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Abstract: In this paper, we develop a general law of large numbers and central limit the-
orem for cumulative reward processes associated with finite state Markov jump processes
with non-stationary transition rates. Such models commonly arise in service operations and
manufacturing applications in which time-of-day, day-of-week, and secular effects are of
first-order importance in predicting system behavior. Our theorems allow for non-stationary
reward environments that continuously accumulate reward, while also including contribu-
tions from non-stationary lump-sum rewards of random size that are collected at either jump
times of the underlying process, jump times of a Poisson process modulated by the underly-
ing process, or scheduled deterministic times. As part of our development, we also obtain a
new central limit theorem for the special case in which the jump process transition rates and
reward structure are periodic (as may occur over a weekly time interval), as well as for jump
process models with resetting. We include a simulation study illustrating the quality of our
CLT approximations for several non-stationary stochastic models.

Keywords: Central limit theorem, cumulative and lump-sum rewards, jump processes with
periodic rates, law of large numbers, Markov jump processes with non-stationary transition
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1. Introduction

In many service operations settings, time-of-day effects play a first-order role in deter-
mining customer quality-of-service and other managerially significant performance objec-
tives. Such settings lead naturally to Markov jump process (or, equivalently, continuous-
time Markov chain) models X = (X(¢) : r > 0) in which the transition rates are non-
stationary and depend on time-of-day, day-of-week, or seasonal effects. Furthermore, there
may be secular effects present that generate long-term changes in customer demand for a
product (perhaps induced by a targeted marketing campaign) or changes in the product mix
handled by a service center. These effects are represented in the model via a non-stationary
specification of the transition rates Q(#, x, y) describing the rate at which X jumps from x

* Corresponding author
Email: mOnte@stanford.edu 27



© Fischer, Glynn

to y at time ¢ (for x # y). This leads to a non-stationary specification of the rate matrices
(Q(¢) : t = 0) that describe the transition dynamics of X as a function of time ¢. The applied
importance of this non-stationary environment is reflected in the survey of [49], focused on
theory relevant to the analysis of queueing models.

In this paper, we develop the law of large numbers (LLN) and central limit theorem
(CLT) for general cumulative reward processes associated with X. These results provide
managerially useful approximations to the distribution of the total reward for a system accu-
mulated over a given long decision horizon [0, 7], so that, for example, one can compute the
probability that total profit will exceed some break-even value. We permit the rate r(z, x) at
which reward accumulates in state x to depend on 7 itself. We also allow for “jump time”
lump-sum rewards that are received when X jumps from state x to state y at time 7', yielding
an instantaneous random reward of & (7, x, y). In addition, we permit “scheduled rewards”
that are collected at deterministic times (e.g. dividends or quarterly payments) through the
use of random variables (rv’s) #Z (¢;, x) to denote the lump-sum reward received at time ¢;
when X occupies state x € S. Finally, we let N = (N(¢) : ¢ > 0) be a non-stationary
Poisson process driven by X with intensity (8(¢, X(¢)) : t > 0) and let # (A, x) be an
“external reward” collected at the Poisson event time A when X occupies state x € S. The
wvs&(T,x,y), # (t;,x),and F (A, x) have corresponding cumulative distribution functions
(cdf’s) G(T,x,y,-), H(t;,x,-), and K (A, x, -). Because we allow r(t,x), € (¢, x,y), Z (t,x),
and % (¢,x) to depend on ¢, our LLN and CLT will provide new approximations even for
Markov jump processes with stationary transition rates, for which there is a single rate matrix
Q such that Q(¢) = Q fort > 0. By permitting the cdf G(T', x, y, -) to possess a jump discon-
tinuity at 0, we can model situations in which jump time rewards are generated stochastically
at a subsequence of the jump times of X.

Let 7; be the time of the jth jump of X and set Y; = X(7}) for j > 1, with Yy = X(0);
we take X to be right continuous throughout this paper. We develop approximations for the
cumulative reward

J(1) n(t) N(t)

R(1) = /O r(s, X()ds+ ) G(T;, Y0, )+ (6, X (1) + D H (Ae, X(AD)), (1)
j=1 i=1 k=1

where J(¢) is the total number of jumps of X over [0, 7], N has event times (A : k > 1),
and0 =19 <t) <ty <---<ti1 <t; <...1sasequence of deterministic times for which
t; — oo, with n(t) 2 sup{i > 0:¢; < t}.

Our law of large numbers (Theorem []) shows that

R(t) as.
2
ERG) @)
as t — oo. Our central limit theorem (Theorem [) refines (2)) to
R(t) — ER(t

\/ Var R(1)
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as t — oo, where N'(0, 1) is a standard normal rv with mean 0 and unit variance, and =
denotes weak convergence. In view of (), we can then approximate the distribution of R(¢)
as

R(t) R ER() + v/Var R(ON(0, 1)

when ¢ is large, and R denotes “has approximately the same distribution as” and has no
rigorous meaning other than that carried by (8)). This result is intended to support the view
that even in the non-stationary setting, one can reasonably expect, in great generality, that
cumulative rewards are approximately normal when the time horizon is large.

A significant mathematical complication in the non-stationary setting is that one cannot
typically expect that ER(t) ~ mt or Var R(t) ~ 0t as t — oo for some values m and o2,
where a(t) ~ b(t) ast — oo means that a(t)/b(t) — 1 ast — oo. For example, Q(7)
could alternate between Q7 on intervals of the form [2%,2%+1] and Q9 on [2%*1, 221+2]
for i > 0. However, our assumptions will ensure that Var R(t) = ©(¢) as t — oo, where
a(t) = ©(b(t)) ast — oo means that there exist constants 0 < ¢y, c2,fy) < oo such that
c1|b(1)| < la(t)| < c2|b(2)| for all t > t9. We allow this flexibility in order to communicate
the “model-free” nature of the LLN and CLT we derive (i.e., we make no assumptions on
how Q(¢) varies as a function of t). We formulate our theory for finite state (rather than infi-
nite state) Markov jump processes. This choice covers many application settings and avoids
the technical complications that arise in the infinite state non-stationary setting owing to,
for instance, the possibility of alternating periods of recurrence and transience. Our frame-
work accommodates a highly general, non-stationary reward structure, including lump-sum
rewards of random size at both jump times and deterministic time points.

The main contributions of this paper are:

(1) a general law of large numbers (Theorem [) and central limit theorem (Theorem fB)) for
non-stationary finite state Markov jump processes with non-stationary continuously
accruing rewards and lump-sum rewards that accumulate at jump times, external times,
and scheduled times, with only measurability assumptions on how Q(¢) depends on ;

(2) anew martingale representation (Section f]) for the cumulative reward R(7);

(3) anew CLT (Theorem H) for periodic Markov jump processes and a discussion of how
to compute the centering and scaling constants for the periodic CLT.

Our new contributions also include a discussion of the CLT for non-stationary Markov jump
processes with resetting; see Section[d. Such an extension is intended to cover non-stationary
applied settings in which the work is cleared regularly (e.g. an airport security checkpoint
with limited hours where no work is pushed forward from one day into the next). Some recent
work has investigated resetting mechanisms as part of server-side control or performance
optimization strategies, as in [, 40], but these models treat resetting as a strategic stochastic
intervention rather than as a structural feature of the system.

Dobrushin []10, [11]] developed an early and important contribution to the CLT for non-
stationary Markov chains in discrete time, also within the context of “model-free” assump-
tions on the one-step transition probabilities. Notably, these papers introduced the well-
known Dobrushin coefficient as a tool for studying the ergodic properties of Markov chains.
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By contrast, we develop our theory in continuous time and we work with a much richer re-
ward structure than do [|10, [11]. These papers assume that the Markov chain is real-valued
and that the rewards are given by the state values, so that unlike in our setting there is no
time dependence permitted in the reward structure itself. In addition, lump-sum rewards
do not appear in this discrete time theory. The recent paper [48] developed an LLN (but
not a CLT) in the discrete-time non-stationary finite state setting. However, [48] assumed
that the one-step transition matrices converge asymptotically, so that the Markov chain is
“asymptotically stationary”. This is a very strong requirement, especially relative to our
model-free assumptions on our rate matrices Q(¢), and is often referred to as strong ergod-
icity; see [28] and [BQ] for further discussion. The works [8, 48] provide LLNs for periodic
Markov jump processes and Markov chains, respectively. Previous work by [47] analyzed
asymptotic (in time) cross-sectional variability in a periodic Markov population process, but
did not consider auto-correlation effects across time, as we do. Thus the present work, to our
knowledge, provides the first CLT (with associated variance constant) for finite state peri-
odic Markov models, whether in discrete time or continuous time. (We develop our Theorem
5 in continuous time, but its discrete time variant can be analogously derived.)

To develop our martingale representation, we need to show that the non-stationary
Markov jump process we consider “loses memory” in the sense that X (¢+s) becomes asymp-
totically independent of X (7) when s is large. Our result (Proposition [I}) is a non-stationary
analog to the extensive theory on mixing that appears in the literature on stationary stochas-
tic processes; see [[7] for an accessible survey in the discrete-time stationary setting. Similar
upper bounds on the rate at which asymptotic loss of memory (also known as weak ergod-
icity) occurs in the setting of finite state non-stationary Markov jump processes have been
studied in [51]. These results are non-constructive and require verifying a condition for ev-
ery rate matrix Q(¢), ¢ > 0. In contrast, Proposition [l supplies an explicit decomposition of
the transition matrices with terms that can be evaluated via recursion and may be stated in
terms of the uniform lower bounds g on the rates in our assumption A3

In order to provide maximum modeling flexibility in our theory (so as to include cases
where Q(t) is not continuously differentiable or even continuous in t, as may be required at
shift changes in a service center), we develop our theory at a maximum level of generality
with regard to the behavior of Q(¢) as a function of . We require only measurability (see
our assumption [Al]). Foundational analytical questions in the non-stationary continuous-
time setting have only recently seen full resolution: the classical work of [[16] provided
conditions under which the Kolmogorov forward and backward equations hold for Markov
jump processes with denumerable state spaces. More recently, [50, 14] significantly weak-
ened these conditions by showing existence results that require only measurability of the rate
matrices.

By contrast with the non-stationary theory developed in this paper, there is a large litera-
ture on the LLN and CLT for Markov chains and processes when the transition probabilities
and rewards are stationary in time. An early contribution to this literature was that of [20],
who showed how martingale ideas can be used to develop CLT’s for stationary processes.
This was followed by [33], who applied these ideas to Harris recurrent Markov chains in
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discrete time and made clear the central role of Poisson’s equation in this setting. A recent
treatment of limit theorems for stationary continuous-time Markov processes, with a focus
on the uncountable state space case, was given in [31]]; see also [32]. Lyapunov function as-
sumptions guaranteeing the CLT can be found in [|19], under close to minimal conditions. As
far as we are aware, there is no prior literature on Markov models with stationary transition
probabilities, but non-stationary rewards.

In order to apply our LLN and CLT results in practical settings, it is necessary to compute
the moments ER(¢) and Var R(¢). Vector-valued ordinary differential equations (ODESs) for
the computation of E[R(¢) | X(0) = x], Var[R(¢) | X(0) = x] for x € S in the case
of piecewise continuous non-stationary rates and rewards were developed in [37]. Matrix-
valued ODEs to compute moments of the form E[R* (1)I(X(t) = y) | X(0) = x] forx,y € S
were given in [4], covering piecewise continuous non-stationary rates and rewards. Previous
literature addressing the case of stationary rates can be found in [[18, 21|, 5]. By contrast,
our results provide integral equation representations for ER(¢) and ER?(¢) in the case of
measurable non-stationary rates and random lump-sum rewards.

