T 1Ap_1n + 7, Cpp + 7o D =0,
I <n<ng—2, (6)
Tng—28ng—2n0-1 T Tng—1Cng—1n9-1 + Ty D = 0,
Tno—1Ang—1np + Tno(C+ RD) =0, (7)

and the normalization condition
wol + w1+ +m, (I-R)'1 =1 (8)
To reduce the number of boundary states to one, we could define the following matrices:

Coo Ao
D Ci Ap

Co = ; ©

D Croting- (no(M+1))x (no(M-1))

66



Queueing Models and Service Management

Ay = { } , D= D] . . (10)
A”O—l’”o (no(M+1))x (M+1) (MA+1)x(no(M+1))
Thus the Q matrix in (3) can be re-written as:
Co Ay
D, C A
Q= D C A : (11)

By doing this, we have larger boundary level matrices Cy, Ag,and D; which can lead to an
alternative computational algorithm for numerical analysis. Using (11), we can also prove
the following stability condition.

Proposition 2.1. With real-time queue length information, the two-tier service system reaches

the steady state if
e e

1_ <A)M+l
Mec

> (12)

Equivalently, it satisfies

A He nr Heynr—1

o < <X) +<X> -+ L

It implies that for a stable system that includes a free queue and a cost queue, the ratio of the
total arrival rates versus the service rate at the free queue must be less than the geometric
series of the service rate at the cost queue over the total arrival rate. If the service rates and
the total arrival rate are given, a proper buffer size at the cost queues may be estimated by
(12). Nevertherless, note that (12) is reduced to more intuitive stability conditions when
M — oo. It is stated in the following corollary.

Corollary 2.2. If A/p. <1, as M — oo, (12) becomes jiy > 0 or there is no requirement
for a positive pg. If A/ p. > 1, as M — oo, (12) becomes iy + 1. > A.

Like any regular QBD process, the rate matrix R should satisfy
R°D+RC+A =0 (13)

and can be solved by using one of many known algorithms (see Neuts [17], Bright and
Taylor [1], and Latouche and Ramaswami [16]. The boundary state vector (7o, 71, - ,
1) together with 7, is the unique solution of the equation system of (5)—(8). After
the stationary distribution is computed, we can obtain the major performance measures of
the two-tier service system. Letting w.; = Y, 7,; be the marginal probability of the toll
system queue length and 7, = ij\io mn; be the marginal probability of the free system
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queue length, we can compute the expected toll and free queue lengths F(L¢) = Zj]\io Jm.;
and E(L7) = Y2 nr,,., respectively. Due to the structure of our model, we can either treat
the QBD with a large number of phases (i.e. no(M + 1) phases) in one boundary state and
the generator of (11) or the QBD with a large number of boundary states (i.e ng) with M + 1
phases and the generator of (3). However, it follows from (1) that ng increases with M. To
model a realistic system, M can be quite large and this is particularly true when we analyze
a large scale system with heavy traffic intensity. Such a large M results in a large number
of boundary states and a large number of phases of the QBD process which greatly increase
the computational complexity and may cause the ill-conditioned matrices of the traditional
iterative algorithm for the rate matrix. To overcome this challenge, using the special structure
of the infinitesimal generator (3), we propose a more efficient and innovative algorithm
for computing the stationary distribution. Compared with the traditional matrix geometric
solution algorithm, our so-called K-matrix based algorithm is faster, more numerically stable
and accurate, and can be applied to solving for the performance measures of large scale
two-tier service systems. Since the two-tier service system has wide applications in public
service sector, our new algorithm provides practitioners a powerful tool for evaluating the
performance of the service systems. The details of the algorithm development and theoretical
justification can be found in Section 3.

2.1. Background of QBD with special property

Dayar and Quessette [3] consider a special class of homogeneous continuous-time QBD
Markov Chain which posses level-geometric (LG) stationary distribution. They refer to an
LG distribution for which L is the smallest possible nonnegative integer that satisfies

Tpi1 = xm, forn > L,

where z € (0,1). In an LG distribution, the level is independent of the phase for level
numbers greater than or equal to L. It will be discussed that in the next section L = ng + 1
in our model. As indicated in the paper of Dayar and Quessette [3], it requires a set of a
nonlinear system of equations to solve for . The next propositions are drawn from the fact
that Q is positive recurrent when Q and D = D + C + A are both irreducible in which x is
described.

Proposition 2.3. IfQ and D are irreducible, then Q is positive recurrent if and only if p(A —
D)1 < 0, where p satisfies pD = 0 and pl = 1. The stationary distribution of Q in which
Ay = A and Dy = D is LG with parameter L = 0 if and only if there exists a positive vector
a with al = 1 and a positive scalar 0 < x < 1 which is the spectral radius of R such that
a(z’D + 2C + A) = 0 and a(Cy + zD) = 0.

