
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Introduction 
It is common to model service systems as queueing systems with customers belonging 

to multiple classes and multiple servers having multiple skill sets. These models are used to 
design the systems so that the costs are minimized while meeting service quality levels. The 
analytical queueing models typically assume time-invariant parameters such as the arrival 
rates, and the design algorithms produce time-invariant staffing solutions. However, there 
are two main problems with this methodology. 

First, in practice the system parameters show time varying behavior, with daily and 
weekly cycles, for example. In such cases, the stationary model analysis is not very useful. 
Second, the parameters for the system are not known in practice, and have to be inferred 
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from the past data. 
Several approaches have been developed independently to address these two issues and 

we shall discuss them in Section 2. However, it has now become feasible to develop 
solutions that will simultaneously address both of these issues. Such an approach is called 
“Data Driven System Design". In the context of service systems, it involves using past data 
about arrivals and service times to develop dynamic staffing policies to optimize a given 
performance criterion subject to service quality constraints. In this paper we shall illustrate 
this approach by applying it to a Virtual Computing Laboratory (VCL). 

VCL is a cloud computing service that provides users remote access to their desired 
set of software applications. There are usually hundreds or even thousands of software 
applications that the users may choose from. Some examples of applications are “Matlab on 
Windows 7", “Maple on Windows XP", “Matlab and MS Excel on Windows 7", “Arena 
and CPLEX OPL", etc. The VCL was first developed at North Carolina State University 
(NC State) and is now an open-source project at the Apache Software Foundation -  
http://vcl.apache.org. An increasing number of institutions are hosting VCL servers. For 
example, UNC-Chapel Hill and NC State currently have hundreds of such servers for 
students, faculty, and researchers. From the perspective of modeling, we do not distinguish 
between the terms - “virtual computer" and “virtual machine"; instead we use the generic 
term “server". Each user is granted full control of the assigned server. If two users request 
the same software application, they will need two different servers loaded with that 
application. 

A server in the VCL may be preloaded with a specific application, or left flexible. A 
user gets immediate access to a server preloaded with the desired application if one is 
available. Otherwise, the user has to wait for several minutes until a flexible server is loaded 
with the desired application. 

In this paper we are concerned with the issue of deciding how many servers should be 
preloaded with which applications, and how many servers should be left flexible. We call 
the preloaded and flexible servers the on servers, and the rest of the servers the off servers 
that are turned off for cost saving (both energy and management). The service quality is 
measured by the fraction of the users who get immediate access, and the fraction that get 
delayed access, while the system performance (cost) is measured by the number of on 
servers. 

Although our research is motivated by the VCL application, the methodology 
developed here is of general applicability in any service center with sufficiently flexible 
servers. It is also applicable to software as a Service (SaaS) and Desktop as a Service (DaaS) 
in cloud computing, see Kibe, et al. [27] . In such large-scale computing environments, the 
system performance is measured by the energy consumption, since it is important both 
economically and environmentally. The service quality is measured by the delay 
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experienced by the clients in getting access to the required resources (hardware as well as 
software). Hence, it is important and relevant to dynamically allocate “the right number of 
on servers with the right capabilities". 

In many current implementations of VCLs such as those at UNC-Chapel Hill and NC 
State, all servers are always on and there are no flexible servers. For example, the VCL at 
NC State has about 800 servers and 1600 applications; the current policy ranks the 
applications by the frequency with which an application is requested, and each of the 400 
most popular applications are preloaded on two servers (each preloaded server has exactly 
one application). 

In general, assume the VCL has a total of M servers and is capable of handling N  
types of application. A user who desires type n (1 n N  ) application is called a type n  
user. A type n user arriving at the system receives instant service if a server preloaded with 
application n is available. Otherwise, the user is delayed and needs to wait until the system 
manager (an automated software) chooses a k -preloaded server ,( )k n  removes 
application k and loads application n . If no server is available then this user is blocked 
(rejected). After a user finishes the session, the system manager wipes the server clean, and 
then reloads it with the same or another application. 

A server allocation plan (SAP) decides how many servers should be pre-loaded with 
which applications, how many servers should be kept flexible, and how many should be 
turned off. An SAP is called dynamic if these numbers change with time; otherwise it is 
called static. It makes sense to consider dynamic SAPs to accommodate time-varying 
demand rates. Such time-varying demand is an inherent feature of the VCL system. This is 
caused by the seasonal demand induced by the semesters, the days of week, and the time of 
the day. In this paper, we propose a data driven dynamic SAP with the objective of 
minimizing the system cost while achieving the targeted service quality. 
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Figure 1. VCL Servers Network Diagram. 

We shall begin with a static SAP assuming constant arrival rates. We keep nd servers 
preloaded with application n (i.e. the dedicated type n server pool, 1 n N  ), f servers 
flexible (i.e. the flexible pool), and

=1
N

nnM f d  servers off. Figure 1 illustrates the 
server network diagram. When a type n arrival occurs (with rate n ), this user is given a 
server from the dedicated pool for application n , if one is available. Otherwise a server 
from the flexible pool is loaded with application n and assigned to this user. In the latter 
case the user needs to wait a few extra minutes for the loading operation. If no flexible 
servers are available, the user leaves the system without service, even if there are idle servers 
in the other dedicated pools. When a type n user finishes service from the dedicated pool, 
the released server is wiped clean and is reloaded with the same application to keep nd a 
constant. Similarly, when a user finishes service from the flexible pool, the released server 
is left flexible to keep f a constant. 

We then design a dynamic SAP based on the above static SAP. This is accomplished 
by dividing the whole time horizon into small periods, and implementing the static SAP 
over each period. Under dynamic SAP, the parameters nd (1 n N  ) and f vary from 
period to period, but remain constant within each period. Thus the number of off servers 
will vary from period to period. We use probability bounds based on a stationary queueing 
model to bound the probabilities that an incoming user is delayed or blocked. 