The computation of the exact distribution of R(¢) (as opposed to the asymptotic distri-
bution as expressed through the CLT) for Markov jump processes with stationary transition
rates was discussed in [39, 43, 9, 46]. Such methods involve much more computation than
does our CLT. Expressions for the mean and variance of R(¢) in the stationary setting were
provided in [5], covering both time-integrated and jump-time lump-sum rewards, along with
two additional numerical methods for computing the exact distribution of R(#) when the re-
ward functional consists only of time-integrated rewards. In [4], these results were extended
to cover non-stationary, piecewise continuous rates and rewards. An integro-PDE represen-
tation for the reward R(#) in the non-stationary setting with deterministic lump-sum rewards,
allowing for scheduled lump-sum rewards, was developed in [26]; we extend to an integro-
PDE for stochastic lump-sum rewards in Section [7.

This paper is organized as follows. In Section ], we state the basic assumptions of our
theory, and study the mixing properties of the non-stationary Markov jump process X. Sec-
tion [ applies this theory to develop a martingale representation for R(¢) based on Poisson’s
equation that generalizes a representation that is known in the stationary setting. In Sec-
tions [ and [§, we state and prove our main results, namely the LLN and CLT for R(z). We
discuss the computation of ER () and Var R(¢) for our general non-stationary reward struc-
ture in Section [g, and discuss computational considerations involved in computing either the
approximate (as related to the CLT) or exact distribution of R(z) in Section [. Section [ fo-
cuses on the important special case of non-stationary jump processes in which the rates and
rewards are periodic, and the associated simplifications of the asymptotic theory. We discuss
non-stationary Markov jump processes with resetting in Section ). The paper concludes with
a simulation study that focuses on consideration of the quality of our CLT approximations
for several non-stationary stochastic models in Section [L0.
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2. Mixing for Markov Jump Processes

We start by stating the assumptions that underlie our theory. Let X = (X(¢) : t > 0) be
an S-valued Markov jump process for which |S| = d < co. Wedenote by Q(7) = (Q(t,x,y) :
x,y € S) the rate matrix describing the dynamics of X attime . Given X, let N = (N(¢) : t >
0) be a Poisson counting process with intensity (8(¢, X(z)) : t > 0) and event times (A : k >
1). Conditional on X and N, we assume that ((& (Tx, Yi—1, Y), Z (tx, X (1%)), F (Ak, X (Ax)))
: k > 1) is a collection of independent rv’s for which

P(G(Tk, Yr-1,Yr) <z | X,N) = G(Ty, Y-1,Yk, 2),
P(F (tk, X () < 2 | X, N) = H(tx, X (1), 2),
P(F (Ar, X(Ar)) <z | X, N) = K(Ak, X(Ax), 2),
where (G(t,x,y,:) : t>0,x,y€S), (H(t,x,):t>0,x € §),and (K(t,x,:) : t >0,x € 5)
are given families of cdf’s. We make the following assumptions about the rate matrices Q(t),
the reward rate function r(¢) = (r(¢,x) : x € S), the intensity function 8 of the external
lump-sum rewards, and the lump-sum reward distributions G, H, and K. Throughout this

paper, we adopt the convention that real-valued functions defined on S (such as r(z,-)) are
column vectors, while probability distributions defined on S are row vectors.

Assumption A1 Forx,y € Sandz € R, Q(+,x,y),r(-,x),G(-,x,y,2), K(+, x, z),and B(+, x)
are measurable.

Assumption A2 B = {(x,y) : Q(¢t,x,y) > 0} isindependent of t and Q (1) (and hence Q(¢))
is an irreducible rate matrix. All future references to 8 are made under this assumption.

Assumption A3 For each (x,y) € B,

0<g(x,y) = itggQ(t,x, y) <supQ(t,x,y) = g(x,y) < co.

>0

Assumption A4 There exists a finite-valued function ¢ = (¢(x) : x € §) such that

0<r(x)=infr(t,x) <supr(t,x) = r(x) < oo,
20 >0

0<B(x)= ing,B(t,x) < sup B(t,x) £ B(x) < oo,
1z >0

0=supG(t,x,y,0-) < ingG(t,x,y,c(x)) =1,
>

>0
0=supH(t,x,0-) <inf H(t,x,c(x)) =1,
[ZO tZO
0 =supK(t,x,0-) <inf K(¢,x,c(x)) =1,
>0 t>0

for all x € S. Furthermore, with

s 3 0y [ :06xy.do),

(x,y)eB
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yalt,2) £ B(1.) /0 " K (1,x, d2),

’)’(t,X) = 71(t’x) + 72(f,x),

and
y(x) = inf y(z,x), 4)
t>0
it holds that
r(x) +y(x) >0 (5)
forall x € S.

Assumption A5 The sequence (¢; : i > 0) is such that
t=inf{t;, —t;_1:i>1} > 0.

The key assumptions on the dynamics of X are and [A3. As in the case of station-
ary transition probabilities, reducible systems can typically be reduced to the analysis of
their irreducible sub-systems. Assumption [A3 rules out settings in which some states x be-
come close to absorbing (because the outgoing rates Q(¢, x, -) are approaching zero, or the
incoming rates Q(t, -, x) are becoming large), and others are becoming close to transient (be-
cause their incoming rates are approaching zero). Regarding [A4], note that (F) can always be
achieved by simply adding a nonzero deterministic multiple of # to R(¢). The boundedness
hypotheses on the rewards are generally reasonable from a modeling perspective, and rule
out pathologies (for example, in which r(z, -) grows quickly enough that R(#) is dominated
by reward from the last few time periods, precluding a normal approximation).

Under[A1HA3, it is known that there exists a unique family of stochastic matrices (P(s, 1) :
0 < s <t < oo) for which

P(t—s,t) =1+ /S Q(t—u)P(t —u,t)du (6)
0
forO<s <t and \
P(t,t+s) = I+/ P(t,t +u)Q(t + u)du (7
0

for s > 0; see the early work of [[16] for the case of continuous rates and the extension to the
case of measurable rates in [50, 14]. The integral equations (6) and () are known respec-
tively as the Kolmogorov backward and forward equations associated with X. Furthermore,
foreach x,y € S, P(s,t,x,y) is absolutely continuous in s and ¢ for 0 < s <, so that there
exist measurable functions %P(s, t,x,y) and %P(s, t,x,y) such that

P(t—r,t)—I:/ iP(t—u,t)du
0 6s

for0 <r <t,and
P(s,s+r)—1= / 2P(s,s+u)a,'u
0 ot
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for r > 0. In addition, if there exist times 0 = vy < v1 < v2 < ... with v; — oo such that
Q(-) is continuous on (v;, v;+1) With left limits at v; and right limits at v;; for i > 0, then
%P(s, t) exists as a partial derivative at all s ¢ 2[0,¢] = {v; : i = 0,v; < t}, and %P(s, t)
exists as a partial derivative at all t ¢ D[r,00) = {v; : i > 0,v; > t}. It follows that

& p(s,0) = ~0()P(s.1) ®)
S

for s ¢ 2]0,1], and
2 Pls.0) = Ps,00() ©)

for s ¢ D[t, ).
Our first result describes the mixing behavior of X that plays a fundamental role in
establishing our LLN and CLT.

Proposition 1. Assume U143 For any ug > 0, there exists 6 > 0, positive stochastic
matrices (Wi (s) : s > 0) with identical rows, and stochastic matrices (A (s) : s > 0) such
that

P(s, s + kug) = (1 = (1= 6)F) Wi (s) + (1 = ) ety () (10)
fors>0andk € Z,.

Remark 1. We observe that Proposition [l] implies that X exhibits weak ergodicity, in the
sense that foreach x,y € S, ||P(s, s+ kug,x, ) — P(s, s+ kug, y,-)|ltv — 0as k — oo, where
o1 — v2llev = % > lv1(x) — v2(x)]| is the total variation distance between two probability
mass functions v1, v2 on S. This asymptotic loss of memory will yield the LLN and CLT for
R(1).

Proof of Proposition [Il. Put A(¢,x) £ —Q(t,x,x) and let 1 £ sup{A(t,x) : x € S,t > 0}.
Assumption [A3 ensures that 1 < co. Hence, for ¢ > 0, we may write Q(f) = —A(I — B(t))
where B(t) =1 + Z_lQ(t) is stochastic. We have by [A2 that B(f) > G for G an irreducible
non-negative matrix.

Equations () and (7) imply that for a.e. w > 0,

%P(s,s +w) =P(s,s +w)0(s +w),

so that

_ a _ = - 3
eV P(s.s +w) + e P(s,s + w) = AP (5.5 + w)R(s + )

for a.e. w > 0. Consequently,

%(esz(s, s+w)) = /Te/in(s, s+ w)R(s + w) (11)
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for a.e. w. Since the absolute continuity of P(s, s+-) implies that ei’”P(s, s+uw) is absolutely
continuous in w (see, for example, [41, p. 111]), (L1]) yields

_ wo
eMP(s,s+w) -1 = / Ae™P(s,s +u)B(s + u)du
0
for w > 0. Consequently,
P(s,s +w) = Py / /Tej(”_w)P(s, s+u)B(s +u)du (12)

0

If we now iterate ([12) (i.e. use ([12) to substitute for P(s, s + u) on the right-hand side of
(12))), we obtain

_ S+w _ u _ _
P(s,s +w) = e ] +/ (e_’l(“_s) + / P(s, v)eﬂ(”_”)iB(v)dv) e YA B (1) du
N

_ _ stw ’ s+w u _ —
=t [ A [ [T RGO BB
K s K

Iterating n times and sending n — oo,

/ / / Bu1)B(us) - Buy)du, -
ol o

w (A0)" (13)

P(s,s +w) >

By the Perron-Frobenius theorem (see, for example, [42, Theorem 1.5, p. 22]), there exists
v > 0 and a strictly positive column vector v = (v(x) : x € S) such that Gv = yv. Thus,

G (x, y)o(y)

B.(x,y) := ()

is stochastic and irreducible. Also,

v(x)B.(x, y)

Gy =706

and

() (B.)" (x.y)

G"(x,y) =y" )

It follows from ([13) that

P(s,s +u,x,y) > 83 _MZ(/WM) (B.)"(x,)
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v(x) A= 7)ui ~Ayu T (M”) (B.)"(x,y)

> —
U(}’) n=0

5 o) v(x) -A(l—y)up*(u)(x, y),
v(y)

where P.(u) = exp(Q.u) is stochastic and corresponds to the time u transition matrix for
a time-homogeneous irreducible Markov jump process with rate matrix Q. = Ay(B. — I).
Note that P, (u) — W as u — oo where ¥ £ e, is a strictly positive stochastic matrix with
identical rows, with e denoting the column vector of all ones and 7, = (7.(x) : x € §)
denoting the unique row vector for which 7.Q. = 0. Since B, is irreducible, there exists
k < d such that 25:1 B’ is strictly positive; hence also Zﬁ:(} (AyuB.)"/n! is strictly positive.
Thus there exists 7 > 0 such that

P.(ug) = —/lyuo Z (/17140) > Y.
n>0

Then
Pi(uo +1) = Pi(ug)Pi(2) 2 n¥P.(1) = n¥

since . P, (t) = m, for t > 0. Consequently, P.(u) > n¥ for u > ug. Hence,

P(s,s + ug,x,y) > nmin @) _’1(1_7)”07&()))
y.2€S U(y)

uniformly in x € § and s > 0. That is, with

6 £ nmin U(Z) e~ 1=nuo 0,
vzes |v(y)

we define the stochastic matrix A(s, s + ug) via the relationship
P(s,s +ug) =0¥ + (1 -06)A(s,s +ugp).
Analogously, we define A(s + lug, s + (I + 1)ug) for all [ € Z,. Then,

P(s,s +2uqg) = P(s,s +ug)P(s + ug, s + 2ugp)
=6W +6(1—6)PA(s + ug, s + 2ug) + (1 = 6)2A(s, s + ug)A(s + ug, s + 2ug).
A simple induction then establishes that

k-1
P(s,s + kug) = (1 = (1 = 6)F)¥i(s) + (1 - 6)* ﬂ A(s + lug, s + (I + 1)ug)
=0

where W, () is a stochastic matrix with identical rows.
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3. The Martingale Representation for R(7)

We now use the mixing structure identified in Section 2 to derive a martingale represen-
tation for R(z). Specifically, we establish the existence of a function v : Ry X § — R such
that

M(t) 2 R(t) — ER(t) + v(t, X(1)) (14)

is a martingale adapted to the filtration (%; : ¢ > 0), where ; = o (X(s) : 0 < s <1).

