
Queueing Models and
Service Management
Vol. 8, No. 4, page 75-106, 2025

 QMSM
©AU 2023

* Corresponding author
Email: bd24102@bene.fit.ac.jp 75

A Case Study on Optimizing Call Center Daily Staff Scheduling
Using the Set Covering Model

Xiaodong Liu1*, Yu Song2, Minoru Kobayashi2 and Hanlin Liu1

1 Graduate School of Engineering
Fukuoka Institute of Technology, Japan

2 Department of Information Management
Fukuoka Institute of Technology, Japan

(Received August 2025; accepted November 2025)

Abstract: Efficient staff scheduling in call centers improves operational efficiency, reduces
costs, and ensures sufficient customer service. This study addresses the daily shift
scheduling problem in a call center with multiple types of tasks. While the set covering
model is widely used to derive optimal solutions for such problems, its application requires
enumerating all possible combinations of timeslots and tasks. This process significantly
increases the complexity of the model, leading to computational difficulties. Additionally,
the call center considered in this study permits staff to perform two different types of tasks
simultaneously within the same timeslot, which are referred to as pair tasks. This further
exacerbates computational challenges, as it significantly increases the number of task
pattern combinations, making the model even more difficult to solve.

To address the challenge of exponential growth in combinations, a heuristic algorithm
is proposed that not only supports pair tasks within the same timeslot but also significantly
reduces the number of task pattern combinations. The algorithm is first applied to the base
model (Model 1) to obtain an initial near-optimal solution; then task patterns are refined to
further improve solution quality. Subsequently, we augment Model 1 by incorporating real-
world operational conditions, yielding Model 2 that better reflects practical requirements.
Numerical experiments demonstrate the effectiveness and practicality of the proposed
algorithm and models.

Keywords: Call center staff scheduling, daily shift, pair tasks, set covering problem.

1. Introduction
Staff scheduling is a critical component of business operations, directly influencing

organizational efficiency, staff satisfaction, and overall productivity. Effective scheduling
ensures optimal resource allocation, improves staff well-being, and reduces operational

© Liu, Song, Kobayashi, Liu

76

costs. This problem arises across various sectors, including call centers, manufacturing,
banking, and healthcare, underscoring its universal significance.

This study focuses on solving the daily shift scheduling problem in a call center with
multiple types of tasks. Conducted as a case study, it investigates a real-world scheduling
scenario with practical constraints. A key feature is the consideration of staff members who
are permitted to perform two types of distinct tasks simultaneously within a given timeslot,
provided they have skills in both tasks (hereafter, the term “tasks” is used to represent “types
of tasks” for brevity). In the following discussion, we refer to this situation as "pair tasks".

In call center operations, pair tasks generally arise in two distinct forms. The first
situation occurs when an agent performs multiple tasks within the same company. For
instance, an agent may primarily handle inbound calls, but during the same timeslot,
occasionally process customer emails during idle intervals. The second situation may arise
in outsourced settings, where an agent may be assigned tasks for two different companies
simultaneously, handling tasks for Company A while also attending tasks for Company B.
These operational patterns motivate the pair task setting, defined as sharing a single timeslot
between two tasks under a fixed effort split, which can improve agent utilization while
maintaining service levels.

Extensive research has been conducted on staff scheduling problems, exploring various
methodologies and applications. Ernst et al. [8] provided a comprehensive review of staff
scheduling challenges, highlighting models and algorithms developed for specific
application areas. Their work also introduced general approaches for addressing call center
scheduling problems.

As research in this field has progressed, different aspects of staff scheduling have been
explored. Broadly, these studies can be categorized into three stages based on their primary
focus: staff service level prediction, multi-day scheduling, and daily shift scheduling.

The first stage [1][7][19] focuses on staff service level prediction, which estimates the
required number of staff based on historical data, call volume trends, and so on. Accurate
predictions of staff service levels are essential for ensuring operational efficiency,
minimizing labor costs, and maintaining service quality in call centers. Moreover, Su et al.
[20] proposed a queueing model for determining staffing levels in inpatient units with multi-
type patients, representing a related line of research on capacity planning under
heterogeneous service demand. However, these studies primarily address staffing level
determination rather than the construction of daily shift schedules.

The second stage [4][6][18] focuses on research related to multi-day scheduling. The
essence of multi-day scheduling lies in determining staff working and non-working days
over a planning horizon while establishing shift schedules for each designated workday,
without specifying individual task assignments. This stage seeks to optimize workforce
allocation across multiple days to ensure adequate staffing levels, enhance operational
efficiency, and support staff well-being. Well-structured multi-day scheduling contributes
to workload balance, mitigates excessive overtime, and fosters long-term workforce stability.