We compare two modeling approaches: the stationary independent period by period 
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(SIPP) approach, and our proposed stationary dependent period by period (SDPP) approach. 
These are described in Sections 4.3.1 and 4.3.2. It is clear that we need the forecasts of the 
arrival rates n (1 n N  ) for each period in order to execute our data driven dynamic SAP. 
We explore two statistical methods to forecast the future arrival rates: the moving average 
(MA) method and the singular value decomposition (SVD) method. They are described in 
Section 5. These arrival rate forecasts are then used to compute the bounds on the delay and 
blocking probabilities. In Section 6 we present the simulation results under different settings 
and recommend the best performing data driven dynamic SAP. 

Our proposed policy uses a dynamic SAP under which at most 5% users are delayed 
and at most 0.5% of the service requests are blocked. The policy only uses a maximum of 
391 on servers at any time, resulting in substantial energy savings. In contrast, Lee [30] 
shows that, under the current policy followed by the VCL at NC State, over 11% of the 
users are delayed and no users are blocked but all the available servers are always kept on. 
This makes our proposed policy extremely attractive. 

The main contribution of this work is the development of a data driven server allocation 
procedure that results in an efficient allocation while meeting service criteria. It combines 
sophisticated forecasting, queueing analysis, robust bounds on service quality parameters, 
and a new method of addressing the non-stationarity and dependence, to devise an 
implementable algorithm. 

The remainder of the paper is organized as follows. We provide a literature review on 
the related topics in Section 2. Section 3 introduces the structure of the data, and highlights 
the challenges posed by time-varying demands. We formulate our static SAP model in 
Section 4.1 and construct probability bounds in Section 4.2. Server allocation algorithms 
are developed there to ensure the service quality constraints. Section 4.3 explains our 
procedure of creating the data driven dynamic SAP based on the static SAP introduced in 
Section 4.2. Section 5 introduces two ways of forecasting future arrival rates, and Section 6 
describes how we conduct discrete event simulations using real data and presents the results. 
It also makes recommendations about the best implementable policy, and discusses the 
managerial insights. Finally, Section 7 summarizes the paper and discusses how we can 
extend the current work. 

2. Literature Review 
One can think of the VCL as a server farm. There is a large literature on the topic of 

resource allocation in server farms. Gandhi et al. [13, 14, 15] defined four states of the 
servers: off, setup, idle, and on (busy). Comparing with our system, their idle servers are 
similar to our dedicated idle servers, where the user receives immediate service; their servers 
in setup state (switching from off to on) are similar to our flexible idle servers, where the 
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user has to wait for some extra setup time. Two performance measurements are usually 
considered in a server farm setting: waiting time and power consumption. In their work, 
Gandhi et al. used queueing models [15] and simulations [14] to derive these metrics. One 
of their conclusions is that keeping the servers idle is superior for reducing waiting time, 
and turning the servers off is superior for reducing power. Adan et al. [1] used a constant 
setup cost instead of a setup time to discourage switching between off and on, which 
simplified the state space and resulted in a switching-curve structure of the optimal policy. 

Our model differs from the above server farm models in two important aspects. First, 
in the papers mentioned above, the users are homogeneous and the systems are stationary, 
while in our system, there are multiple types of users with time-varying arrival rates and 
service times. Second, the server farm literature deals with waiting times and power 
consumption, while our model focuses more on the fraction of delayed or blocking users. 
The use of dedicated servers is essential to reduce the fraction of delayed servers. 

In this paper we address three main features of the VCL systems: (1) time-varying 
demands, (2) multi-type demand structure, and (3) availability of data to forecast future 
demand. We shall review the relevant literature below in each of these areas. 

The phenomenon of time-dependent arrival is commonly seen in many service systems, 
and it is critical to staff them at appropriate levels to cope with this variation. There is a 
large literature dedicated to this problem. For an in-depth review on determining the staffing 
levels in the presence of time-varying demand, see Green et al. [19], Whitt [41], Liu and 
Whitt [31, 32, 33]. 

One approach to modeling the time-varying demand is to use stationary models in a 
non-stationary manner. It is achieved by dividing the working period (workday or workweek) 
into shifts, hours, quarter-hours, etc, and then applying a series of stationary queueing 
models over each planning period. This method is called the stationary independent period 
by period (SIPP) approach in Green et al. [18]. However its performance highly depends on 
the system parameters such as the arrival rate, the mean service time and the service quality, 
see Thompson [39] and Puhalskii and Reed [37]. As a counter example in Green et al. [18], 
when the Markovian model with sinusoidal arrival rates is considered in the simulation, the 
SIPP approach underestimates the staffing levels. Thompson [39] and Green et al. [18, 19] 
have addressed this issue and discussed several solutions such as a lagged SIPP, which 
essentially shifts the arrival rate curve to the right by a fixed amount. 

In our paper, we apply approaches similar to SIPP to deal with the time-varying 
demand issue. Furthermore, we propose a modified stationary dependent period-by-period 
(SDPP) approach that takes into account the customers that remain in the system from the 
previous period. The SDPP approach outperforms the regular SIPP approach in the service 
quality while using fewer servers. 

The second feature is the existence of the multiple types of users. This heterogeneity 
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in the sources of demands creates the critical issue of whether to use dedicated (specialized) 
or flexible resources. When the servers have sufficiently overlapping capabilities and work 
as a single super-server, the best possible performance can be achieved by the complete 
resource pooling strategy. See, for example, Harrison [20, 21]. Between the extremes of 
full-flexibility and full-specialization, different limited-flexibility structures can be 
constructed. Jordan and Graves [25] are the first to show that well-designed limited 
flexibility can be as good as full flexibility. These principles are further justified by Aksin 
and Karaesmen [3], Iravani et al. [23] and Bassamboo et al. [7]. They also propose methods 
to evaluate different flexibility structures. Our model considers the combination of 
dedicated server pools and a flexible server pool, in order to provide immediate service as 
much as possible while guaranteeing an overall service quality. 