Proposition 2.4. When A is of rank-1 then R is also rank-1 and R = c&€” where A = cb”,
b =ej, ¢ = e;A, e; is a unit column vector and j = M + 1. Then x satisfies the following
equations. € = —b"(C +2D)~!, x = ¢"¢, 2 € (0,1) and R? = 2R,

Since R = ¢£7, we have R? = c£7c¢’ = zcé&’. The details can be found in Dayar and
Quessette [3]. Apparently, it involves a system of nonlinear equations of degree more than
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M + 1 to solve for x. In the next section, we propose a new approach to solve the problem
with only a simple matrix. After a proper matrix is constructed, it is a routine to attain x* as
an eigenvalue of such a matrix. Most importantly, such an z* exists uniquely between 0 and
1.

2.2. Constructing the K matrix

Consider the state balance equations where the number of customers in the free queue
n > ng, i.e.,

TpA + T 1C + g 2D =0, n > nyg, (14)

Rewriting it, we have
Al + 7,0 (A —D)1 + 7, ,D1 =0, n>ng (15)
since (A+C+D)1=0. (16)

Define d,, 2 T, — Ty for n > ng. Equation (14) is also written as
d,Al=d,, ;D1

Although there are infinitely many possibilities to connect these two sets of equations, at
least it is a hint here to start with construction of a matrix that relates to R which is rank-1.
In our model, because A is a rank-1 matrix and D is a full rank matrix, in order to construct a
proper matrix that balances d,, and d,, 1, we begin with a simple matrix algebra. Multiplying
1 from the right on (14), we have

7TnA1 + 7Tn+1C1 + 7Tn+2D1 = 0, n Z o
and equivalently
0 —Hy ff
T | | T : + g2 | 2| =0, n>ndl7)
A —py— A if
We rewrite those equations as
0 0 0 0 — iy 0 Hy
Tn 0 0 +7TTL+1 +7Tn+2 :0, nZnO.
0 A —py — A if
Define
0 - 0 py
P2 :
0 - 0 py
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We have
T A+ |-P —Al+m,0P= 0 (18)
and [m, — 7 1|A— [T — TP = 0
implying d,A =d, P, n > ng. (19)

Note if equations (14) and (18) hold for 7,,, and they hold for d,,, too. Replace m,, by d,, in
equations (14) and (18). Subtracting equation (14) from (18), we easily obtain

By equation (19), it produces d,,[C + P] + d,,.1D = 0. Let
K2 -[C+PD, (20)

which is an (M + 1) x (M + 1) matrix. Because D is invertible, it becomes easy to check
the eigenvalue of K since the Markovian system is ergodic with the stability condition (2.1).
we have

d,(—[C+P]D!)=d, and

d,.;=d,K for n>ng+1. (21)
Lemma 2.5. The eigenvalues of matrix K are positive.
The proof'is given in the appendix.

Proposition 2.6. K is constructed under the stability condition (2.1) and there exists a unique
eigenvalue of K between 0 and 1.

The proof is given in Section 3.

Corollary 2.7. There exists o € (0, 1) and a corresponding eigenvector @ where 6 > 0 such
that
K6 = 00.

The proof can be shown by applying Proposition 2.6 and Perron’s theorem with eigenvalues
in Horn and Johnson [12].
From (21), we have

d, 10 =d,K8 =od,0, forn >ny+ 1.

By induction on n, it implies thatd,, .0 = ¢'d,,0,t =1,2,---
By the definition of d,, we have

Tnot1 = Tngt2 + Apgr1

g2 = T3 T Angt2
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Tno+3 = Tng+d T dn0+3

Summing up the above equations, it results in 7,11 = (d, 11 + dyyi2 + ). By the
stability assumption, 7,, approaches to 0 as n approaches to infinity, i.e., w11 = (dpy+1 +
d,, 2+ -+ ) < co. With the relation of equation (21) and an eigenvector 6, we have

7Tn0+19 = (dno-‘rl + dn0+2 + e )0
=dyi(l1+o+0*+...)0

7Tn0+20 = (dﬂ0+2 + dn0+3 + o )0

odp 1 (1+0+0>+...)0

= 0'7Tn0+19

Since 7, is finite and nonnegative for all n, and @ is a positive vector that is independent of
n, it yields the following lemma.

Lemma 2.8. Under the stability assumption and o € (0, 1), we have
_ -1
Tho+t = O Tng+1, t Z 1.

The proof is straightforward. Because of (7,,,12 — 07 ,,41)0 = 0 and 7, and d,,, n > ny
belonging to a subspace of solving (14), it implies 7, 4o — 07,41 = 0 since 8 > 0. By
induction on ¢, we have it proved for all ¢ > 1.

Theorem 2.9. Suppose o is an eigenvalue of K and o € (0, 1), then R? = gR.

The proof is straightforward from Lemma 2.8 and Proposition 2.4.
R can be derived from (13), that is

A+R{C+0D} =0,

R=-A(C+oD)". (22)

Because (C + oD) is a tridiagonal matrix, the inverse of it may be determined by El-
Mikkawy and Karawia [5]. Moreover, A has only a positive element where A is at the
southeastern corner, and R has the following form

o 0 --- 0
R Al P ¢ &

o 0 --- 0

L Te - TM41

An illustrative example
Consider a two-tier system where there is a paid service but no waiting space for the toll
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queue, that is M = 1. To enter the system, any new arrival is forced to trade off the price
for a waiting position at the free queue with the paid service when the free queue length is
sufficiently long, i.e., n > ngy. From (11), set

o [ 0].