Before stating and proving our result concerning M (¢), we introduce the relevant nota-
tion. Let u = (u(x) : x € §) be a row vector corresponding to the initial distribution of
X, and let P, () (and E,(-)) be the probability (and expectation) on the path-space of X,
conditional on X (¢) = x. Then, P(-) and E(-) are given by

P()2 > u(x)Pos() (15)
xeS
and
E() % u()Eo.(). (16)
xes

With this notation in hand, recall the definition of y(z, x) in [A4 and put

F(t,x) = r(t,x) +y(t,x),
re(x) 2 r(t,x) — Er(t,X(1)),
re(t,x) = r(t,x) — EF(t, X (1)),
h(t;,x) = i»X,dz),
(t;,x) /0 ZH(t;,x,dz)
He(ti,x) = I (ti,x) — Eh(t;, X(1:)),

and define vy (¢, x) and vo(z, x) via

vi(t,x) = / E/ 7c(t +u, X(t +u))du,
0

va(t,x) & 3 Enude(ti, X(1)).

iit;>t

We set v(t,x) = vi(t,x) + vo(t,x) fort > 0and x € S.

Remark 2. When Q(t) = Q,% =% =% =0a.s. forall k > 1, 7(t) = 7, and X(0) has the
stationary distribution of Q, then v (¢, x) does not depend on ¢, and v (¢, x) = v1(x) is given

by
Vi) = /0 E[7.(X(w)) | X(0) = x]du.

It is well known that v; = (v1(x) : x € S) then satisfies Poisson s equation given by
Qvl = _fCa
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where 7. is the column vector with entries (7.(x) : x € §); see [[19]. Hence, we can view
(vi(t,x) : t = 0,x € §) as a non-stationary analog to the solution of Poisson’s equation that
arises in the stationary setting.

We now establish the martingale representation ([14) and basic properties of v(z, x).

Theorem 1. Assume U145 Then sup{|v(t,x)| : t > 0,x € S} < co, and (M(t) : t > 0) is
a martingale adapted to (F; : t > 0).

Proof. We start by proving that the integral and sum defining v, and v2 respectively are
finite. We set ug = 1 in Proposition [I], so that

P(s,s+k) = (1= (1=8)"Wr(s) + (1 = 6) i (s) (17)

where 6 > 0, W, (s) is a positive stochastic matrix with identical rows and &/ (s) is a stochas-
tic matrix. For an arbitrary function f : Ry x S — R? such that || f]le 2 sup{|f(z,x)| : ¢ >
0,x € S} < oo, we may use ([17) to bound

[(P(s, s+ k) f(s+k))(x) = (P(s,s + k) f (s + k) (y)]
= (1= 6) (i () f (s + k) (x) = (i (5) f (s + k) (¥)]
< (1=6) | flloo- (18)

Since ||[P(s + k,s + k + w) f(s + k + )|l < ||f]loos it is evident that (1) implies that
[(P(s, s+ k+w)f(s+k+w)(x) = (P(s,s +k+w)f(s+k+w) (3] < (1= 6) | flloos
and hence

|P(t,t +w)f(t+w)(x)—uP(0,f+w)f(t+w)|
= [(P(t,t + w) f (1 +w))(x) — Z,U(Z)(P(O, NPt t+w)f(t+w))(2)]

zeS
= [ > 1) Y PO 420 (Pl + w) £+ w)(x) = (P(t, 1+ w) f (¢ +w) (7))
z€S yeS
< > 1@ ) P01, (1= 8" flle = (1= )|, (19)
z€$§ yesS

where | w] is the greatest integer less than or equal to w. By [A3 and [A4], 7. satisfies ||7c||c0 <
co. Then, by the bound ([19),

[vi(t,x)| < / |E,,xfc(t +u, X(t+ u))|du
0

< ||fc||m/0 (1= )" dw = 7, [l/ < oo,
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so vi(-) = (vi(-,x) : x € S) is a well-defined R?-valued bounded function. Similarly,
Iv2lleo < |lc]leo/2, as at most 1/¢ points ¢; fall within the interval [n,n + 1) for any n > 0.

We now prove that the process M = (M(¢) : t > 0) defined by ([14) is a martingale. Set

M (1) =/Otfc(s,X(S))dS+Vl(t,X(t)),

n(t)
Ma(r) = > (1, X()) + va(t, X (1)),
i=1

J(1)

M) = Y 6T 7)) - [ (s X)),
=1 0

N(¢)

Milo) = ) F (A XA) = [yl X (5D

k=1

so that M (¢t) = 2?21 M, (t). We will prove that each M, is a martingale adapted to (7, : t >
0). To start with, M1 (-) is clearly integrable and adapted. Also, observe that for s, > 0,

E[Mi(t+5) | ] = My (1) + E[/O Folt +u, X (t + 1)) du
+vi(t+s5,X(t+5) —vi(t, X)) | F|.
But it is clear that
vi(t,x) = /OS Ei ie(t +u, X(t+u))du+ E;vi(t+s5,X(t+5)), (20)

and hence E[M1(t + s) | ;] = Mi(z), verifying the martingale property for M;(-). A
similar argument validates that Ms(+) is a martingale. That M3(-) and My(-) are martingales
is standard; see, for example, [29]. This completes the proof.

4. The Law of Large Numbers for R(¢)

Because v(t, X(t)) is uniformly bounded in ¢ (see Proposition [I]), proving the LLN for
R(t) is equivalent to establishing that M (1) / ER(t) convergesto 0 ast — co. Our first step in
the analysis of M (¢) is computing the quadratic variation [ M](t) of this martingale, where

(M1 = T > (M(Pi) = M(P)° @n

where the limit is taken over finite partitions  of [0, ] suchthat0 = Py < Py < --- <P, =
t, for some n, and ||P]| £ max{Piy1 —P; : 0 <i < n}.

Fort > 0, let 7.(t) = (Fe(t,x) : x € 85), y(t) = (y(t,x) : x € S), he(t) = (he(t,x) :
x € 8),vi(t) £ (vi(t,x) : x € §), and vo(t) = (vo(t,x) : x € §). Furthermore, for
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i € {1, 2}, let AV,'(T]') = V,'(Tj, Yj) - Vl'(Tj, Yj—l) and AV(Tj) = AVl (Tj) + AVQ(Tj). Finally,
let ho(t;) = (he(t;,x) @ x € S) where h.(t;,x) = h(t;,x) — Eh(t;, X(¢;)). In the following,
we write b(t) = O(a(t)) when there exist ¢, g < oo such that |b(7)| < ca(t) fort > t.

Proposition 2. Under 4143,

J(1) N()
[M](1) = > (G(T, Y51, Y)) + Av(T)* + Y H (Ak, X(A0))?. (22)
j=1 k=1

Proof. For every interval (s, 7] in which X does not jump and N does not experience an
arrival, we have X (u) = X(s+) = X(s) and N(u) = N(s+) = N(s) for s <u < 7. Thus

M(t) - M(s)
= / (Fe(1t) = y () (X () dut + v1(1, X(5)) = v1(s, X(5))
n(rt) o0
+ D (@) = (P, t)h()(X(s)) + Do ((P(r,1) = P(s, 1)) he(1) (X (5))
i=n(s)+1 i=n(t)+1

- / (Fo) = y () (X (s))du + / (P () () (X (5))du

) n(r)
- [ eewr @)Y,

i=n(s)+1

(- [ QP 1) h(1)) (X (5))du)

(o]

#(P(r,1) = P(s,7)) > (P(r t)he(1)) (X (5))
i=n(7)+1
= / (Fe(u) —y(u))(X(s))du + (P(t,7) — P(s,7)) /000 (P(T,T +u)r (T + u))(X(s))du

T n(t)
—/ (P(s,u)rc(u))(X(s))du + Z

i=n(s)+1

(7~ [ ©@PGw. b)) (X(s))du)

+((P(t,7) = P(s,7))v2(1)) (X (5))

= / (Fe(u) = y(W) (X (s))du + ((P(1,7) = P(5,7)) (v1(7) + v2(1))) (X (5))

. n(r)
_ / (P(s.u)Fe () (X(Ndu+ Y.

i=n(s)+1

- / (Fout) — () (X ())du + / (Q()P(u, T) (v1.() + va () (X (s))du

(0~ [ @GP e (X(s)au)

) n(x)
_/ (P(s, ) () (X(s))du+ >

i=n(s)+1

(7~ [ ©@Pw b (X(s)du).
(23)
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It follows by taking absolute values in (23) and applying the conservative upper bounds on
rewards imposed by [A4 and A3 that for any 0 < s < T,

M (1) = M(5)] < (7= 5) 2lFclloo + 1V lloo + AIV1lleo + [IV2lleo) + (1/1) (1 + Dlelleo). (24)

For any partition , we may construct a refinement £* by adding the jump points 77,
Ty, ..., Ty and Aq, Ao, . .., An(s. Note that in any subinterval of $* at which a 7 (respec-
tively, A;) appears as a right endpoint, the variation over that interval can be bounded by
|€(T;,Y;-1,Y;) + Av(T;)| (respectively, |# (Aj, X(A;))]), plus a contribution bounded by
(4) with (t —s) < [|P*]| < ||P]|. Given the bound from (24) over the subintervals of the
partition without jumps, we obtain the upper bound

J(1) N(1)

DG T Y1) + Av(T) + O(IPID) + ) (F (A X (Ar) +0(||P||>>2+0(Z(P,+1 - 7))

j=1 k=1
on (1), and an obvious lower bound of

J(1) N(t)

DG Y0, Y) + Av(T)? + ) H (A X(Ap)?.

j=1 k=1
Sending ||P|| — 0, we obtain the desired result.
Under A1HAS, ER(f) = ©(r) as t — co. Also, Proposition [ establishes that
E[M](t) =O(EJ(t) + EN(1)).

Since

EJ(t) = E‘/t/l(s,X(s))ds,
0

EN(t) = E/Z,B(S,X(s))ds,
0

(see, e.g., [29]), we have that EJ (1) = O(¢) and EN(1) = O(¢) due to [A3 and [A4. Because
E(M(1) — M(0))? = E[M](¢) (see [38, p. 73]), we have

(M(r) ) E[MI()
ER() E(ER(1))2

proving that M (¢)/ER(t) L 0ast — oo, Hence,

R(t) »p
ER()

as t — oo. We now strengthen this result to a.s. convergence.
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Theorem 2. Under [I]—@
R(1)
_)
ER(t)

ast — oo,

Proof. In view of ([14) and the boundedness of v(r, X(¢)), it is sufficient to prove that
M(t)/ER(t) — Oa.s.ast — oo. Since E(M(n)-M(n-1))? = E[M](n)-E[M](n—-1) =
O(1) by Proposition [, we have that

[Se]

Z E(M(i) —‘M(l' —1))? = 0(1) illz < 0.
i=1

2
i1 L

Hence, the Martingale Convergence Theorem [25, p. 17] implies that

Z”: M@G)-M(@G-1)

1
i=1

converges a.s. as n — oo. Kronecker’s lemma [25, p. 31] then implies that
1
—-M(n) -0 as. (25)
n

as n — oo. Also, the Burkholder-Davis-Gundy (BDG) inequality [38, p. 266] and Proposi-
tion 2 yield the inequality

P( sup |M(n+t) —M(n)| >n) < E(

0<t<1

sup |M(n +1) — M(n)|2)/n2
1

0<t<
= O(E[M](n + 1) — E[M](n))/n*
= 0(1/n?),

so the Borel-Cantelli lemma shows that

! sup |M(n +1) — M(n)| — 0 as. (26)

n o<1

as n — oo. Of course, (29) and (2€) prove that M(r)/t — 0 as. as t — oo, so that
M(t)/ER(t) — 0 a.s. as t — oo, proving our strong law.