Next we address the statistical features of the VCL system. As pointed out by Chen 
and Henderson [11], where the staffing problem is studied under a Police Communication 
Center setting, designing a staffing level policy needs an accurate forecast of arrival rates. 
A handful of efficient forecasting approaches have been developed for call centers. For a 
comprehensive review, see Aksin et al. [2] and Ibrahim et al. [22]. Typically, arrival data 
in call centers are aggregated within each short time periods, such as 15-minute or 30-minute 
intervals, and the target of forecasting is implemented over such periods, see Jongbloed and 
Koole [24]. This is consistent with our SIPP and SDPP modeling approaches. Similar 
techniques are used in Weinberg et al. [40], where a multiplicative effects model is 
constructed to forecast Poisson arrival rates over intervals of 15, 30, or 60 minutes length, 
with a one-day lead time. More recently, Shen and Huang [38] propose a statistical model 
for forecasting call volumes within short time periods of a given day and also provide 
approaches to account for intraday forecast updating. Their singular value decomposition 
(SVD) based method outperforms existing forecasting methods. Our work adopts their SVD 
forecasting model to the VCL setting. Numerical experiments show that it leads to better 
service quality over the standard moving average (MA) method. 

Finally we look at the (scant) literature on data driven staffing of service systems. 
Aktekin and Soyer [4] consider a Markovian queueing system with impatient customers 
with unknown arrival, service and impatient parameters. They develop a Bayesian 
procedure that updates the parameters as data becomes available and use stationary 
queueing models to do staffing. Bayesian procedures are typically slow, and require 
distributional assumptions that may not be justifiable. Recently, Gans et al. [16] have used 
SVD forecasting and stochastic programming to analyze the staffing problem. Bertsimas 
and Thiele [6] advocate a robust programming approach to handle the uncertainty in the 
parameter specification. Bassamboo and Zheevi [5] develop a two-stage stochastic 
programming approach to devise an algorithm for data driven staffing of a call center. They 
use fluid model of the service system to evaluate the performance measures. 
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This paper proposes an integrated solution that combines forecasting, queueing models, 
robust probability bounds, and a new approach to handle the non-stationarity and temporal 
dependence to devise an implementable solution to the server allocation problem. 

3. Data 
We had access to the VCL data set from NC State University containing information 

about all user requests from August 1, 2008 to July 31, 2011. In total there are 595,000 
service requests for 1,643 different applications. For the ease of presentation, we sort the 
applications by their frequency of use in descending order. The usages vary considerably 
for different applications, where the top two applications account for 18.88%, the top ten 
applications account for 42.63%, and the top 400 applications account for 97.30% of the 
total requests. On the other hand, each of the bottom eight hundred applications is used no 
more than ten times over the three-year period that we consider. The detailed information is 
presented in Table 1. The VCL has around 700 to 900 servers. (The information about the 
exact number of servers is not given in our data set. The real time information about the 
number of on/off servers is given on the VCL website.) We present below some details of 
the arrival and service time data. 

 Table 1. Cumulative Relative Frequency of Arrivals. 

 Cumulative Frequency (%)  
Top 1   9.57%  
Top 2   18.88%  
Top 10   42.63%  
Top 50   71.15%  
Top 100   82.27%  
Top 200   91.66%  
Top 400   97.30%  
Top 800   99.38%  
Top 1643   100.00%  

3.1. Arrivals 

Figure 2 (a) plots the aggregated hourly arrivals from August 1, 2008 to July 31, 2011. 
To provide a better idea of arrival patterns in finer time scales, we use Panels (b) and (c) to 
show the average hourly arrivals in each hour of the week (starting with Sunday midnight) 
and each hour of the day (starting with midnight) respectively. We also present the same set 
of graphs for individual applications as comparison. For illustration, Figure 3 is shown here 
for Application 1, while Figures 11 and 12 (See Appendix A1) are for Applications 10 and 
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100. 

 
Figure 2. Aggregated Arrivals. 

 
Figure 3. Arrivals of Application 1. 

We observe that arrivals show a predictable, repeating pattern. The semesterly, weekly, 
and daily cycles are quite clear on both aggregated and individual application levels. In 
Figure 3(b) we see that for Application 1 the arrival volumes are low on Saturdays and high 
on Fridays. During the day, the first peak occurs around 3PM, followed by a second peak 
around 10PM. This is true in the aggregated case (Figure 3(c)) and for most of the 
applications. We observe that not all the applications were available in the VCL on the initial 
date of 08/01/2008. For example, Application 10 was not available until 08/18/2010 (Figure 
11 in Appendix A1). 

Using the aggregated arrival data we also plot the mean and standard deviation of the 
hourly arrivals against the time of day, grouped by the day of week, as shown in Figure 4. 
We observe the heteroscedasticity phenomenon - both the mean and the standard deviation 
depend on time. Besides, the magnitude of the standard deviation is almost at the same level 
of the mean; hence the variance exceeds the mean, which implies that the observations are 
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over-dispersed in comparison with a Poisson distribution.  

 
Figure 4. Mean and Standard Deviation of Aggregated Hourly Arrivals by Day of Week. 

3.2. Service times 

Running the analysis on the service time data, we find that about 3 %  of the service 
times (i.e. 1327 arrivals) are less than 1 minute. The very short service times are 
questionable in the setting of software online service. One possible explanation is the 
accidental shut down of the system which would force the users to log off. Besides, there is 
a four-hour check initiated by the server, and if the user is not active, he is automatically 
logged off. If the user is active he can request extensions in two hour increments. 

In Figure 5 we plot the empirical cumulative distribution function (CDF) of the service 
times for Applications 1, 10, 100, along with the corresponding CDF of the exponential 
distribution with the same mean. The plots suggest that an exponential assumption on the 
service time distribution is reasonable. (However, we do not need this exponential 
assumption in our queueing models.) Our exploration of the service time data showed that 
they do not vary with time to any meaningful level. So we shall take the service time 
distributions to be time-invariant.  