0 py
e —(A+ ptpy)
0 0
= Lok
By (20), set
Atpp  —(Atpy)
K= [ f_[: Ai@ ] :
py o

Lemma 2.10. The eigenvalue of K is

20 4 pe —((BeN2 4 dApe | 2 1
(224t 1) — (2)? + g 4 22 1 )3

2

g =

which is less than 1 and greater than 0.

The proof is given in the appendix.

After o is given, we can easily find R and determine the stationary probability 7 by
attaining 7o from the boundary equations that will be introduced in Section 3.3. Here, we
only illustrate the construction of K and R, i.e.,

—1
R:—A{O 0]‘[a,uf—/\—uf A }
01 He O-Mf_A_:uf_,uc
0 0
=A Le —(ops—A—py) .
(opp—A—pg)ops—A—pr—pc)—Ape  (opp—A—pg)(opr—A—pr—pc)—Apc

Besides the QBD MC considered in a two-tier service model, there are two examples in the
appendix that show construction of K and its eigenvalue.
3. An Eigenvalue Approach

In this section, we develop the K-matrix algorithm to solve the stationary probability
. Before doing that, we first show derivation of the eigenvalue of K. Then we prove the
existence and uniqueness of this eigenvalue.
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3.1. The structure property of K

By (20), we continue to observe its element structure by visualization from a small one.
Denote by K,,, a square matrix with m rows and m columns where 1 < m < (M + 1). Itis
easy to check that K3 and K, are expressed respectively, by

Atpy —A -1
Hf K
K; = —pe  Atpgtpe  —A—py
By By wy
O —Hc A+I‘LC
3 Ky
and N
Atuy =A 0 -1
K i
—He Atpptpe —A -1
_ B B B
K4 0 —fte Atpetpy  —A-py
B 5 Ky
0 0 _Hc A“l‘ﬂc
Bf By

In order to find an eigenvalue of K which is located between 0 and 1, we need to consider
the determinant of K. Let ¢(x) be the characteristic polynomial defined as ¢(x) 2 (K — 2I)
where (-) denotes determinant of a matrix and I is an identity matrix with a proper size. We
need to show £(0) x £(1) < 0,1i.e., (K) x (K—1I) < 0 as well as there is one = € (0, 1) such
that ¢(z) = 0.

To simplify its notation, let a, b and c be defined as

a= , b= —,
5 Mg Mg
Let
[ b 0 -1 7
c b 0 —1
®,, A 0 ¢ a 0
SR —1
c a b—1
c a-—1
- - mXm
Thus, K,,, is written in terms of a, b, and ¢, for example
[a+c b 0 —1
c a b 0 —1
K, — 0 c a b 0
—1
c a b-—1
c a-—1
- - mXm
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It is easy to checka +b+c=1,a > 0,b < 0, ¢ < 0 and verify that

(@) =a*—a—cb+c=ala—1)—c(b—1)=a(-b—c)—c(—a—rc)
2 _ b — B2+ (Atpetpp)A
a0 = T

=c > 0.

Let ($1) = (a — 2 — 1). In general, consider a characteristic polynomial of ®,,. We

observe the following property of ®,,. For m > 3, we have the following lemmas.

Lemma 3.1. (®,, — zI) = (a — 2)(®,,_1 — xI) — be( P, — zI) + (—1)™(—c)™ 1,3 <
m< M+ 1.

Furthermore, it is easy to prove it by induction through characteristic polynomials of
K,, and ®,,.

Lemma 3.2. (K,, — zI) = (®,,, — «I) + ¢(®,,_1 — zI),m > 3.

It is natural to prove it by induction on m = 4,5,--- | M + 1. Then we have following
lemmas.

Lemma 3.3. We have (K,, —xI) = (1 —2)(®,,_1 — 2I) — b(K,, 1 — =) + (—1)m(5—;)m*1,
m=4.5 - M+1

Proof. For a fixed m > 3, we have

(K —al) = (P, — ) + ¢(®,,_1 — zI)
= (a— 2){ @y — 21y — be(®y_y — 2T) + (1) (L1 4 (@, — 2l)

[if
= (1= b—a)(Dp_y — L) — be(®y,_y — 2d) + (—1)™ (L)1
127
= (1= 2)(Dpy — 21) — b((Bpy — z1) + c(Dpy — 1)) + (—1)m(z—;>m—1

=1 —2)(Py—1 — 2I) — b(K,,—1 —zI) + (_1)m(Z_;)m—1.