We will discuss the numerical computation of ER(z) in Section f, enabling the approx-
imation R(t) 2 ER(t) for t large.
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5. The Central Limit Theorem for R(?)

The natural CLT-based normal approximation for R(¢) is

R(1) R ER(t) + \/Var R(t) N (0, 1), 27)
when 1 is large. The rigorous justification for (27) draws upon a limit theorem of the form
R(t) — ER(1)

= N(0,1) (28)

Var R(7)

as t — oo. A starting point for (2§) is to establish that Var R(¢) grows at least at linear rate

ast — oo, that is,

lim inf Var—R(t) > 0.

t—o0

(29)
To prove (29), we assume:

Assumption A6 At least one of the following conditions holds:

)
n £ inf Z / (z +v(t,y) — v(t,x))2G(t,x, y,dz) > 0;

- t>0
(xyes 0

i1) foreachx € S,
k(x) = inf/ 7K (t,x,dz) > 0,
>0 0
and B(x) > 0.
Remark 3. Observe thatifinf,>g 2y y)eg Var &(z, x, y) > 0, then condition i) of [Ag is valid.

Remark 4. Assumption [A§ is an assertion that R(7) has positive asymptotic variance, and is
expected to be satisfied in all but pathological situations.

Proposition 3. Under 4143,

Var R(t) ~ E[M](t) (30)
ast — oo. Furthermore, if’ @ also holds,
ElM
li}rn inf w > 0, (31)

Proof. We first prove (81). Note that by Proposition [,

J(t) N(t)
E[M](1) = E ) (9(T;,Yj-1,Y;) + Av(T))* + E D" H (Ar, X(Ar))?
j=1 k=1
J(1)
= > ED(G(T5x,y) + (T}, ) = v(T;,0) (Y1, Y)) = (x,))

(xy)es  j=1
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N(1)

+ Z E Z FH (Mg, x)21(X (Ag) = x)

x€eS k=1
J(@) N(t)
>0 ) E Y (oY) = )+ ) PWE Y IX(A) = x)
(xy)e8 j=1 xeS$ k=1
=1 Y, [ PO =00 x i+ Y@ [ PO = 0BG x)du
(xyes 0 xes 0

where the last equality follows as a consequence of standard theory, e.g. [29]. Let ug > 0.
Then by virtue of Proposition [I], there exists 6 > 0 such that for ¢ > u,

E[M](t) > g‘/t Z Om.(x) i}g(f)Q(w,x, y)du + Zgz(x) /Mot O, (x) 'ilrzlgﬁ(u,x)dw

“0 (x,y)eB x€eS

=6(t — up) (g Z m(x)g(x,y) + Z KQ(x)g(x)n*(x)),

(x,y)eB xeS

with 7, as in the proof of Proposition [Il. It follows from [A3 and [Ad that (B1]) holds. As for
(B0), note that ([14)) implies

EY2(M (1) — M(0))? < \/Var R(1) + ||v]lo (32)
and
JVarR(1) < EV2(M (1) = M(0))? + ||v]|co. (33)

Since E[M](t) = E(M (1) — M(0))?, B1)), (82), and (B3) yield the conclusion (B0).

It is now convenient to verify the LLN for ([M](¢) : t > 0) that is suggested by Propo-
sition 3.

Proposition 4. Under 4146,

[M](2)
1 as. 4
Var R(t) e (34)
ast — oo,
Proof. The key observation is that
J(1) R N(t) ~
[M1(1) = Y G(T1.Y;0.Y)) + » T (Ar. X(Ap)),
j=1 k=1

where € (7},Y;_1,Y;) £ (8(T},Y;_1.Y))+Av(T)))? and F (A, X (A)) & H (A, X (Ar))?,
so that [M](¢) is a special case of ([J) with = 0 and # = 0 (meaning that each % (1;, X (1;))
is deterministically zero). Hence, Theorem [ applies, thereby validating (34) in view of (B0).
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We turn next to the CLT itself.

Theorem 3. Under [I]—@

\/ Var R(t)

= N(0,1) (35)

ast — oo,
In order to prove Theorem [§, we will use the following martingale CLT from [25].

Proposition 5 (Theorem 3.4 of [25]). Let (D,; : n > 1,1 < j < n) be a family of square-
integrable random variables, and suppose that (F; : i > 1) is a filtration such that each D;
is measurable with respect to F;, and E[D,,; | Fi-1] = 0 a.s. Suppose that

P
i) maxi<ij<y |Dynil = 0 as n — oo, and E maxi<i<y Dzi is bounded in n;
i) 2iq DZI. = lasn — oo.
Then, it holds that 3! | D,; = N(0,1) as n — oo.

Remark 5. Theorem 3.4 of [25] is stated in slightly greater generality than our Proposition
5 in order to account for the case when the D,;’s are “not quite” martingale differences
with respect to (77 : i > 1). Because in our setting we will apply the theorem to D,;’s
that are genuine martingale differences, we have simplified the statement of Theorem 3.4
accordingly.

Proof of Theorem 3. To prove the CLT, we first apply Proposition [ to the discrete time
martingale (M (n) : n > 1) at integer times. In particular, we write

—_— = D,;,
VE[M](n) JZ‘ ’

where D,,; = (M(j)-M(j—1))/VE[M](n) for 1 < j < n. In the notation of [25, Theorem
34, wesetF,; = F; =2 0(X(s) : 0<s < j)forl <j<n, and G, = {0,Q} the trivial
o-algebra, so that G,; = 7, for 1 <i < n. We will verify each condition of Proposition E in
order. Note that

17¢ oo + ”0”00(1/1 + maxi<i<n (AJ (i) + AN(’)))

max | Dyl < : (36)
1<i<n E[M] (I’l)

where AJ(i) = J(i)—J(i—1)and AN(i) = N(i) —N(i—1) fori > 1. To bound the AJ(i)’s,
set

i—1+t
M) 2 (J+N)i-1+0)-(J+N)(i-1) —/ (A+B)(s, X(s))ds
i-1

for0 <7 < landi > 1. Observe that (M;(r) : 0 <t < 1)isa martingale adapted to

0
(Fi—14+ 1 0 <t < 1). Then, the quadratic variation [M;] (1) satisfies

[M;](1) = AJ(i) + AN (i),

45



© Fischer, Glynn

and .
l

BRI = [ EQ+B)(s.X(5)ds < L+
i-1

where 8 £ max,cs B(x). Hence, Minkowski’s inequality and the BDG inequality for mar-

tingales imply that

EVA[(AT (i) + AN()* | Fii]
Fl/A [( /11(/1 +B)(s, X(s))ds)4 | Fia

<A+ B+ el ' EVAIM1(1)? | Fial
= 1+ B+ el ' EVAL(AJ () + AN())? | Fi-al, (37)

+ EVAM; (1) | Fia]

IA

where co > 0 is a constant appearing in the BDG inequality. But along the same lines,
E'2[(AJ(i) + AN()* | Fial <A+ + EY?[M;(1)? | Fioa]
=1+ B+ EV[[M](1) | Ficil < 1+ B+ (1+5)'% (38)
So, sup;s1 E[(AJ(i) + AN(i))* | Fi-1] is bounded by a finite deterministic constant. Hence,
(B1)) of Proposition § implies that

—E[A;] o B 1nax(ATG) + AN(i))* = O(1/n) /000 P ({Q%(AJU) +AN(i))® > x| dx.

(39)
But Markov’s inequality, together with our bound on E (AJ (i) + AN(i))?, yields that
1 . 2 IS . 2
—P|max(AJ(i) + AN(i))* > x| < — Z P((AJ(i) + AN(i))* > x)
n \l<in n
1~ E(AJ(Q) + AN(i)?
< _
T n ; x2
E(AJ(i) + AN(i))*
< sup (A7) -; ®) . (40)
i1 X

With the integrable bound (#()), the Dominated Convergence Theorem applied to (39) shows

that 1
. 2\ 2
BTG B0 VO =

P
asn — oco. Consequently, (B6) proves that max<j<, |Dni| — 0asn — oo and E maxi<i<, Dzi
is bounded in n, verifying condition f).
Next, we verify condition fii). Observe that
[Mi](1) 1

E|Dy - = | Fioa| =

. o i
E[M](n) Ein o & (M@ = M@= 1)° = [Mi] (1) | Fia | = 0.
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Thus, with 6; 2 (M (i) — M(i — 1))? — [M;](1), we have that E[6; | Fi—1] = 0. So,

M*(n) 2 Z 0;
i=1

is a martingale adapted to (%, : n > 0). Also, (37) and (B) imply that

sup EGi2 < 0o,
i>1

from which it follows from Proposition 3 that

M*(n)
E[M](n)

see our similar argument leading to (25). Hence, Proposition § implies that

— 0 a.s.;

a.s.

S(M@) - M- D)2 &
E[M() ZD

as n — oo, verifying [i). We may now apply [25, Theorem 3.4], thereby proving that

_M® v
E[M](n)
as n — oo, so that
M(n) = N(0,1)

v/ Var R(n)

as n — oo by (B0) of Proposition 3.
Since E|M (1) - M([t])| = O(E(J + N)(t) = E(J + N)(|#])) = O(1) while Var R(z) =
O(1), it follows that "
M (t

v Var R(1)

Finally, the boundedness of v(z, X (1)) yields the CLT (B3).

= N(0,1).

Remark 6. In Section [, we discuss the computation of Var R(¢), thereby permitting (B3) to
be used to obtain distributional approximations for R(z).

Although the form of v (7, x) makes |[Ad somewhat difficult to verify directly in the case
that % = 0 and the jump-time lump-sum rewards & are deterministic, the following condi-
tion suffices to verify [Ad.

Assumption A7 Assume that & (7, x, y) is deterministic for all # > 0, x, y € S, that is, there
exists g(#,x,y) € R such that G(¢,x,y,z) = I(g(t,x,y) < z),and g = inf{g(t,x,y) : t >
0,x,y € S} >0.

47



© Fischer, Glynn

Proposition 6. Suppose U1-43. Then 47 implies U4,

Proof. Let Av(s,x,y) = v(s,y) — v(s,x). For any time s > 0, if Av(s,x,y) = 0 for all
x,y € S, then

D (2(s,x,5) + Av(s,x,7))” 2 g°.
(x,y)eB

Otherwise, there is at least one pair (xg, yg) € B for which Av(s,x,y) # 0. Hence, by
, we may find a closed walk xg, x1,x2,...,x, on the graph B; that is, x, = x¢ and
(xj,xj41) € Bforj =0,...,n— 1. Necessarily, Z_’;;(l) Av(t,x;,xj41) = 0 by cancellation.
Since Av(t,xo, yo) # 0, there must exist some j’ for which Av(¢,x;7,x;41) < 0. Therefore

D (8(sx,3) + Av(s,x, )% = (8(s,x,x741)” = g2,
(x,y)e8

which verifies condition [ of [Ag since

oo

ing (z+ Av(s,x,y)2G(s,x,y,dz) = ing(g(s,x, y) +Av(s,x,y))2 > g2 >0
5> 0 5> -

under [A7.