 
Figure 5. Empirical CDF of Service Times and Exponential CDF. 
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4. Allocation Policies  
As described in Section 1, we consider a VCL with M servers, N applications, and 

N dedicated server pools (of sizes 1 2, , , Nd d d ), one flexible server pool of size f , and 
the rest being off servers (Figure 1). In this section we develop server allocation plans (SAP) 
for the VCL. In Section 4.1, we first assume that the arrival rates for the applications are 
constant, and present the formulation of a static SAP. Then in Section 4.2, we quantify the 
service quality constraints for the VCL system and derive the “optimal" static SAP. In 
Section 4.3, we extend the static SAP to dynamic SAP using stationary independent period 
by period (SIPP) approach and the stationary dependent period by period (SDPP) approach. 

4.1. Problem formulation-static SAP 

Under the static problem we assume that the arrival processes of customers of different 
type are independent Poisson processes with fixed rate parameter, namely, n for type n , 
and need independent and identically distributed (iid) service times with mean ns . Under 
the static SAP, we are interested in a policy which assigns nd dedicated servers preloaded 
with application n (1 )n N  , allows f servers to be left flexible, and turns off the 
remaining

=1
N

nnM f d  servers. The aim is to use as few servers (dedicated or flexible) 
as possible while satisfying the service quality constraints (to be quantified below). 

Note that when a user gets a dedicated server, the wiping and reloading operations take 
place at the end of the service (after the user leaves the system); if a user gets a flexible 
server, the loading operation takes place before the service starts and the wiping operation 
takes place after the service finishes. Thus in both cases the service times are augmented by 
the wiping and loading operations. 

Let the delay probability  be the fraction of the users who do not receive immediate 
service upon arrival, and the blocking probability  be the fraction of the users who leave 
the system without service. Our aim is to identify the smallest 1, , Nd d and f that can 
satisfy the following service level constraints:  

 *< ,   (1) 
 *and < ,   (2) 

where * and * are the design parameters. For example, we consider * =0.05 and 
* =0.005.  Below we describe a queueing model to quantify the above service quality 

constraints. 

4.2. Service constraints under static SAP 

In this section we derive an upper bound on the delay probability and the blocking 
probability. We use this close form upper bound to quantify the constraints given in (1) and 
(2), and derive an algorithm for the sizing problem that achieves the local optimal. 

If a type n preloaded dedicated server is available when a type n user arrives, its 
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service starts immediately and lasts for an amount of time with mean ns plus the wiping 
and loading time with mean .nu  Note that we do not need to make a specific assumption 
about the distribution of service time. If such a preloaded server is not available, then the 
user is delayed (or lost).  

• Dedicated Pool. 

We model the dedicated pool of type n as an / / /n nM G d d queue with mean arrival 
rate n and mean service time .n ns u  We know that in steady state the number in this 
system is bounded above by the number in an / /M G  system with the same arrival and 
service parameters. Let nX be the number in the / /M G  system in steady state. We know 
that nX is a Poisson random variable with mean (and variance) given by  

.= ( )n n n na s u   

Using Chebyshev’s inequality, we obtain the following result for any 0x :  

 
 2

( )( > )
( )

n
n

n

Var XP X x
x E X




 

 2 .=
( )

n

n

a
x a

 

Clearly, we should use 1 as the upper bound if the bound above is greater than one. Hence 
the probability that an incoming arrival of type n is delayed is bounded above by  

2 .( , )=min ,1
( )

n
n nd

n n

aP d a
d a

 
  
 

 

Now, the probability that an arrival is of type n is 
=1/ .N

n kk   Hence the upper bound of 
the overall probability of delay is given by  

=1

=1

( , )
,

N

n n nd
n

N

n
n

P d a






 (3) 

which provides an upper bound on  . Hence we formulate the following optimization 
problem for the dedicated pools:  
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    Problem P1  

     
=1

*=1

=1

, .

minimize

( , )
subject to < : nonnegative integersn
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n
N

n n nd
n

N

n
n

d

d

P d a










 

    We first create a relaxation of P1 by ignoring the integrality of the nd ’s, and call this 
problem P1R: 

    Problem P1R  

=1

*=1

=1

minimize

( , )
subject to < , 0.

N

n
n
N

n n nd
n

nN

n
n

d

P d a
d













 

    Note that the expression in (3) is not a convex function in nd , hence we introduce the 
following variation P1R* of P1R, and solve this P1R* using Lagrangian formulation, and 
then modify its solution to obtain the local optimal solution to P1R. For algebraic 
simplification, let  

 2 .= , ( )= , =1,2, ,n
n n n n

ax d a f x n N
x

  

          Problem P1R*  

=1

*=1

=1

, .

minimize

( )
subject to < 0

N

n
n

N

n n n
n

nN

n
n

x

f x
x












 

From Lagrangian formulation, we see that there exists a constant 0c such that the 
optimal nx solves  

 ,( )= , =1,2, ,n n nf x c n N   (4) 
which yields  
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3 .2( )= n n
n

ax c c
  

To account for the min operator, define  
 .( )=min( ( ),1), =1,2, ,n ng x f x n N  

Choose a c such that  

 
*=1

=1

.
( )

( )= =

N

n n n
n

N

n
n

g x c
G c









 

Note that ( )G  is an increasing function, and with  

2= max{ : 1 },n

n
u n N

a
    

we have  

.(0)=0, ( )=1G G u  
Hence we can use bisection method to find a *= ( )c c  that solves  

*.( )=G c   

Now define  
* *3 .( )= 2 / ( )n n nx a c    

and  
* 2 *

2

( ), / ( )<1,
=

0, / ( ) 1.

n n n
n

n n

x if a x
y

if a x

 






 

 (5) 

 This leads to  
* 2 *

2

( ), / ( )<1,
=

, / ( ) 1.

n n n n
n

n n n

a x if a x
d

a if a x

 











 (6) 

Now we present the theorem to show the local optimality of the solution given in (6). 