Now, we verify

(K3) = (a+ c) (@) — clbla— 1)+ ) = %(A?) + 2025 + Apigpie + Ap2) > 0. (23)
f

By Lemma 3.1, when = = 0 we have (®3) = (K3) — ¢(P2) > 0. It is easy to check that

(@) > 5—;@2) > (5—;)3 > 0. (24)

Lemma 34. ($,,) > ﬁ—;(@m_ﬁ > (ﬁ—f)m and (K,,) >0, 3<m < M+ 1.
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Proof. By induction, from m = 4, we have

(Kg) = (Dyg) +c(P3)

By (23) and (24), we have (K,) > 0. By Lemma (3.1), we have (®,) > 0 and

(B4) > Z—;<¢3> > <Z—;>4. (25)

Because of (K) > 0 and (25), it gives (K5) > 0. By recursively using Lemmas 3.3 and 3.4,
it completes the proof.

Thus, it concludes that £(0) = (K) > 0. Next we need to prove that /(1) = (K—1) < 0.
Lemma 3.5. Under the stability condition, we have ((1) = (K —1T) < 0.
Proof. It can be derived that (K —I) =

—pup (AM 4 p AT AN ) - AN

py
o (M Y D) = (VA
= He M+1
Hy
A A A
M M M—1 M—2
[COM 4 GO 4 () |
(o)MA
Hc
—[,uf - (ﬁ)M_HT/\C)Mfl_,_(ﬁ)zwfz_i_,,,_i_l)]
' M+1 : (26)
Hy
By the stability condition
ANM
(AypA

> >
s [(A)M_}_(/%)M—l+(l%)M—2_|_...+1]
we know that the second term in (26) is negative but the first term is positive. Hence, their
product makes (K —I) < 0.

Consequently, we have £(0)¢(1) < 0 and shown that at least there exists an eigenvalue of
K in (0,1). In the next section, we are going to prove the uniqueness of such an eigenvalue.
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3.2. Location of the eigenvalue

In sequel, we will only illustrate by construction of a Sturm [19] sequence the uniqueness
of such an eigenvalue without giving a complete proof since the uniqueness is not necessary
when the existence appears critically in our approach. But the illustration shows the useful-
ness of this approach. First, from Grassmann [6], we know there are distinct M + 1 positive
eigenvalues of K of the birth-death Markov chain model as 1.y and 1. are strictly positive.
Then we shall construct a Sturm sequence to show that a unique eigenvalue between 0 and
1 (Theorem 1 in Grassmann [6]). According to Lemma 3.3 we construct a series of polyno-
mials of z, {G,,,(x),m =0,1,2,--- , M + 1}, as follows

Go(f) =

Gi(z) =a—x—-1

Go(z) =(a—z)(a—x—1)—bc+c
(z)

= (a — 2)Gy(x) — be Gy () + (—1)¢?,
Gn(@) = (@ = 2)Gm-1(2) = be Gmale) = (=)™

form =4,5,--- , M. The last term is
Gus1(x) = (@ — 2+ ¢)Gpr(x) — be Gay_i(x) — (—c)™.

Apparently, Gjr41(x) = £(x) which is the characteristic polynomial of K. Following
the Sturm sequence, we count the number of sign changes of the sequence {G,,(z), m =
0,1,2,---, M + 1}. For a real number r, define

S(r) ={Go(r), Gi(r), -+, Grsa(r)}

and s(x) the sign changes in S(x). Clearly, the number of sign changes s(z) is 0 if G,,,(x) >
0 forall m and s(x) = M +1 if the sign changes every time. The value of s(x) cannot change
unless there exists an m such that G,,(z) goes through zero meaning G,,,_1 ()G, (z) < 0.

One of the Sturm properties is that the number of sign changes s(r) in S(r) equals the
number of eigenvalues of K less than . Thus, if G,,,(x) forms a Sturm sequence, the number
of roots of ¢(x) in (0, 1) is s(1) — s(0). We already know s(0) = 0, since it has been proved
that Gp;41(0) > 0 and G,,,(0) > 0 forall m = 1,2,3,--- , M. In the following section, we
are going to prove s(1) = 1.

Since Gpr41(z) = {(x), we shall first write G,,(z) in terms of z. In order to find a
general form of G,,,(x), we consider an inhomogeneous second order difference equation,
form > 3,

Gm(z) — (@ — 2)Gp1(2) + beGry_o(x) = — (=)™,

where Go(x) = 1 and G1(x) = a — = — 1. First, we solve the homogeneous second order
difference equation, namely, one of the form given above where the right-hand side is zero.
In a specific case, when z = 1 one solves the following equation

y? + (b+c)y + be = 0.
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Thus, we have

b+t xb—c —c ifb=c
y= 2 T\ —c,or —b ifb#£ec
The particular solution of G,,,(1) when b # c is
m m m(_c)m
Gn(1) = &= + B(=b" + =,
where o = % and f = b((i:?);;b) , ¢ 7 b; or, the alternative solution with b = ¢ gives

m?(_c)m

Gl1) = (@ + fm) (=) + ",

2c+1

where a = 1 and 8 = ==,

Lemma 3.6. There exists mqo > 0 such that G.,,(1) < 0 for all m > mg if G, (1) < 0.