Remark 7. The technical assumption |[Aq ensures that the asymptotic normalized variance is
nonzero in (B3). This condition arises because the time-varying variance term must appear
in the denominator on the left-hand side of (B3) in our non-stationary setting. On the other
hand, in the stationary setting, the time-average variance constant can be moved to the right-
hand side of (BS), where it appears in the numerator. As a consequence, in such stationary
CLT’s, one need not assume that the time-average variance constant is necessarily nonzero.

6. Computation of ER(7) and Var R(?)

In order to use the LLN and CLT approximations for R(¢), we need to compute ER(¢)
and Var R(7). Note that

t n(r)
ER(t) = /0 Ef(X(u))du+ZE%(t,~,X(t,-)) (41)
i=1
t n(t)
= 0,u)r(u)d 0,2)h(t;),
| up@.widn+ Y up©.)hie)

i=1

recalling that 4 = (u(x) : x € §) was defined as the distribution of X (0).
We will now show that EyR(¢) can be computed as the solution of an integral (or,
equivalently, differential) equation. Recall that Ep was defined above as the expectation
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with respect to probability measure on paths of X conditional on X(0) = x. For0 < s <1,
we define the vector m(s) = (m(s,x) : x € S) by

m(s) 2 / tP(s, w)F(u)du + Z P(s, t)h(t;).

§<t;<t

Note that EoR(¢) = m(0,x), so that by (16), we have that ER(r) = um(0). Let ng 2
n(t) + 1, and, for the purposes of this section, put ty = 0, t,, = ¢, and h(0) = h(t,) = 0.
Adding the points 79, #,, to the collection of #;’s simplifies our computational discussion.

Proposition 7. Assume 4145, For1 <i<ngandti_1 <s<t;

t; t;
m(s) = / F(u)du +/ Q(u)ym(u)du + m(t;),
N N
where m(t,,) = 0. Furthermore, m(-) is a.e. differentiable, and for 0 < s < t; —t;_1,

%m(t,- —s)=7(t;—s5)+Q(t; — s)m(t; —s) a.e. (42)
and m(t;) = h(t;) + m(t;+).

Remark 8. Note that (#2) provides a backward recursion for solving for m(-). In particular,
starting from t,, = ¢, we use the differential equation (#2) to compute m over (;_1, t] (with
m(t+) = 0). Given i < ng, (#2) allows us to compute m over (f;_1, ;] from m(;+) and h(t;).

Proof. Fix 1 <i < ng. Observe that the backward equations yield, for s € (1,1, ],

mts) = [ " P(s, W )du + P(s, (1)
_ / " (Ptu) + / " 0P, w)do)(u)du + (P(ti, 1) + / tiQ(u)P(u,tl-)du)m(ti)
_ /t Fu)du + m(1;) + /S” Q(w)(/wti P, )7 (u)du + P(w, tym(5) ) duw
-/ " Hydu + / " Qm(w)dw + m(n).

It follows from this representation that m(-) is a.e. differentiable, and satisfies (42).

Suppose for this paragraph that Q(s) and 7(s) are continuous in s except at points in
DI0, t]. Without loss of generality, we may merge the points in D [0, ¢] into the #;’s, setting
h(u;) = 0 for u; € D[0,¢]. Under these conditions, the fundamental theorem of calculus
implies that m(-) is differentiable on (#;_1, ;] with a left derivative at #;, and m(-) satisfies
the differential equation

d
;Ui = s) =7 (ti = 5) + Q(t; — 5)m(t; = 5)
s
for 0 < s < t; — t;_1, subject to the boundary condition m(t;) = h(t;) + m(t;+).
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Remark 9. The equation (#2) is an inhomogeneous, non-autonomous first-order linear ODE.
Therefore, an explicit solution of (#2) is given by the variation of constants formula,

m(t; —s) = P(t; — s, t;)m(t;) + ‘/[i P(t; — s,u)r(u) du (43)

for s € (t;-1,1], (e.g. [24, p. 82]). Here, P(w, u) is the matrix of transition probabilities
obtained by solving the Kolmogorov equations (8, [) over the interval [w, u]. This formula
clarifies that m(-) is available in closed form when the transition probabilities P(w, u) are
available in closed-form. However, closed-form expressions for the transition probabilities
P(w, u) are only available in special cases, even for stationary MJPs. One such case is the
two-state switching model on S = {0,1}. Let A(-) and u(-) be non-negative continuous
functions on R, and let X; be an MJP on S with transition rates given by

“A(t) A1) ) . (44)

e = (u(t) (1)

It is then straightforward to solve (B]) to obtain

t
po1(s, 1) £ P(s,1,0,0) = 1 — ¢~ A6 (1 + / A0 A () du) ,
N

, (45)
p11(s,t) = P(s,1,1,0) = e~ Als) (1 + / eA(S’")/,t(u) du) ,

N

fort > 0, where A(s,t) = /sl(/l + u)(u) du. When 2 < d < oo, finite state non-stationary
MJPs for which transition probabilities are available in closed form are scarce. One nontriv-
ial model with closed form transition probabilities is the Prendiville process (first introduced
by [15], see also [45, 52]), which may be viewed as an ensemble of independent two-state
switching models in which X (¢) is the total number of such models that occupy {1} at time
t. The MJP X5 on S = {0, ...,d — 1} is therefore a Prendiville process if its transition rates
are such that

(d-1-=x)A(¢) fy=x+1<d-1,
xu(t) ify=x-12>0,
£L,x,y) = . 46
QXY =1 (@ = 1-0a0) +xu(0) iy =, 46)
0 otherwise,

for non-negative integrable functions A(-), u(-). Then, we have
P(s,t,x,-) = P(Binom(d — 1 — x, po1(s,t)) + Binom(x, p11(s,1)) € -) (47)

with po1(s,?) and p11(s, 1) as in (#3); a discrete convolution then produces P(s,1,x,-) in
closed form. As noted above, the value X»(7) may be interpreted as the number of two-state
switching particles that occupy state 1 at time 7, within an ensemble of d such particles each
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independently following dynamics (#4), when X»(0) particles are initially in state 1 at time
0. We refer to [52] for a fuller discussion of the closed forms available for the Prendiville
process, and to [|1 7] for a recent extension of the model for which transient transition proba-
bilities are also available in closed form. For stationary models, closed-form expressions for
P(s,t) = exp((t—s5)Q) have been developed for several birth-death processes, for example,
the M/M/1/k queue (see [#4]). In the majority of cases encountered in stochastic modeling,
however, (#2) must be solved numerically, as we discuss in Section [7.

We turn next to computing Var R() = ER?(t) — (ER(t))>. We begin by deriving an
ODE for ER?(t). Observe that

J (1) n(t) N()

ER* () =E ) G(T},Y;1,Y)? + E ) (1, X(1))* + E ) H (At X(Ar))?
j=1 i=1 k=1

+ 2F /tr(s,X(s))(R(t) — R(s))ds
0

+2F Z G(T;,Y;_1,Y,)(R(1) — R(T))) (T} < 1)
J=1
n(t)

+2E ) 9 (i, X (1)) (R(1) = R(1))
i=1

+2E Z H (A, X(AR)) (R(1) = RIA) (Mg < 1).
k=1

But

E[r(s, X(5))(R(2) = R(5)) | %
E[9(T},Yj-1,Y))(R(t) - R(Ty))) I(T; < 1) |
E[Z (1, X(1;))(R(t) = R(1))) | F5,

E[Z (1, X(A)(R(1) = R(A)) | Fa,

=r(s, X(s))m(s, X(s)),

=G(T;, Y-, Y))m(T;, Y)(T; < 1),
= (t;, X (1;))m(t:, X (1)),

=X (A, X(A))m(Ag, X(Ax)).

—_— e e

Hence
n(t)

ER?(t) = tE X (s))d Eh(t;, X(1; 48
0= [ EelsX(sds + ) Bl X(1) (48)

i=1
where for 0 < s <t and x € S, we define

o(s,x) = 2r(s,x)m(s, x)
+ Z Q(s,x,y)(/oozzG(s,x,y,dz)+2m(s,y)/oozG(s,x,y,dz))
0 0

(x,y)eB

+ﬁ(s,x)(/0mz2K(s,x,dz) +2m(s,x)/ooozK(s,x, dz)),
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and -
Bt x) & / 2H(ti,x, d2) + 2m(1;, ) (13, x).
0

For 0 < s < t, we define the vector v(s) = (v(s,x) : x € §) by
t ~
o(s) = / P(s,u)p(u)du+ > P(s,1)h(t;).
s s<t;<t

Note that EqR?(¢) = v(0,x), so by ([6), ER~2(t) = uv(0). In view of the fact that (#8) is
identical to (#1)) with ¢ substituted for 7 and & substituted for 4, we arrive at the following
result.

Proposition 8. Assume UI-43. For1<i<ngandti_y <s <t

v(s) = /ti o(u)du + /ti Ow)v(u)du + v(t;),

where v(t,,) = 0. Furthermore, v(-) is a.e. differentiable, and for 0 <'s < t; — t;_1,

%v(li —s)=@(t;—5)+Q(t; —s)v(t; —s) a.e., (49)

and v(t;) = h(t;) + v(t;+) for 1 <i < no.

When Q(-) is continuous on (#;_1, t;] with a left limit at #;_1, m(-) and v(-) are differentiable
on (t;-1, ;] and satisfy a joint linear system of ordinary differential equations, analogous to

()}

Computing the variance by Var R(t) = ER?(t) — (ER(1))? = v(0) — m(0)? is subject
to “catastrophic cancellation” of significant digits (see [27, p. 9]), as v(0) and m(0)? are
typically much larger than Var R(¢). It is more numerically stable to derive integral equations
for Var R(¢) directly. For 0 < s < ¢, we define the scalar quantity

V(s) 2 po(s) - (um(s))?, (50)
so that V(0) = Var R(¢) and V(t,,) = 0.
Proposition 9. Assume 4145, For1 <i<ngandti_1 <s <t
V(s) = / | (e (u) + uQ (uyv(u) = 2pm () (Ui (u) + pQ (Wym(u)))du + V(t;),  (51)

where V(t,,) = 0. Furthermore, V (-) is a.e. differentiable, and for 0 < s < t; — t;_1,

%V(Ii_s) = po(ti—5)+pQ (ti=s)v(t;—s) —2um(t;—s) (ur (t;—s) +pQ(t;=s)m(t;=s)) a.e.,
(52)
where V(1;) = uh(t;) — (uh(t;))% + V(1;+) for 1 < i < no.
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We omit the proof of Proposition P, as it is straightforward and follows from the method
used to prove Propositions ] and §.

Remark 10. Differential equations for m and v are known in the life insurance literature (see
[36, 37]) under the name of the Thiele and Hattendorff differential equations, respectively. In
particular, [37)] derived ODEs for m and v, that allow for non-stationary rates, deterministic
rewards, jump-time lump-sum deterministic rewards, and scheduled lump-sum deterministic
rewards, subject to the requirement that Q(-), r(-), g(-) are piecewise continuous. Similar
ODEs can be found in [4], again requiring piecewise continuous rates. Propositions 7 and
B generalize these results to cover random lump-sum rewards arriving at jump, “external”,
and “scheduled” times, and provides linear integral equation representations that apply to
the case of measurable rates.

7. Computational Considerations

We now discuss the complexity associated with computing P(R(¢) > z) when ¢ is large
and z lies within a small integer multiple of 4/Var R(¢) from ER(t). Suppose that our error
tolerance in computing P(R(t) > z) is €. Based on existing Berry-Esseen and Edgeworth
expansion theorems for finite state Markov chains with stationary transition probabilities
[35,34, [12], we are led to expect that |P(R(7) > z)—P(N(0,1) > (z—=ER(t))/+/Var R(1))| =
O((Var R(1))~1/?) as t — co. Thus, we expect that the CLT approximation to P(R () > z)
only is sensible when € is of the order of /2 or larger. To compute P(N(0,1) > (z —
ER(1t))/+/Var R(t)) to error tolerance e, it is easy to see by a Taylor expansion argument
that ER(¢) and Var R(t) must be computed to error O(e).