Theorem 1. The allocation { ,1 }nd n N  produced by (6) is a local optimal solution to the 
optimization problem P1R.  

Proof. Let =[ ,1 ]ny y n N  be the allocation from (5), and let  

.={ : =0}nZ n y  
Using (0)=1ng , we have  
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 *

=1

=1 =1 =1

.( )= ( )= ( )=
N

n n n
n n n nN N N

n Z n Zn
n n n

n n n

H y g y f x   
   

  
  

 

Now consider a feasible =y y h , where h is a small deviation such that y is a strict 
improvement over ,y  that is  

.<n ny y   

This means we must have 0nh  for n Z to maintain feasibility. Then, using (4), we get  

 ( ) ( ) = ( ) = ( ).'n
n n n n

n Z n Z
H y H y f x h c h o h


 

      (7) 

Now  

.0> = =n n n n n
n Z n Z

y y h h h
 

       

This implies  

.< 0n n
n Z n Z

h h
 

    

However, in that case (7) implies  

.( )> ( )H y H y  
Thus y cannot be feasible. This shows that y is a local optimum.   

We believe that this is also a global optimal to P1R, but have not been able to show it. 
In practice we can round up or round the non-integer solution nd given in (6) to get an 
integer solution. This may not be the optimal solution to the integer constrained problem 
P1, but will be reasonable for our purposes. 

• Flexible Pool. 

We see that the arrival process to the flexible pool is a superposition of the overflows 
from a large number of the dedicated pools. Hence, we choose to simply approximate the 
aggregate arrival process to the flexible pool by a Poisson Process (PP). Let f

n be the rate 
of overflow from n th dedicated server pool and the arrival rate to the flexible pool be  

=1
.=

N
f f

n
n

   

The mean service time in the flexible pool is a weighted sum of the mean service times of 
each type n plus the mean loading time:  

=1

=1

( )
= .

N
f

n n n
n

f N
f

n
n

s u
s








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Then the offered load to the flexible pool is given by  

=1
.= = ( )

N
f f

n n nf f
n

a s s u    

Again, assuming the system is in steady state, the probability of a user being blocked from 
the flexible pool can be bounded from above using Chebyshev’s inequality:  

2( , )= ,
( )

f
b f

f

a
P f a

f a
 

where f is the number of busy flexible servers. Note that the probability that a user leaves 
the system without service is equal to the probability that a user is blocked from the flexible 
pool. We call it the blocking probability. Hence, to satisfy (2), we solve the following 
optimization problem: 

     Problem P2  

*
2

minimize
subject to ( , )= .

( )
f

b f
f

f
a

P f a
f a




 (8) 

The above problem can be explicitly solved to get the optimal f as  

* *.= /f ff a a   

We use the ceiling of *f as the number of flexible servers to use. 

4.3. Dynamic SAP 

As observed in Section 3, the user arrival rates are highly time dependent. Hence we 
introduce a dynamic version of SAP, which adjusts the sizes of the server pools in response 
to changing arrival rates. The main idea is to divide the entire time horizon into small 
planning periods. 

Let { , 1}i i  be a given increasing sequence starting with 1 =0 . For example we use 
= 1i i   ( 1i , in hours). We call the interval 1[ , )i i   the i th period. We replace the 

notations such as n , ns , na with the notations ,n i , ,n is , ,n ia , which represent the arrival 
rate, service time, and offered load respectively, of application n over the i th period. Then 
the sizes of the dedicated server pools ,1,( , , )N iid d are determined by (6) over the i th 
period. Similarly, for the flexible pool, we use notation ,

f
n i , f

i , ,f is and ,f ia  instead of 
f

n , f , fs and fa for the i th period, and we determine the size if  period by period. 
The dynamic SAP is defined by ,1,{( , , , ), 1}.i N iif d d i  

There is one detail we have to take care of in the dynamic setting: transition from one 
period to the next. Let ( )nB t be the number of type n  users who are using servers from 
their dedicated pool at time t . Thus ( )n iB  is the number of dedicated servers serving type 
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n  users at the beginning of the i th period. If , ( ),nn i id B   we allocate , ( )nn i id B   
additional servers to the dedicated pool of type n . If ,( )>n i n iB d no new arrivals of type 
n  are allowed in the dedicated pool until ( )nB t reduces to ,n id . After that new arrivals of 
type n are accepted as long as ( )nB t does not exceed ,n id over the i th interval. Thus the 
actual number of dedicated severs at time t is given by ,max{ ( ), }n n iB t d for 1[ , )i it    . 
We follow a similar transition procedure for the flexible pool. 

One final question we need to resolve is how to estimate the arrival rates ,n i and f
i . 

We discuss two procedures below. The traditional stationary independent period-by-period 
(SIPP) methodology assumes that the smaller planning periods are independent, and the 
system is in steady state over each period (see Section 4.3.1). Due to the relatively longer 
service times (compared to the lengths of the periods) at the VCL, the SIPP approach may 
not be suitable. Hence we modify this approach to account for the dependence between the 
consecutive periods. We call this the Stationary Dependent Period by Period (SDPP) 
approach (see Section 4.3.2). 

The overflow rates ,
f

n i and mean service time ,f is of the flexible pool are not part of 
the data. They depend on the data and the server allocation policy. Hence we estimate them 
by actually measuring the number of overflows under a given policy in our simulation. We 
discuss this in more detail in Section 6. 

4.3.1. Stationary independent period by period (SIPP)  

Let the ( )n t be the arrival rates at time t for type n application. The SIPP approach 
approximates the arrival rate ,n i of application n over the i th period by  

                1
( , )

1
.1ˆ = ( )i

nI n i
iii

t dt



 

 


    

Since we assume that ( )n t is a constant equal to ,n i over 1[ , )i i   , we have  

                          ,( , ) .ˆ = n iI n i                            (9) 

For the flexible pool, we forecast the overflow rates ,
f

n i on 1[ , )i i   from dedicated pool n  
and by assuming constant rate over this period we also have  

                        ,( )
=1

.ˆ =
N

f f
n iI i

n
   (10) 

4.3.2. Stationary dependent period by period (SDPP) 

As discussed in Section 3, typical service times range from 30 minutes to four hours. 
Hence many of the arrivals in one interval would continue to be in the system over the next 
interval due to relatively long service times compared to the length of the interval. This 
makes the independent assumption of SIPP approach less effective (Green et al. [17]). 
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Hence, we propose the SDPP approach that accounts for the dependence between the 
consecutive intervals (see similar treatment in Massey and Whitt [34]). 