Proof. First in case of b = ¢, we consider G,,,(1) = (—c)™[1 + Sm + 2?]. We have
Gp(1) = 0if and only if [1 + Bm + 2% = 0. Moreover, G,,,(1) < 0 if m > —2c since
(—c)™ is always greater than 0. Thus we have G,,,(1) < 0, forall m > mgwhen G,,,(1) < 0,
mg > 0.

Second, it is clear that for b # ¢

m0+1

Crgir(1) = a4 gty + "L gyron
b b mo + 1
— _\mo(_ _ mo—+1
o+ ™)+ TNy eyt
To prove G,,+1(1) < 0, one shall claim that
b b mo + 1
Zymo(Z
o+ 5™+ ™ <0
From G,,,(1) < 0, by induction, suppose k > m such that
k k k k
al(—c)" + B(=b)" + a(—c) < 0.
Next, we need to prove that
k+1
[a(_c)k—&-l + 6(_b>k+1 + Lb(_c)k—&-l] < 0.
c —_—

Note that 5 < 0 because it can be derived that A < yi. + p1f implying (¢ — b) < 1.
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(Casei.) If c — b < 0, then we have 0 < IE) < 1. It can be derived that

b, b k+1
o+ BCIC) + 2] <0
since b .
k
[Oz—F/B(E) +C—b]<0

and () > 0. Thus, we have

o+ OO + e <0

(Case i1.) If ¢ — b > 0, then it is clear that IZ’ > 1. Thus, there exists a sufficiently large

mg > 0 such that

b b 1
o+ BE™ () +

Proposition 3.7. The number of sign changes s(1) of eigenvalues of Kis 1 and s(1)—s(0) =
1.

] <0.

Proof. Suppose my — 1 is the smallest integer such that G,,,_1(1) > 0, implying that
Gumo (1) < 0. By the construction of sequence of GG,,,(x) and the last term

Gua(l) = (a+e=1D)Gu(1) = beGya(1) = (o)™,
(=0)(Gu(1) + cGra (1)) = (=)™

and by Lemma 16 that G,,,(1) < 0 for all m > mg,, we may prove it by induction that
Gr41(1) is negative as M is sufficiently large since ¢ and b are negative. Clearly, the value
of s(1) can not change sign until my, i.e., Gyy—1(1)Gm, (1) < 0. Consequently, we know
that s(1) = 1 and s(1) — s(0) = 1, By the Sturm theorem, there is only one eigenvalue in
(0,1).

Although the proposition has been proved completely, it is sufficient to provide the sta-
tionary probability solution through the existence of a real eigenvalue between 0 and 1. This
1s because the system is stable, and one can always use the normalization condition to justify
the state balance equations with proper parameters at the boundary equations. Consider o is
a function of the buffer size of the cost queue, M and denote it by o(M). We have the fol-
lowing proposition to further reduce the computational efforts in calculating the eigenvalue.

Proposition 3.8. Under the stability condition, we have

A

o(M) = +o(M),
(M) = o)
which implies
A
lim o(M) = .
M—o0 [
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When M becomes very large, it will behave like a two-independent M /M /1 queues with
utilization \;/p; and \./pi. respectively. In the long-run, it gives a chance jup/(pf + fic)
or f./(4ty + p.) for individual queues in average at the total service rates. Therefore the
eigenvalue of a matrix associated with the QBD process for the system is the traffic intensity,
which is

Hp o pp e He o fptfe fip e
It was easily proved that the traffic intensity is the eigenvalue of an M /M /1 QBD matrix.

Note that, in general, (M) closes to the limit when A is more than 10 in our numerical
tests.

3.3. An efficient algorithm to solve TQ = 0
We define the (M + 1) x (M + 1) matrix T; as follows

Ty = 1,
T, = _CO,ODila
T, = —(TioAi 2, 1+ T 1Ciq,; 1)D7!,  2<i<ng.

Proposition 3.9. The stationary probability T satisfies the following two sets of equations:

(i-) 7"-0(Tn0—1An0—1,no + Tno (C + RD)) =0.
(ii.)
1
np—1 .
mo | > Til+T,, | =1,
i=0 -
where
- —A . .
h=1+ Z r;, 15 is the element in R

1=0)

and m; = wyT;, for 0 < i < ny.

1=1

Proof. Starting from equation (5), and D = p/I being invertible, for 0 < n < ng, we have
T, = —CyoD . It is easy to check that r; = m(T,. By induction, we can also verify that
w; = mwoT;, for 0 < < ng. Thus, repeating it in equation (6) until n = ny — 1 and together
with equation (7), it gives

7.‘-0(Tno—lAno—l,no + Tno (Cno,no + RD)) =0.

Since
R

l1—0

I-R)'=I+R+R*+... =1+
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equation (8) can be rewritten as

nog—1

mo | Y Td+T,I-R)'1| =1
=0

which can be further simplified with (I — R)~'1.