For the non-stationary setting under consideration in this paper, the two main approaches
for computing ER(¢) and Var R(¢) to a required accuracy ©(€) are numerically solving dif-
ferential equations and Monte Carlo simulation. We discuss these two approaches in order
and compare their time complexities.

Suppose that Q(-) is k-times continuously differentiable on each interval (u;_1, u;), with
all k derivatives having finite-valued right and left derivatives at u;_; and u;, respectively.
Then, we can apply a kth order Runge-Kutta method to solve the ODEs for m(-), and v(-)
over each such interval, so that the difference increment / used in the associated time-
stepping solver induces an associated numerical error of order 4% over each interval; see
[23, p. 160] for a theorem on the global error analysis for kth order Runge-Kutta methods.
To achieve an error tolerance of €, we must therefore take & = ©(e!/¥). Thus, we use
O(re~ /%) time steps to numerically compute m(-) and v(-) over [0, 7]. At an error tolerance
€ = O(¢~1/2), this implies O(¢'+1/2) time steps. Each time-step involves a bounded number
of matrix-vector multiplications, leading (in the absence of sparsity) to a per step complexity
of ©(d?) floating point operations (“flops”) and a total complexity of O (d?¢'*1/%) flops for
our normal approximation to P(R(¢) > z). If the rate matrices Q(-) are sufficiently sparse
that the cost of matrix-vector multiplication is O(d), a total complexity of O (dt'*1/3¥) is
achievable. The complexity of computing V(-) by solving (52) depends on the sparsity of
the initial distribution u. If 4 contains O (1) nonzero entries, the complexity of solving (52))
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is O (¢r'*1/%%), while if u contains O(d) nonzero entries, this complexity matches that of
solving for m(-) and v(-).

This can be easily compared to Monte Carlo simulation as a means of computing
P(R(t) > z) to error tolerance € = @(r~'/2). The number of independent simulations of
X over [0, ¢] should be of order ®(e~2), in view of the square root convergence rate of the
Monte Carlo method; see [2]. For our analysis here, we additionally assume that the cost of
simulating the random variable X (7) at a jump time 7 is O(1), as is the case in many prac-
tical settings of interest (for example, birth-death processes, batch Markov arrival processes,
and bulk queues). Thus each simulation over [0, 7] requires ©((1+/)t) computational effort
(measured in flops). The factor (5 + A) appears because the time complexity of a simulation
is proportional to the number of jumps plus the number of exogenous arrivals that must be
generated per unit of “wall clock” time. Therefore the total complexity of the Monte Carlo
method needed to compute P(R(z) > z) to error (¢~ 1/2) is (A + B)te™2) = O((1+ B)1?),
at e = ©(r~1/2). It follows that when € = ®@(r~'/2) and d is of moderate size, our CLT ap-
proximation is considerably faster at computing P(R(z) > z) to a reasonable error tolerance
(of order r~1/2 or larger) as compared to Monte Carlo simulation. Furthermore, Monte Carlo
simulation becomes slow when (1 + ) is large. As an additional advantage, our computa-
tion of m(¢) and v(¢) yields E[R(¢) | X(0) = x] and E[R?(¢) | X(0) = x] for each x € S,
whereas to compute these conditional quantities, a crude implementation of the Monte Carlo
approach would require O(#?) independent simulations for each starting point x € S.

Alternatively, one may be interested in directly computing the quantity P(R(z) > z), for
z € R. A system of linear integral equations and corresponding linear first-order integro-PDE
for computing the distribution of R(7), first developed in [26] in the case of deterministic
lump-sum reward sizes, is derived as follows. For 0 < s <f,x € S, and z € R, put

u(s,x,z) = Prgx(R(1) = R(t = 5) > 2).

We observe that the distribution of R(7) — R(¢ — s) is a mixture of components, one of which
is a point mass corresponding to the case that the process X does not jump on the interval

(t,t + s]. Note
t

RO =R =5) = [ ronds = T(5.0
on {(J + N)(t) = (J + N)(t — s) = O}, 50
u(s,x, Z(s,x)) —u(s,x,2(s,x)-) = =Pr_s:((J+ N)() = (J+ N)(t —s5) =0)
— _exp ( - /t_:(z +B)(v,x)dv).

For z # 7 (s,x),

Prsx(R(t) = R(t = 5) > 2)
= E,_s,xu(s —h,X(t—s+h),
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t—s+h J(t—s+h) N(t—s+h)
- [ X Y s@my) - Y HAX(AW)
I=s j=J(t-s)+1 k=N(t—s)+1
t—s+h
= Esu(s—hx,z— / r(v,x)dv)I((J + N)(t —s+h) = (J+N)(t—y5))
t—s
t—s+h J(t—5+h)
+ Egxu(s—h,X(t—s+ h),z—/ r(v, X(v))dv — Z g(T;,Y;-1,Y)))
1= j=J(t-s5)+1

A((J+N)(t=s+h) = (J+N)(r—s)+1)

= (u(s,x,z) - h%u(s,x, 7) = hr(t- s,x)aizu(s,x, 0))(1 = (A+B)(t—s,x)h + o(h))

+h Z Q(t—s,x,y)/u(s,x,z—w)G(t—s,x,y,dw)
(x.y)eB R

+h,3(t—s,x)/u(s,x,z—w)H(t—s,x,dw)+0(h),
R

where we write f(h) = o(h) if f(h)/h — O as h — 0. Thus,
%u(s,x, 7) = zy: Ot —s,x,) /R (u(s,x,z—w) —u(s,x,2))G(t - s,x, dw)

+/3(t—s,x)/(u(s,x,z—w)—u(s,x,z))H(t—s,x,dw) (53)
R
- r(s,X)ﬁu(s,x, z)

0z

for z # I (s,x), where we set g(v,x,x) = 0 forx € S, v > 0. To determine u, this equation
is solved subject to
1 ifz<0,

u(0,x,2) = {0 ifz>0

for x € S. Then, u(t,x,z) = Po,(R(t) > z). A computational scheme for approximating
u proceeds from a discretization of (53); for the computational issues involved we refer the
reader to the discussion in [26, section 4, pp. 39—40].

8. The Periodic Case

An especially important setting for non-stationary models arises when it is possible to
ignore secular trends affecting the system dynamics and safely assume that Q(-) is periodic.
For example, in a customer service setting, one may model the system as periodic over one
week intervals. To address this special case, we may without loss of generality assume that
the period equals one time unit:
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Assumption A8 Forallz >0,0(t+1) =Q(t),r(t+1) =r(2),B(t+1) =B(1),G(t+1) =
G(t), H(t+1) = H(t),and K(t + 1) = K(¢). Furthermore, the #;’s are periodic with period
1, and the m points t1, ..., t, lying in (0, 1] satisfy 0 <t; <--- <t,, < 1.

We work under [A§ for the remainder of this section. We note that it is not restrictive to select
the beginning of the period (i.e. # = 0) such that 0 < ¢ < #,, < 1. Under |A§, note that
Pn+t,n+t+s)=P(t,t+s)

for0 <t <1,s >0,n € Z,. Furthermore, since |S| < co and Q(-) is irreducible, P(0, 1)
has a unique stationary distribution 7(0). In addition, P(¢,¢ + 1) has a unique stationary dis-
tribution 7(¢) for 0 < ¢t < 1, and n(t) = n(0)P(0, ¢). In this periodic setting, the martingale
representation of Section 3 simplifies significantly.

Put
1 m
@ Aymymm+gkmmmy (54)
AR(n) £ R(n) —R(n—-1)
n J(n)
:/ r(s,X(s))ds + Z G(T;,Y;i-1,Y))
n—1 j=J(n—1)+1
N(n)
) X))+ ) H(AnX(A).
n—1<t;<n k=N(n-1)+1

1 m
r:Apmw@m+;mwa-

Suppose k is a solution to Poisson’s equation for the Markov chain (X (n) : n > 0), namely
(P(0,1) = )k = —(r* — ae). (55)

Then, because P(0, 1) is aperiodic under [Al], (since Proposition 1 implies it is strictly
positive), P(0, 1)" = P(0,n) — I1(0), where I1(0) has identical rows given by 7(0), and k
can be taken as

k=Y PO,n)r,
n=0

with v} = r* — ae. For ¢t > 0, put

1] n([1]) 00
p(1) £ / P(t,u)(r(u) + y)du + Y P(t,1)h(t) = a([(] = 1) + 3" P(1, (] + j)r
-

! i=n(f)+1 j
1] n(I1])
- [ Pawe@ s y@)dur Y, Pk - o[-0 + PG.TDE

i=n(t)+1

and note that p(¢) = p(¢ + 1) for > 0 and p(n) = k forn > 0.
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Theorem 4. Suppose U1-43 and |48 Then,
R(t) —at + p(1, X(1))
is a martingale adapted to (F; : t > 0). Furthermore,

R(t) — at

Vi = oN(0,1)

ast — oo, where )
o? = 7(0) / P(0,1)&(2)dt,

and £(t) = (£(t,x) : x € S) has entries give(:fz by
£ L ) 0wy [ (o) p PGy d ) [ PR,

(xy)eB 0 0
Proof. We note that for ¢, s > 0,

p(t,x) =E[R(t+s)—R(t) —as | X(t) =x] + (P(t,t + s)p(t + 5))(x).
As with the role of (20) in the proof of Theorem [I], this implies that

M,(t) = R(t) —at + p(t, X(1))

is an ¥;-martingale. Furthermore,

J(1) N()
[Mp1(0) = ) (G(T3. Ym0, Y) + p(T3.Y)) = p(T7. Yjm0))* + ) H (Aes X(AD),
j=1 k=1

and [M,](t) - fot &(s, X (s))ds is also a martingale, so that

%[Mp](t) — 0?2 as.

as t — oo. An easy application of the martingale CLT then yields the CLT for R(7).

Remark 11. A key difference between the martingale used here and that introduced in Section
is that M, (¢) centers R(¢) by at, whereas M (t) centers R(¢) by ER(t). In particular, unlike
v(t, x), we cannot define

plt.x) = lim EL[R(1+5) = R() = as]

because this limit does not exist in general due to the periodicity of Q(+). Rather, we have
defined p(¢, x) so that

p(t,x) = Eix[R([t]) = R(1) — a([1] = )] + (P(z, [])k) (x).
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Remark 12. The function (p(t) : ¢t > 0) is periodic, hence it is characterized by (p(z) : 0 <
t <1). Also,

p(t,x) = Eix[R(1 1) = R(0) —a(1 = 1)] + (P(z,1)p(0)) (x) (56)

for0 <t <1,x € §. As with m(-) in Section B, weadd tg,t+1t00 =tg <ty < -ty <
tm+1 = 1. We specify a function p, left continuous with right limits, which satisfies an
identical integral equation on each interval (¢;_1,¢;] for 1 <7 < m + 1, namely

p(1) = / (F(u) - a)du + / " Q@)p(u)du + plt) (57)

fort;_1 <t < t;, where p(t,+1) = p(1) = p(0), and p(t;) = p(t;+) + h(t;) for 1 <i < m.
In other words, p(+) satisfies a linear integral equation with a periodic boundary condition,
and p(t) = p(¢) fort ¢ {t; : i > 0}. We work with the left continuous p in order that
we may numerically integrate the Kolmogorov backward equations from right to left over
the intervals (f;,#;.1]. In addition to solving for 5(-), it must be recognized that (57) also
includes the constant @, which can be viewed as an unknown, along with o(-), within the
equation (57). Of course, (56) implies that

p(0,x) = EgxR(1) — a + (P(0,1)p(0)) (x).