Let nS be the representative service time of a type n user. If a user arrives at the 
system during 1[ , )ni iS   , the sojourn time in the system will overlap 1[ , )i i   . Hence we 
adjust the arrival rate of type n over the i th period to  

 

1
1( , )

1
1

,1 1

= ( ) / ( )

= ( ) ( ) / ( )

= ( ) ( ) / ( )

i
n niiD n i Sni

i i
n n niiSni i

i
n ni n i ii iSni

t dt S

t dt t dt S

t dt S




 

 





   

   

     







 

 
 
 
 
 
 

 

  

   



 



 

Since we do not assume any specific distribution of service times, even the expectation 
of the integral in the above equation  

( )i
nSni

t dt





  (11) 

is intractable in general. However, we can interpret (11) as the total number of arrivals over 
[ , )ni iS  , and since nS is a representative service time, all these arrivals are expected to 
be in the system at time i . Let ( )nF t be the number of type n users who are using servers 
from the flexible pool at time t . Thus ( ) ( )n nB t F t is the number of type n  users in the 
system at time t . Hence we approximate the integral by ( ) ( ),n ni iB F   the actual number 
of type n users in the system at time i . More specifically we approximate ( , )D n i by  

 ,1 1( , ) ,ˆ =[( ) ( ) ( )]/ ( )n n ni n i i i ii iD n i B F s              (12) 

where ns is again the mean service time of Application n . 
Similarly, for the flexible pool we have  

 1 1( ) ,ˆ =[( ) ( )]/ ( )f f f
ni i i i ii iD i F s               (13) 

Note that ,n i in (12) and f
i in (13) are forecasts. However, the quantities ( )n iB  and

( )n iF  depend on the actual evolution of the system. This is what makes the estimates

( , )
ˆ{ , 1}D n i i  and ( )

ˆ{ , 1}f
D i i  dependent. This justifies the name Stationary Dependent 

Period by Period for this dynamic procedure. 
We now use these estimates to compute the server allocation ,1,{( , , , ), 1}i N iif d d i  

as described in the Section 4.2. 

5. Forecasting Future Arrival Demand 
To implement the dynamic SAP in practice, we need to forecast future arrival demand, 

denoted as ,n i in the above sections. Here we focus on two forecasting methods that will 
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be compared in our numerical study section. The baseline method is the moving average 
(MA) method, and the more sophisticated one is the singular value decomposition (SVD) 
method introduced by Shen and Huang [38]. 

We introduce the common notation used in this section. Let T be the number of days. 
Each day is divided into P periods. For example, we use = 24P hourly periods in our 
numerical experiments. Let ,t ix be the number of arrivals during the i -th period of day t , 

=1, ,t T , =1, ,i P . The vector 1=[ , , ]t tPtx x x records the hourly arrival volumes on 
day t . Given the historical data 1, , Tx x , the following sections discuss the two methods 
to forecast the next-day demand vector 1Tx  . 

5.1. Moving average forecasting 

Let w be the rolling horizon, which is the number of historical days used for 
forecasting. Specifically, considering the daily patterns in our data, we forecast the arrival 
demand over each i th period of day 1T  as the average of the same time periods of the 
previous w days. That is  

 (1)
,1,

= 1
.1ˆ = , =1, , , >

T

t iT i
t T w

x x i P T ww
 
  

One important issue in the MA method is to decide the size of the rolling horizon w . The 
larger the window, the less influence the short term daily fluctuation will have, and more 
clearly we can see the long term effects. However, a larger w would make the MA method 
less sensitive to the non-stationary phenomenon. Our numerical studies use =30w days. 

5.2. SVD forecasting 

Here we apply the inter-day forecasting method introduced in Shen and Huang [38]. 
To be consistent with the MA method, we also use w historical days. Let 

1=[ , , ]TT wX x x   be the w P historical data matrix used in the forecasting of arrivals 
on day 1T  (here the sign  stands for transpose). The singular value decomposition 
(SVD) of the matrix X can be expressed as =X USV , where U is a w P matrix that 
records the row information (the daily (inter-day) pattern of the original X ), and V is a 
P P  matrix that records the column information (the time of day (intra-day) pattern of the 
arrivals). We write the three decomposition matrices in the form of column vectors and 
diagonal elements: 1=( , , ),PU u u 1=( , , ),PV v v 1= ( , , ),PS diag s s where 1 2 Ps s s   . 
Then it follows  

 ,1 ,1 1 .=( ) ( ) , = 1, ,t P t P Ptx s u v s u v t T w T     

To summarize the inter-day features while reducing the dimension of data profiles, we 
extract the first K singular vectors from V , which is similar to the techniques used in the 
principle component analysis. By setting , ,=k t k t ks u  , we get the following approximation  
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 ,1 ,1 1( ) ( )t K t K Ktx s u v s u v    

 ,,1 1 .= , = 1, ,t K Kt v v t T w T      

The last step is to forecast arrivals on day 1T  . Since there are obvious day of week 
patterns shown in the data, we include =1, ,7iz as a categorical covariate controlling for 
the day of week effects in the AR(1) time series model to obtain 1,T k  , 1 k K  :  

11, , 1, .= ( )TT k k k T k T ka z b     

Next, the arrival vector on day 1T  is modeled as  

1 1,1 1 1, 1= ,KT T T K Tx v v        

whose mean can be estimated by  
(2)

1 1,1 1 1, .ˆ = KT T T Kx v v      

We use the first semester arrival rates of application 1, 3 and 4 as test data to obtain the 
scree plots (Shen and Huang [38]) in Figure 6, and find that =K  2 or 3 gives good 
forecasting results.  