Then we can solve by 7 the boundary equations of (i) and (ii) with (M + 1) unknowns and
(M + 1) independent equations. The computational complexity is independent of n, that
reduces that computing burden greatly, compared with solving a system of linear equations
of ng x (M + 1) unknowns and ng x (M + 1) equations.

Proposition 3.10. The solution vector ™ = (7, 71, . ..) of ®Q = 0 can be obtained from

™ = o Ty, vV 0 <1< ny,
T otk = ﬂ'noak_lR, vV k>1.

where o is an eigenvalue of K and 0 < o < 1.

An Efficient Algorithm
Step 1. SetK = —[C + Py, .
Step 2. Find an eigenvalue o of K which is less than one and greater than zero.

0

Step 3. Define R = —A [ } by (27).
M

™
Step 4. Construct matrices To =1, T; = —C070D*1 and
T; = —(Ti2Ai—2;-1 + T;-1Ci1,1)D™ for 2 < i < ny.

Step 5. Determine 7r( by solving (i) and (ii) and let 7v; = 7(T;, for 0 < ¢ < ny.

Step 6. From 7, = m,,0" 'R, for k > 1, we obtain w = (7, 7y, 7o, ...).

4. Numerical Illustrations

In this section, we compare the two computing approaches, that is, Matrix-Geometric
method in Latouche and Ramaswami [16] versus K-matrix based algorithm proposed in this
paper. We use the computing language MATLAB to implement the algorithms. The numer-
ical analysis is performed on the PC platform with Intel(R) Core(TM) i7-3770 CPU @ 3.40
GHz and 32 GB RAM. The parameters of the two-tier service queueing model are A = 1,
tty = 0.6 and 1. = 0.6 in the following experiments of computing the stationary distribution
of queue lengths. With the stationary distribution 7w = (7, 71, 72, .. .), we can determine
the expected number of customers in queue 1, L1, and the expected number of customers in
queue 2, Lo.
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Although we conducted extensive numerical experiments, for the conciseness of this
note, we only presented a sample of the results. Table 1 summarizes some results obtained
by Matrix-Geometric method and K-matrix method as the finite buffer size M varies from
5 to 95. Figure 3 shows the expected numbers of customers in queue 1 and queue 2, [,
and Lo, individually. It can be observed that, while the buffer size M increases, the average
system sizes (queue lengths) obtained by Matrix-Geometric method and K-matrix method
will approach to the same value. Figure 4 compares the CPU time taken by Matrix-Geometric
method and K-matrix method while solving two-tier service queueing model under the same
parameters A = 1, iy = 0.6 and p. = 0.6. We find that the K-matrix based algorithm
can save huge CPU times compared with the Matrix-Geometric method. As the buffer size
M increases, the K-matrix method is a much more efficient algorithm than the traditional
Matrix-Geometric algorithms for solving this class of large scale service systems.

— o - L, (Matrix-Geometric method)
--—+-- L, (Matrix-Geometric method)

Ly (
L, (
—+— L, (K-matrix method)
Ly (

— K-matrix method)

P

Average guede length L

—— —— % — & —F— —— —F— % |
e —————— b ——4———¢

20 30 40 50 &0 70 a0 90 100
Buffer size M

Figure 3. Average system size L, (L) versus the buffer size M obtained by
Matrix-Geometric method and K-matrix method with parameters A = 1 and

py = pe = 0.6.

5. Conclusions

In this note, we develop a new K-matrix method which is demonstrated to be more
efficient than Geometric-Matrix method for solving this two-tier service queueing model
(QBD process). The proposed algorithm depends on a right eigenvector and an eigenvalue
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TUU T T T T T T T T T
— £ - CPU time (Matrix-Geometric method)
600 | —%— CPU time (K-matrix method) oA
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S 300t A -
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- A ) — —#*
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Figure 4. The CPU time versus the buffer size M obtained by Matrix-Geometric method
and K-matrix method with parameters A = 1 and piy = p. = 0.6.

Table 1. Numerical results obtained by Matrix-Geometric method and K-matrix method
with parameters A = 1 and p1f = p. = 0.6.

Matrix-Geometric Method K-matrix Method

M L1 LQ CPU Time L1 LQ CPU Time
5 || 3.6126 | 2.0068 0.3588 || 3.9458 | 2.1157 0.1560
15 || 3.1416 | 2.6050 0.7956 || 3.1848 | 2.6386 0.7020
25 || 3.1606 | 2.6475 2.0904 || 3.1634 | 2.6500 0.4212
35 || 3.1626 | 2.6501 12.6205 || 3.1627 | 2.6502 0.7644
45 || 3.1627 | 2.6502 24.8198 || 3.1627 | 2.6502 2.0436
55 || 3.1627 | 2.6502 42.8535 || 3.1627 | 2.6502 3.5256
65 || 3.1627 | 2.6502 86.7054 || 3.1627 | 2.6502 6.1152
75 || 3.1627 | 2.6502 | 159.7138 || 3.1627 | 2.6502 12.4333
85 || 3.1627 | 2.6502 | 305.6372 || 3.1627 | 2.6502 23.9306
95 || 3.1627 | 2.6502 | 542.7587 || 3.1627 | 2.6502 43.1499