Multiplying both sides by (0, x) and summing over x, we conclude that (56) is solvable
with p(0) = p(1) only if & satisfies (54)) (since 7(0)p(0) = 7(0)P(0, 1)p(0)).

According to the above remark, computing p(-) on (0, 1] along with @ involves solving
the Kolmogorov backward (integral) equations according to a periodic boundary condition,
and subject to impulses at the fixed times #;. To avoid the need to use a numerical solution
method capable of solving ODEs with unknown parameter subject to periodic boundary
conditions and impulses at fixed times (see [|l, p. 322]), we instead first solve the matrix-
valued backward equations

1
P(t,1) =1 +/ Q(u)P(u,1)du

for 0 < t < 1. Typically this computational step is accomplished using the differential
form of these equations. With P(0, 1) in hand, we then compute 7(0) as a probability mass
function solution of 7(0) = 7(0) P(0). We next solve for

m(t,x) = E;x[R(1) — R(1)]

for 0 <t < 1and x € S subject to m(1) = 0; see Proposition . The quantity & can then be
computed as

a =n(0)m(0).
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Noting that r* = m(0), the next step is solving (53) for k. This allows us to then calculate
p(t) overt € [0,1] via
p(t)=m(t)—a(l—1)+ P(t,1)k

for 0 <t < 1. (If the matrices (P(¢,1) : 0 <t < 1) were not saved while computing P(0, 1),
we can compute P(¢, 1)k by solving the backward equations.) Then, (£(¢) : 0 <t < 1) is
easily calculated, after which

1
X2 / P(t,u)é (u)du

can be computed over ¢ € [0, 1] by again solving the backward equations

1 1
X0 = / £ (u)du + / 0(u)x (u)du

for 0 <t < 1. Finally, 02 = 7(0) x(0).

Remark 13. Note that computing @ and o2 via this approach avoids the need to calculate
ER(t) and Var R(¢) as in our earlier Theorem 3.

This yields a computational complexity for computing the centering and scaling con-
stants in our CLT approximation to R(¢) that is independent of z. The periodic approach
followed in this section requires the computation of P(0, 1), which entails solving a matrix-
valued differential equation. By contrast, Theorem [} involves solving vector-valued differ-
ential equations for ER(¢) and Var R(t). Thus, if d is large relative to ¢, the CLT of Theorem
may be preferable to the periodic CLT of Theorem §. However, when ¢ is large, the periodic
approach introduced here is typically more efficient.

9. Service Systems with Resetting

So far in this paper we have developed results that apply to service systems in which
there are no regularly scheduled times at which all the work present in the system is cleared.
For example, manufacturing facilities and continuously operating call centers do not deter-
ministically clear all their accumulated work at regular intervals. This framework is relevant
for many, but not all, operation settings.

A common alternative is a service system in which the system is “reset” or “cleared” at
fixed times regardless of the state it occupied immediately prior to the resetting time. For
example, the checkout at a grocery store is cleared at the end of each day, as is the security
area of an airport when it closes for the day. However, the dynamics of customer arrival to the
checkout throughout the day may still be subject to daily periodic fluctuations. Furthermore,
secular trends in consumer behavior may imply that the queueing dynamics of the grocery
checkout are not identical from one day to the next. In order to address such settings, the
LLN and CLT we developed for the “always open” setting must be modified to allow for
“resetting” behavior in the system.
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We work under [AT-A3, and assume that X is independently reset at each time n € Z,
according to a probability mass function u, = (u,(x) : x € S) on the states. In this setting,
X, = (X(n+1t):0<1t<1)isan independent jump process with rate matrix (Q(n +¢) :
0 <t <1)forn > 0. We can then define R(¢) as in Section J§ of this paper. We assume
that none of the #;’s are integer-valued. In this case, R(n) = R(n+) = R(n-) a.s., and we
can write R(n) = X\ AR(i), where AR(i) = R(i) — R(i — 1) for i > 1. Furthermore,

ER(n) = X1 EAR(i) and Var R(n) = X", Var AR(i), due to the independence created by
resetting.

Theorem 5. Under 4145 and the additional assumption that

inf [ Z Var & (t,x,y) + Z Var 7 (t,x) + ZVar %(r,x)] > 0, (58)

t>0
(x,y)eB xeS§ xeS

we have
R(n) — ER(n)

v/ Var R(n)

= N(0,1) (59)
as n — o0,

Proof. Because R(k) = 5‘21 AR(i), with the AR(i)’s independent, it suffices to verify the
Lyapunov condition limy_,(Var R(k))™3/2 X% | E|AR(i)|3; see [B, Theorem 27.3, p. 371].
Using A2 and (58), it is evident from the independent resetting behavior of X that there exists
¢ > 0 such that Var AR(i) > ¢ for all i > 1. By [A3HAS and routine calculations, we may
bound E|AR(i)|> < C < oo foralli > 1. Then (Var R(k))™*/2 ¥ | E|AR()|? = O(k1/?).
Therefore by Lyapunov’s CLT, we conclude that (59) holds.

Remark 14. The computation of EAR(n) and Var AR(n) in this setting proceeds as in Sec-
tion [§. We observe that the independence of the AR(n)’s makes it trivial to parallelize the
computation of EAR(n) and Var AR(n).

10. Numerical Examples

To facilitate the study of the quality of the CLT approximation for the distribution of
R(t), we simulate the long-time behavior of the reward functional for several non-stationary
stochastic models. We consider models with secular trends, as well as fully periodic mod-
els. In particular, we consider the Prendiville model discussed in Remark [, the M, /M, /1/k
queue, and the multi-server queue with staffing changes and time-varying traffic. The tran-
sition rates and reward structures for each model are chosen so that [A1-HAJ are satisfied.
For each model, we simulate 10,000 iid sample paths over a fixed interval [0, 7] to obtain a
simulated empirical distribution for R(#). We also solve the system of ODEs presented in
Section i to obtain numerical solutions to m(0) = ER(¢) and V(0) = Var R(¢). We then
present the coverage achieved by the normal approximation of our Theorem [, using the
mean and variance calculated via numerical solution of the ODEs in Section [. Finally, we
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compare the computational runtimes of the simulated empirical distribution approach to the
ODE solving approach based on our normal approximation.

To simplify our discussion of the practical implementation details relevant to the com-
putation of ER(¢) and Var R(r), we combine the three coupled ODEs of Section [ into a
single (2d + 1)-dimensional vector valued ODE, namely, for 1 <i < ng and s € (t,-1, t;],

d
27— 8) = f(ti =5, y(ti = 5)), (60)
where we define f : R x R24*! according to (42, 49, 52) by

f@y)1a =7(t,y1) + Q()y1.a,
f(ty)ar1:2a = o(t,y1) + Q(1)yas1:24,
f(t,¥)2a41 = po(t, y1:0) + O (t)ya+1:2a — 2um(t) (ur(t) + uQ(t)yi.a),

where, for convenience, we use the notation x,.; to refer to the vector in R”~**! formed by
the ath through the bth entry of a vector x € R??*!. Furthermore, we have the boundary
conditions

f(ti,y)1:a = h(t;) + y(ti+)1.q, (61)
F(tisY)ar1:2a = h(ti) + y(ti+)as1:245 (62)
FtiY)2as1 = ph(t;) = (uh(6))? + y(t+)aqe1, (63)

according to the ODEs for m(-), v(-), and V(-). With this specification, we clearly have
that for every s € [0,¢] that y(s)1.q = m(s), y(s)g+1.2¢4 = v(s), and y(s)24+1 = V(s). The
system of ODEs (60) does not admit a closed-form solution in general. We therefore seek a
numerical approximation to the exact solution m(0), v(0), and V(0). To this end, we consider
several numerical ODE methods to solve for m(+), v(-), and V(-) simultaneously.

Classical global error bounds for pth order Runge-Kutta methods require pth order con-
tinuous differentiability in the function f; see, for example [23, Thm. 3.2, p. 158]. To handle
points of non-smoothness (e.g. discontinuities in the derivatives f*) for k = 0,1,2,3,4)
in the problem data, we identify all points at which f is non-smooth and add them to the
collection of ¢;’s from Section B This divides the interval [0, ] into subintervals (¢;,t;+1),
fori = 1,...,np, on each of which f is smooth. For example, for a model with tran-
sition rates that are continuous piecewise linear functions of ¢, we would add each of the
points at which the first-order derivative of the rates are discontinuous to the collection
of #;’s. We then solve the ODE (b0)) on each subinterval, and accumulate the results ac-
cording to the boundary conditions defined in (61, b2, 63)). Special care must be taken
with regard to the value of the function f at the endpoints of each subinterval, however,
as we will now examine. Let N; = [(tis1 — ;) - h~'], and h; = (t;41 — t;)/N;. For each
i =1,...,n let ((tij,t;j+1] : 1 < j < N;) be the partition of (#;,#;41] into subinter-
vals such that #; ;11 = t;; + h;, tj1 = t;, and t; ;41 = t;+1. For each subinterval indexed
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by k = N;, N; — 1,...,1, we consider the classic fixed step size fourth-order Runge-Kutta
iteration given by

Fr = f(ti + hi, ye+1)s
Fy = f(ti + Shi, year — 3hiF1),
Fs = f(tu + 3hi, yeer — $hiFa),

Fy = f(tik, Yks1 — hiF3),
Yk = Yk+1 — shi(F1 + 2Fy + 2F3 + Fy),

— —
where f and f correspond to the left- and right-continuous versions of f, respectively.
This modified version of f is then smooth on the subinterval [f;,7;+1]. For the first sub-
problem, the initial point yy,+1 is chosen to satisfy the boundary conditions of the ODEs
for m(-), v(-), and V(-). At the right-most endpoint #,, = ¢, corresponding to the begin-
ning of the backward integration, we set yy, +1 = 0 € R24+1 We refer to this procedure
as the discontinuity-aware, tfixed step size fourth-order Runge-Kutta method. Figure 2 be-
low depicts the numerical error for the Prendiville model that results from naively using a
discretization-unaware numerical ODE method which ignores the points at which f is dis-
continuous when discretizing, relative to the performance of discretization-aware methods
with the same step size. Unlike discretization-unaware methods, our discretization-aware
approach typically exhibits monotonically decreasing error as the step size 4 tends to zero.

Numerical ODE solving methods with adaptive step size are often superior to fixed step
size methods in terms of the accuracy of the solutions obtained for a given computational
effort. A discontinuity-aware, adaptive step size Runge-Kutta method may be implemented
in much the same way as the fixed step size counterpart above: the times at which f is
discontinuous are added to the collection of #;’s, and for each subinterval [¢;, ;,1], the initial
value problem is solved for a modification of f that is smooth on the subinterval. We use
the Dormand-Prince Runge-Kutta 5(4) formulae of [[13] to solve the initial value problem on
each subinterval in our numerical experiments below.

The numerical ODE solving methods we propose are implemented in Python at https:
//github.com/montefischer/markov_reward, along with code to simulate the rewards
generated by the three models we consider. For the benefit of future research, we have de-
signed our code to be easily extensible to new model types. The project README contains
instructions for reproducing the numerical experiments whose results are reported below.
All numerical experiments were carried out on a dedicated AMD EPYC 7502 processor (2.5
GHz base clock, 32 CPU cores) running CentOS Linux 7. Our Python (version 3.12) im-
plementation depends on the standard numerical libraries NumPy (version 2.2.6) and SciPy
(version 1.16.0) and uses double-precision floating-point arithmetic.