 
Figure 6. Scree Plots. 

Note that the SVD method involves regression on the decomposed data matrix, which 
is not efficient when the historical arrival volumes are close to zero. This happens to be the 
case for applications ranked 100 and lower in terms of total requests, whose hourly arrival 
rates are usually less than one. We therefore pool the lower ranked applications into few 
groups, and forecast the aggregated arrival rates within each group. We then split the group 
total arrival forecast using the Bernoulli splitting rule, and obtain the hourly arrival rates for 
each individual application. 
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In the rest of the paper, we use ( )
,
j

n i to denote the forecasting arrival rate of application 
n  over the i th period using the j th forecasting method illustrated above, and ( )

,
f j

n i as 
the forecast for the overflow into the dedicated pool ( =1,2j  as in the notations ( )

1ˆ j
Tx  ). 

It is possible to compute the prediction intervals for both methods. We do not discuss 
it here since we do not use it. 

6. Numerical Experiment and Managerial Insights 
In this section, we report the numerical experiments conducted to implement and 

compare the performance of the dynamic SAP method. The queueing model ( / /M G  ) 
assumes that the arrival process is Poisson over each period. We use statistical tests from 
Brown et al. [8] to validate this assumption, and show that overall there is no evidence to 
reject the null hypothesis that the arrival process is NHPP with piecewise constant (PC) 
arrival rates. See the Appendix A2 for details. 

To implement the dynamic SAP, we forecast arrival rates ,n i using the methods 
introduced in Section 5. We assume that the mean service times ,n is are time-independent 
and simply take the sample mean ns for application n as the estimate of ,n is for all the 
periods. 

We simulate the system with the trace data from the VCL to compare the efficacy of 
all the methods introduced earlier. We run four simulation setups:   

1. SVD + SIPP: Use SVD forecasting to generate the arrival rate forecasts. Use SIPP 
to compute the allocation vectors for each period.  

2. SVD + SDPP: Use SVD forecasting to generate the arrival rate forecasts. Use SDPP 
to compute the allocation vectors for each period.  

3. MA + SIPP: Use MA forecasting to generate the arrival rate forecasts. Use SIPP to 
compute the allocation vectors for each period.  

4. MA + SDPP: Use MA forecasting to generate the arrival rate forecasts. Use SDPP 
to compute the allocation vectors for each period.  

As a general parameter setting, we assume the targeted global probability of delay *
is 5%, and the targeted global blocking probability * is 0.5%. There are 400 dedicated 
pools and one flexible pool. To forecast the arrival rates, we choose the length of rolling 
horizon =30w days, and assume that there are = 24P hourly periods in a day. Applying 
methods described in Section 5 for each dedicated pool, we obtain two different forecasts:

(1)
,n i using the MA method, and (2)

,n i using the SVD approach. Besides, we set loading time
=5nu mins for all the applications. 

To determine the number of dedicated servers assigned over the i th interval, we let 
= 1i i  ( 1i , in hours), and record the number of type- n  users using the dedicated servers 

( ( )nB i ) and the flexible servers ( ( )nF i ) at the beginning of the i th period (same as at the 
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end of the previous period). Then the SIPP method and the SDPP method yield the following 
estimates ( =1,2j  for the MA and SVD, respectively):  

( )
,( , )

ˆ = ,j
n iI n i   

( )
,( , ) .ˆ =[ ( ) ( )]/ (1 )j

n n nn iD n i B i F i s      

Similarly, for the flexible pool we collect the overflow data of past 30 days generated in the 
simulation, and use the corresponding forecasting and estimation approaches as the ones for 
the dedicated pool to obtain ( )

ˆ f
I i , ( )

ˆ f
D i as described in Sections 4.3 and 5. 

Finally we compute the allocation vector ,1,{( , , , ), 1}i N iif d d i as described in 

Section 4. The performance under the 4 simulation setups is shown in the figures below. 
We present the average probability of delay and blocking on the left, and the average 
number of on servers on the right, both of which are plotted against the hour in a day. 

 
Figure 7. Simulation Results with MA + SIPP. 

 
Figure 8. Simulation Results with MA + SDPP. 
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Figure 9. Simulation Results with SVD + SIPP. 

 
Figure. 10. Simulation Results with SVD + SDPP. 

We first compare the performance between the SIPP and SDPP approaches, that is, we 
compare Figure 7 with Figure 8, and Figure 9 with Figure 10. Under both MA and SVD 
forecasting settings, we find that SDPP generally allocates less servers than SIPP and at the 
same time achieves better service quality, that is, significantly lower probabilities of delay 
and blocking. 

Among the four settings, only the SVD+SDPP combination (Figure 10) closely 
achieves the target 5% probability of delay and 0.5% blocking probability. On the other 
hand, the SVD+SIPP (Figure 9) approach induces delay probability of as high as 8% 
towards the end of the day. The performance of blocking probability under the SVD+SIPP 
approach is comparable to that of the SVD+SDPP approach. Besides, SDPP uses less 
servers during both peak and off-peak hours than SIPP. The average hourly on servers under 
SDPP is 318, and the number is 347 under SIPP. The maximum number of servers used 
during a day is 391 for the SDPP and 421 for the SIPP. This is achieved by considering the 
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dependence over periods, which is also reflected in the smoother and right shifted curve in 
the right panel in Figure 10 comparing with the right panel in Figure 9. The number of on 
servers is significantly less than the number of available servers (700 to 900), implying a 
significant reduction in terms of energy consumption and management cost over the current 
operating procedure. 