which is simply A/(us + ). It is also fairly easy to construct the K-matrix, which only
depends on the right eigenvector. This right eigenvector can be determined in the exact form.
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We show that when the buffer size of the toll system becomes large, the K-matrix method and
Matrix-Geometric method give the same results. However, the computational complexity of
K-matrix method is much lower because it only needs to solve the vector g with M + 1
variables and the remaining probabilities are attained by substitution. There are many cases
where the matrix A has only one non-zero row of which examples are found in Ramaswami
and Latouch [18] and Tijms and van Vuuren [20]. In particular, two illustrative examples are
given in Appendix F, highlighting some important computational features of the K-matrix.
The computational effort of this approach suggested here is significantly reduced while the
numerical stability associated with the computational procedure is controlled under a preset
precision level. Since the matrices D, C, A and C, that arise in applications are usually
sparse, the results developed in this paper may be used before considering the quadratically
convergent algorithms of computing the rate matrix R.

Since two-tier service system is a popular setting for many service systems with both
public and private service providers, our proposed algorithm provides a powerful tool for
practitioners to evaluate the customer service performance.
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Appendix
A. Proof of Proposition 2.1

Proof. We use a case of M = 3 to prove this proposition. LettingD = D + C + A. D is
irreducible. Then, we have

—A A
Do | He —(Atp) A
He _(A + Mc) A

,Uc _NJC

Denote the stationary vector for D by p = (po, p1, p2, p3). Solving pD = 0, we obtain

po =1/ 20 (M pe)spr = (M )/ 3o (M ) p2 = (M o)/ Yoo (A ), and ps =
(A/pe)?) S0 o (A/pe)'. Based on the drift stability condition of pA1 < pD1, we have

s () ()
wr > p3\ = Z?ZO(A/Mc)i = L (A>4 .

Be
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-1

M M+1
For a general case with buffer size M, we get ;iy > pyA = (1 — A) <uA> A (1 — (ﬁ) )

e c
which is the condition in Proposition 1.

B. Proof of Corollary 2.2

Proof. If A/u. < 1, itis easy to see that the left hand side (L.h.s.) of (12) approaches to zero
as M — oo or we have piy > 0. For A/u. = 1, to evaluate the Lh.s, we use L’Hopital’s
rule. By taking the derivative of both numerator and denominator with respect to A /., we

have
(@@ (@)
A/pe—s1 1_<A>M+1 Afpe—s1 _(M+1)<A>M M+1

He e

Thus as M — oo, we again have pyp > 0. If A/p. > 1, we again use L’Hopital’s rule to
evaluate the Lh.s. of (12). Taking the derivative of both numerator and denominator with

respect to M, we have
M
()2 (2) n(2)
He He He o

Mmooy (A>M+1 M—o0 (A)MH In (A) .

which leads (12) to 15 > (% — 1) A/ (PLA) Simplifying it yields ¢ + p1. > A.

C. Proof of Lemma 2.5
Proof. Note that K = —[C + P]D!

[ pstA —A -1 i
Ky Ky
— e pptpet+A
Hf Hf
= e I I —1
pitpetA  —pp—A
K Hf
—Hc petA
L nf K J

Since the diagonal entry of K is positive, we can choose a upper triangular matrix U and lower
triangular matrix L such that K = L + U and the diagonal entry of L and U are positive.
Clearly, L and U are positive definite because eigenvalues of L. and U are diagonal entries.
Since the addition of two positive define matrix is again positive define, it concludes that K
is also positive definite. It suffices to show that K is positive definite and its eigenvalues are
positive.
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D. Proof of Lemma 2.10
Proof. We solve the following equation for z,
Atpy —(Atpy
<Ky —2al > = uf—ltc A-Htlclf
7T
— 2 (2D Be A A
=t = (G, st De+ (140
=0

By a quadratic formula, x is given by

20 4 pe e )2 o AApe | 2pe 1
(B4 e 1) £ ((42)° + e + 2= 1)

o 1333 1333 1%
- 9
It is easy to check that
1. 20N u, eoo  ANpe 2ue 1
(R By ez e Ty gy
27y py ff Hy o pf
1 20 el
S {E Ry Byn
25 py ff
1 2A e
S e W AT
2" py oy

A, 2 ) AN i, AA 402\ ?
((—+“—+1)2) :<(“—+1)2+—“—+—+—>

o pg fif [y By
1
c 4A c 2
> ((M— +1)%+ —“—)
oy Hy fg
Thus, we have their difference is greater than 0. Second, recall (12)
c A A A ey A2
u—(l +—)>—, e, (—+ M_) > —. Now, check,
A e Hy I A
A 4A? 2 4A 4A
U Y R -, s
My Hf M My M Yy Hf
A C C 2 c 4A c 4A
(=4 Eey g (Lo e T o
fy oy % N Y
C 2 C 4A C
= (Leyz gy e 2o
My M Ky

Therefore, we have
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Equivalently, it implies
20 4Ap.