Prendiville model Consider the Prendiville model introduced in Remark §. Let S =
{0,1,2,...,10}, corresponding to an ensemble of 10 two-state switching models. We spec-
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ify rates and rewards to illustrate the flexibility of our theory. We put

A1) = 2 + L sin(2n1),

u(t) =3 - 2¢~114, &4

and take Q(r) as given by (#6). Clearly, [A1-A3 are satisfied by this specification of (Q(¢) :
t >0). Leta(t) = 7t — | 7t] be a one-periodic sawtooth function, and let r(z,x) = x - a(t) +
0.1. Transitions involving a jump from state x to state x + 1 generate deterministic reward
Z(-,x,x + 1) = 1, while transitions involving a jump from state x to state x — 1 generate
deterministic reward & (-,x,x — 1) = 5. This deterministic jump reward structure verifies
Assumption [A7 for this model. Exogenous rewards arrive at periodic rate B(z,-) = i@ +

sin(2m)). The exogenous rewards are given by % (A;, x) 2943 o1 Zkj +6 z}gm Zij,

where (Zy; : k > 0,1 < j < 10) is a family of iid random variables such that Zq; 4
Beta(2, 5). Finally, at scheduled times #; = 5i, a state-dependent reward of 7 (¢;,x) = x is
accrued. This reward specification clearly satisfies A4, and our choice of scheduled times
(t; - i > 0) satisfies the requirement [A3.

We simulate the model over the interval ¢ € [0, 256], and report the simulation-based
computation of P(R(t) < z), as compared to the CLT-based approximation to the same prob-
ability. We implement this by choosing z1, z2, z3, z4 so that P(N(ER(t), Var R(t)) < z;) =
pi, where p1 = 0.01, p2 = 0.1, p3 = 0.9, and p4 = 0.99. If the normal approximation is ac-
curate, the simulation-based estimates of P(R(¢) < z;) should be close to p; fori = 1, 2, 3, 4.
These results are reported in Table [I], also as a function of 7. As expected, the simulation
results confirm that the approximation becomes excellent as ¢ increases. The computational
cost of solving ODEs to high accuracy is highly competitive with simulation. Parallelizing
simulations across 32 cores, it took 21.5 minutes to generate the 10,000 sample paths in our
computational environment, while solving ODEs to obtain £R(256) and Var R(256) in the
same computational environment took only 70 seconds.

Additionally, we plot relative error convergence results in Figure |I| for discontinuity-
aware fixed-step size Runge-Kutta methods of orders 2 and 4, alongside the discontinuity-
aware first-order Euler method, for computing the quantity ER(1). It is well-known that the
global error for a pth order Runge-Kutta method with constant step size & theoretically scales
as h”. Figure [l| shows that our discontinuity-aware methods closely follow the convergence
rate predicted by theory for p = 1, 2, and 4.

In order to show the sensitivity of numerical ODE solving to the correct treatment of dis-
continuities in the function f, we compare the relative numerical error obtained by Runge-
Kutta methods with and without an explicit treatment of the discontinuities in Figure P. The
fixed step size method in the figure implements the fourth-order Runge Kutta method ex-
plained above for the step size h, while the adaptive step size method implements the formu-
las of [[13]], subject to the condition that the maximum allowed step size is i. The vertical axis
plots the relative numerical error on log scale. The asymptotic behavior around a relative er-
ror of 10714 indicates the limit of floating point precision. The importance of implementing
a discontinuity-aware method is apparent from the figure.
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Table 1. Tabulation of the quantities Nwzu 2 P(R(t) < x;p) for the Prendiville model, computed by 10,000 sample Monte
Carlo study, where x; , is such that P(N'(ER(t), Var R(t)) < x,,) = p. The moments ER(¢) and Var R(t) are computed by
numerically solving the ODEs of Section [f using an adaptive step size with tight relative (10™'') and absolute (107?) error
tolerances. Simulation cost (MC) is reported per sample. All sample quantities are reported as 95% asymptotic confidence
intervals 2 + 1.966/n'/?, where /i is the sample mean and & is the sample standard deviation of the reported quantity, and n the
number of samples. Estimates for the computational cost of ODE solving were obtained using n = 10 solves.

t

0.0625

0.125

0.25

16

64

256

Coverage probabilities mm% = P(R(t) £ xp)

0.01
0.05
0.50
0.95
0.99

0.0000 £ 0.0000
0.0000 £ 0.0000
0.5914 + 0.0151
0.9375 + 0.0190
0.9375 + 0.0190

0.0000 + 0.0000
0.0000 + 0.0000
0.6973 + 0.0164
0.8822 + 0.0184
0.9397 + 0.0190

0.0000 + 0.0000
0.0000 + 0.0000
0.6991 + 0.0164
0.9314 + 0.0189
0.9729 + 0.0193

0.0000 + 0.0000
0.0013 + 0.0007
0.5527 +£ 0.0146
0.9254 + 0.0189
0.9747 + 0.0194

0.0013 + 0.0007
0.0312 + 0.0035
0.5283 + 0.0142
0.9383 + 0.0190
0.9827 + 0.0194

0.0066 + 0.0016
0.0424 + 0.0040
0.5173 £ 0.0141
0.9457 + 0.0191
0.9861 + 0.0195

0.0075 + 0.0017
0.0443 + 0.0041
0.5051 +0.0139
0.9491 + 0.0191
0.9868 + 0.0195

0.0096 + 0.0019
0.0530 + 0.0045
0.4951 +0.0138
0.9496 + 0.0191
0.9896 + 0.0195

Computational cost (s)

MC
ODE

0.14 +£0.02

0.19+£0.01

0.32+0.01

0.62 +0.01

1.98 £ 0.06

6.60 + 0.42

22.51+£3.19

70.01 + 3.20

0.00118 + 0.00003  0.00216 + 0.00003  0.00413 + 0.00004 0.01503 + 0.00006 0.06071 + 0.00016 0.25288 + 0.00039 1.02945 + 0.00090 4.14518 + 0.00227
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Figure 1. Error convergence plots for varying orders of numerical ODE methods for solving
the ODEs for ER(1) in the Prendiville model. Dashed lines indicate linear least-squares

regression lines on the log-log scale; the slopes reporte

d in the legend, indicate the estimated

order of convergence. The vertical axis plots the relative numerical error on log scale.

Relative Error

1 —#*— Adaptive Step Size (DA)
*  Adaptive Step Size (naive)
| —®— Fixed Step Size (DA)
Fixed Step Size (naive)

—1 10*2

10

-3 10*4

10

[Maximum] Step Size (h)
Figure 2. Comparison of Runge-Kutta methods for solving the Prendiville ODEs for E R(1)

with and without adding the discontinuities of 7 to the collection of #;’s. The label (DA)
indicates a discontinuity-aware method, whereas the label (naive) indicates a discontinuity-

unaware method.

Single-server queue We now consider the time-varying, single-server Markovian queue
with finite capacity equal to 30 (M;/M,/1/30 in Kendall’s notation). The state space S =
{0,1,...,30} is such that the integer value of the state x corresponds to the number of jobs
in the system, whether in service or in the queue. A maximum of 30 jobs are allowed in the
system at any time. To define Q(t), it suffices to specify the arrival rate A(-) and service
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rate u(-). Let

A(t) = 12 + 10 sin(nt),

p(t) =25+ 10 sin(E (¢ — 1/4)). (65)

This specification clearly satisfies [A]-A3. These dynamics describe a queueing system sub-
ject to sinusoidal arrival rate, with a sinusoidal service rate such that the model experiences
periodic overloading, that is, intervals of time for which A(7) > u(t). Nonstationary queue-
ing models with sinusoidal rates have been studied in previous work, e.g. [22]. We plot A(¢)
and u(7) in Figure [.

35 — At)
— ()

Figure 3. Rates A(¢) and u(¢) for the M,/ M,/1/30 queue.

We specify the reward structure to correspond to a standard performance measure for queues.
With r (-, x) = x+ 1, and all other rewards uniformly equal to zero, R(z)/t — 1 gives the time-
average number in system over the interval [0, 7].

We simulate this model over the interval ¢ € [0, 1536]. We simulate from an initial dis-
tribution given by a truncated geometric distribution with mean A(0)/u(0) ~ 0.54, which
by equation (63) approximates the stationary distribution of a time-homogeneous M/M/1
queue with arrival rate A(0) and service rate u(0). In the course of running our numerical
experiments, we observed that this approach, although heuristic, better illustrates our CLT
result by shortening the transient period before CLT mixing is achieved relative to an initial
distribution that is concentrated at the empty state. We report the comparison between the
simulation-based computation of P(R(¢) < z) and the CLT-based approximation to the same
probability in Table . We note that the CLT approximation is highly accurate for large ¢.
Parallelizing simulations across 32 cores, generating the 10,000 sample paths took 70 min-
utes using our computational setup, while solving ODEs to obtain £R(768) and Var R(768)
on the same processor took under 10 minutes.

Multi-server queue In call center shift management, it can be of interest to consider multi-
server queueing models that capture the degradation of agent performance over the course
of a shift, with service rates recovering when the next scheduled shift arrives to refresh
personnel. To this end, consider a multi-server queue with finite capacity equal to 80. For
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this example, we take one time unit to represent one 8 hour shift, so that the interval [0, 3]
represents a duration of 24 hours. The transition rates (Q(z) : t > 0) are given by a finite-
capacity multi-server queue with arrival rate A(-), and service rates u(-). We specify the
arrival rate by

A1) = 35 + 10 cos (2¢) + 10 cos (2(r + 2)) + min{z, 36}. (66)

This choice of A specifies a baseline demand subject to periodic fluctuations and a piecewise
linear secular trend of 3 additional arrivals per day, which ceases at the end of the twelfth
day (# = 36). A secular trend of this form may result, for example, from a corporate merger
wherein traffic from a separate call center is gradually redirected to the call center being
modeled, or as the result of a forecasted increase in demand from a marketing campaign.
We plot the arrival rate A(z) in Figure fl. We choose per-server service rates to be

x = |x]

3
which specifies a linear drop in server performance over the course of each shift from an
initial rate of 4 customers served per shift to a final rate of 3% served per shift. Finally, we
vary the number of servers on duty by shift. The first shift has 30 servers, the second has 20,
and the third shift has 25. This pattern repeats for every group of three shifts. The arrival and
service rates for this model are such that at some periods of time, the queue is overloaded. We
do not include abandonment effects in this model. The total effective service rate is plotted
alongside A(¢) in Figure }. It is straightforward that [A A3 are verified for this choice of
rates.

p(r) =4 - (67)

120 A

100

80

60

40

20
— A(t)

Total Service Rate

o 3 6 9 12 15 18 21 24 27 30 33 36 39 4 45 48

t
Figure 4. Arrival rate A(¢) and total service rate for the call center multi-server queue. Each
time unit corresponds to one 8-hour shift, so that e.g. = 3 gives the arrival and total service

rate at the end of the first 24 hours.
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As with the single-server queue, we specify the reward structure to give R(7) a queueing-
theoretic interpretation. With r (-, x) = x+1, and all other rewards set to zero, R(¢)/t—1 gives
the time-average number in system over the interval [0,¢]. Our assumption [A4 is verified
by this choice of reward; as above, we may set #; = i to satisfy [A3.

We simulate the system over the course of 256 days (¢ € [0, 768]). Just as for the
single-server queue, we simulate starting from an initial distribution corresponding to the
stationary M/M/k queue with arrival rate A(0) and service rates ¢ (0). We report our coverage
results in Table fJ. Parallelizing simulations across 32 cores, it took 3.6 hours to generate the
10,000 sample paths, while solving ODEs to obtain ER(1536) and Var R(1536) on the same
processor took under 20 minutes.

These simulation studies illustrate that the approximation R(¢) R N(ER(t), Var R(t))
implied by Theorem [ takes effect over reasonable time scales, across a variety of non-
stationary stochastic modeling scenarios. Furthermore, comparison of the simulation cost
versus the ODE solving cost in Tables [Il, l, and B, reveals that solving the numerical ODEs
is quite computationally competitive with simulating for several models of interest.
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