We next compare the performance of the MA and SVD forecasting methods, that is to 
compare Figure 7 with Figure 9, and Figure 8 with Figure 10. Under both SIPP and SDPP 
settings, the SVD approach far outperforms the MA forecasting. For example, in the 
MA+SDPP setting, the MA approach leads to severe under-allocation of servers, hence the 
serious downgrading of service quality. The delay probabilities experienced by users 
approach 20%. This leads to overestimates of overflow rates and over-allocation to the 
flexible pool, hence the near zero blocking probabilities. The number of on servers at the 
peak is only marginally smaller than the one under the SVD+SDPP combination. It is clear 
that under the MA approach, VCL is understaffed over the off-peak hour from 3am-10am, 
which is why the delay probability significantly exceeds the target 5%. In comparison, the 
SVD approach does a great job in forecasting arrival rates, since it takes into account inter-
day dependence, as well as day-of-week effects. 

In summary, MA performs much worse compared to SVD, and SDPP performs better 
than SIPP. Hence we recommend the SVD+SIPP combination in practice. To be precise, 
we recommend the use of the data driven dynamic SAP with the following steps: 

1. Use SVD forecasting with a rolling window of thirty days,  

2. Use SDPP to estimate the arrival rate parameters,  

3. Use the allocation algorithms of Section 4 to decide the server allocations.  

Managerial Implications: Although the above study was carried out using the VCL 
dataset from NC State over 2008-2011, our analysis yields several important managerial 
implications for the optimal operation of a service system with multiple flexible servers and 
multiple classes of customers with time varying arrival rates. First, it is important to 
accurately forecast the demand rates using statistical tools that account for the cyclic 
patterns and trends in the demand. For example, we concluded that SVD works better than 
MA. It is equally important to make the server allocation decisions dynamically, in response 
to the current trajectory of the system. For example, we discovered that SDPP works better 
than SIPP. Ignoring these two aspects can lead to serious degradation of performance. 

7. Summary and Extensions 
Motivated by the server allocation problem in the VCL, we consider a system using 

two types of server pools – the dedicated pools where pre-determined types of applications 
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are preloaded on certain dedicated servers, and the flexible pool where different applications 
are loaded on demand. We formulate an optimization problem to minimize the number of 
on servers, subject to pre-specified service level constraints. The service level includes the 
probabilities of a user being delayed or blocked from the system. We derive a method to 
quantify the service quality constraints, and develop an algorithm to identify the 
corresponding static SAP which is further extended to a dynamic SAP. We extend the SIPP 
approach and propose the SDPP approach to handle the time-varying demand and long 
service times. 

We then consider two methods – MA and SVD – to forecast future arrival rates given 
historical data. We evaluate the performance of the dynamic SAP by conducting discrete 
event simulation experiments using real data. We run statistical tests to justify the 
assumption of a Poisson arrival process with the piecewise constant arrival rate function 
over the planning horizon. 

Overall, our recommended dynamic SAP keeps no more than 400 servers on during 
the peak hours and less than 210 servers on during the off-peak hours, which is a significant 
saving over the 700-900 servers currently being kept on by the VCL using its policy. 
Furthermore, under our policy, at least 95% of the users receive immediate service from the 
dedicated server pools, and 99.5% of them are guaranteed a service from the flexible pool 
with no more than 5 extra minutes of waiting. 

For future work, we are interested in modeling the VCL system using Markovian 
decision processes, where decisions on the allocation of the servers and the admission of 
the users can be chosen to optimize the long run cost. In that case, we can allow switching 
between different types of dedicated servers, or between dedicated servers and flexible 
servers; we can also allow rejecting a user even when servers are available. Costs of 
switching servers and rejecting different types of users can also be incorporated. This is a 
rather involved project and will be undertaken at a later date. 
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Appendix: 

A1. Additional plots for sample applications 
Arrival patterns for applications 10 and 100, in comparison to Figures 2 and 3 in the 

main paper. 

 

Figure 11. Arrivals of Application 10. 
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Figure 12. Arrivals of Application 100. 

A2. NHPP tests on the arrival data 

Using the results of Brown et al. [8] we construct the Kolmogorov-Smirnov test for 
the null hypothesis that arrivals of given types of application form a NHPP. Their approach 
addresses the time-varying arrival rate by converting the problem into a standard statistical 
test to determine whether inter-arrival times data can be regarded as a sample from a 
sequence of independent and identically distributed (i.i.d.) random variables with a specified 
distribution (see Kim and Whitt [28]). The first step is to approximate the NHPP by a 
piecewise-constant (PC) NHPP, by assuming that the arrival rates are constant on each 
interval. The second step is to apply the conditional-uniform (CU) transformation to 
transform the PC NHPP into a sequence of i.i.d. random variables uniformly distributed on 
[0,1] . Because of the assumption of PC, the NHPP now can be regarded as a homogeneous 
Poisson process (PP) over each interval. For a PP on [0, ]T , conditioned on the total number 
of arrivals in that interval, the arrival times divided by T are distributed as the order 
statistics of i.i.d. random variables uniformly distributed on [0,1].  Finally, following 
Brown et al. [8] we use a scaled logarithmic transformation of the data, which under the 
Poisson null hypothesis produces a sequence of i.i.d. mean-one exponential random 
variables. Then we apply the KS test with ( )=1 .xF x e  

Using our data, the first test example includes all the arrivals for application 1 arriving 
on every Monday from 14:00 to 14:59, August 1, 2008 to July 31, 2011. In total we have 
150 such Monday one-hour intervals, and 470 arrivals. The respective Kolmogorov-
Smirnov statistic has a value of =K 0.0374 (p-value = 0.3811). The second example 
includes 278 arrivals requesting for type 2 application on Wednesday Oct 14th, 2009. The 
interval length is half hour. For this case we have Kolmogorov-Smirnov statistic =K 0.0648 
(p-value = 0.18). These results are typical of those we have obtained from various selections 
of intervals of the various types of requests. Thus, overall there is no evidence in this data 
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set to reject the null hypothesis that the arrival process of application requests is NHPP with 
PC arrival rates. We also apply the root-unroot method from Brown et al. [8] to stabilize the 
variance. 
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