A Cc (& =
=+ gy g2 pr ey <2
pyo by fo pyo M

Thus, we conclude
1A . 1 . 4Ape 1
B I P [ f]2<1.
20y py 2 I 1

It yields
2A 4 pe _((HeN2 4 4Ape | 2uc 1
(B4 e+ 1) = () + e + 22 1)
2

O<o<l1..

E. Elements in R

With modification of the formula, r; can be calculated by solving the difference equa-
tions in El-Mikkawy and Karawia (2006) and the final forms are given below

= (= Y MAL=) G s 1923 ... M
TZ (& . 1 Y ) ) Y
e ] e

rasn = (d — T)
where

_ .u‘cAai— /JcAﬁi —1 s

ti—(d— ai_12_ 6i+1+2) 2—2,3,"'>M
with d=—(AN+ps+pe) +ops
dy = —(A+pg) +opy

and

a; = (1—k) x (u1)" +k x (up)® i=2,3,--- , M

ag = 1, ap = d1
di—w
U — U1

Bi=(1—g) x (u)M?1 4+ g x (ug)M+*? i=23,--- M
Bria =1, Bus1=d

B1 = diB2 — B3

d—
with g = _1;11
d+ /A= ApcA
e 2uA\
d—/d* —4pA
w2 = 2.\
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From the introduction in Neuts (1981), R in (22) records the rate of sojourn in the states of
the toll queue and (n + 1) customers in the free queue per unit of the sojourn time when there
are n customers in the free queue as n > ny.

F. Illustrative Examples for Constructing K

Besides the two-tier service case with QBD process, we borrow two other examples
from Dayar and Quessette (2002) to illustrate the construction of K.
Example 1: Consider the continuous-time equivalent of the discrete-time QBD process dis-
cussed in [pp. 668-669 in Latouche and Ramaswami (1999) ]. The model has 2 phases at
each level (i.e., m = 2). Assuming that 0 < p < 1/2, the process moves from state (¢, 1),
¢ > 1to (¢,2) with rate p, and to (¢ — 1, 1) with rate (1 — p). The process moves from state
(¢,2),¢>0,to (¢,1) with rate 2p, and to (¢ + 1, 2) with rate (1 — 2p). Finally the process
moves from state (0, 1) to (0, 2) with rate 1. All diagonal elements of () are —1. Hence, we
have

. (0 0 (-1 p o (1-p 0 (-1 1
AO_A_(O 1—2p>’c_(2p —1)’D1_D_(0 0)’ CO_(Qp —1)’

Define
0 0
P = ( 1 — 92 0) andd, = 7, — 7™,
Since
A+ 7, 1C+ D =0, n >0,
d,Al1+d,;1C1+d, D1 =0, n>1
ﬂ-n’P + 7Tn+1(_’P - D) + 7Tn+2D =0
d,A-P)+d,,(C+P+D)=0
d,A=-d,,(P+C)
1-2p /0 0
_ -1 _
K=-A(C+7P) 1_p(1 1>
we have an eigenvalue o, where 0 < 0 = 11%2;’ < 1. In this case, it gives

_ 1 (00 1 1 p 1=2p /0 0\ _

Example 2: Consider the Em/M/1 FCFS queue which has an exponential service distribution
with rate 4 and an m-phase Erlang arrival process with rate m A in each phase [ pp. 206-208 in
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Latouche and Ramaswami (1999)]. The expected interarrival time and the expected service
time of this queue are respectively 1 /) and 1/u. We assume A < u. The queue corresponds
to a QBD process with level representing the queue length (including any in service) and
phase representing the state of the Erlang arrival process. Letting d = mA + p we have the
(m x m) matrices Ag = A = mAe el ,D; =D = pl.

—d m\ —mA mA
€=  amn | ©= Cmx oma |
—d —mA
Define
w 0 - 0
po| )
7 0 ' 0
m,Al + 7, 1Cl + 7, D1 =0, n> L, (28)
T A+ (—P —A)+7m, P =0 (29)
It yields

dn+2P = dn+1A-

Without right multiplication of 1 in (28), taking the difference of (28) and (29) multiplied by
d,,, we have

dy2(D—P) +dpy 1 (C+P+A) =0,

which may be simplified to
dn+2D - —dn+1(P + C)

Therefore,
K=—-(C+P)D!

Let p = ’”7’\ For the stability condition, we have p < m. We write the characteristic
polynomial as

lx) = (K-—zl)

m—1

== Cr(t—a)" g 4

1=0

m!
Where CZ’m: m
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For example, when m = 2 and p = 2\ /pu, {(x) = —(1 — z)x — 2xp + p?. The eigenvalue
of K, is less than 1, i.e.,

1 1
O<0:p+§—(p+z)1/2<1.

For m > 2, we can easily check there is one eigenvalue o between 0 and 1 by using
Descartes’ root test with taking £(0) x £(1) which is p™ x p™ (p — m) < 0. Numerically,
R can be obtained with o given from K.
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