The third stage explores various approaches to daily shift scheduling. Daily shift
scheduling involves determining staff’s specific working hours, break times, and task
assignments within a single workday. It ensures efficient task allocation, minimizes

Queueing Models and Service Management

77

understaffing, and improves service quality by optimizing intra-day workforce deployment.
This study falls under this category.

Although studies such as [10][22][23] address daily scheduling problems, they focus on
domains other than call centers, and thus differ from the objectives of this paper. Thompson
[21] utilized simulated annealing to address staff scheduling problems. Mason et al. [16]
adopted an integrated approach combining simulation, heuristics, and optimization.
Fukunaga et al. [9] employed artificial intelligence search methods to generate schedules
under various constraints, and Avramidis et al. [3] applied simulation algorithms to daily
shift scheduling in call centers. However, the methods proposed in these studies are not
directly applicable to the problem explored in this paper, as none of them considers the
challenge of assigning pair tasks to staff members.

To the best of our knowledge, there is currently no method in the literature that addresses
the assignment of pair tasks within the same timeslot. Therefore, the pair task mechanism
introduced in this study represents a novel concept, and no direct benchmark methods are
available for comparison.

This study adopts the set covering model to address the daily shift scheduling problem
in the call center. Originally proposed by Dantzig [5], the set covering model is among the
most widely used approaches for solving staff scheduling problems and employs a Binary
Integer Programming (BIP) framework to derive optimal shift allocations. However, the
application of a typical set covering model requires the enumeration of all possible task
patterns. The term “task pattern” refers to a predefined combination of tasks to be performed
in each timeslot (see Section 4 for details). The number of task patterns increases
exponentially with the number of tasks (k) and timeslots (l), following a complexity of 𝑘𝑘𝑙𝑙.
For instance, with 10 tasks and 5 timeslots, the number of possible task patterns amounts to
10⁵. This combinatorial explosion renders the direct application of the model
computationally challenging. The associated modeling and computational burdens make it
practically infeasible to solve on standard computing resources, even without considering
more complex pair task scenarios.

To mitigate this problem, some previous studies have proposed alternative approaches
[11] [15]. For example, Lavoie et al. [11] reduced the generation of task patterns using
column generation methods, effectively addressing the computational complexity of task
pattern enumeration.

Additionally, there are approaches that do not rely on set covering models and thus do
not require task pattern generation. For instance, Aykin [2] and Liu et al. [13][14] proposed
an algorithm that constructs schedules without generating task patterns. Li et al. [12]
addressed this problem by applying quantum computing approaches. However, none of the
above methods considers scenarios in which staff members can perform pair tasks.

This study proposes a heuristic algorithm that can greatly reduce the number of task
patterns and generate pair task patterns. The task patterns generated by the heuristic
algorithm are typical patterns commonly used in this call center. To verify the effectiveness
of this algorithm, solutions are first obtained by applying the generated task patterns to
Model 1 (the basic set covering model) through numerical experiments. These solutions are
then compared with the results of a linear model which provides a theoretical lower bound

© Liu, Song, Kobayashi, Liu

78

to evaluate the performance of the algorithm. Although we attempted to compare the
proposed heuristic algorithm with other state-of-the-art approaches, existing methods are
not directly applicable to the pair task setting, which further highlights the novelty of our
approach. Then, to make the results closer to those of the linear model, the task patterns are
further adjusted. Finally, to better reflect real-world operational requirements, Model 2 is
developed, and its practicality is verified through numerical experiments.

This paper is organized as follows:
Section 2 explains the assumptions and problem. Section 3 introduces the Model 1 to

solve the daily shift problem in the call center. In Section 4, we propose a heuristic algorithm
to reduce the number of task patterns and demonstrate the effectiveness of this algorithm
through numerical experiments. Section 5 focuses on improving task patterns. Section 6
introduces Model 2, which is designed to better reflect real-world conditions. Numerical
experiments are then conducted to verify the feasibility of this model. Finally, Section 7
concludes the study and outlines potential directions for future research.

2. Assumptions and Problem Description
This section describes the assumptions and outlines the problem addressed in this study.

The assumptions aim to simplify the modeling and computation process, while the problem
description provides a detailed explanation of the daily shift scheduling challenge in the
multi-task call center. Specifically, the study focuses on assigning tasks to staff based on
their proficiencies, while incorporating constraints such as working hours, break times, and
task demands.

2.1 Assumptions

To effectively address the daily shift scheduling problem in the multi-task call center,
several assumptions (Table 1) are made to simplify models and ensure computational
feasibility.

A critical component of the scheduling model is the definition of timeslots (TS). The
task pattern consists of multiple consecutive timeslots, and task assignments are made
within these intervals. In the call center, timeslots are in practice set at 15-minute intervals.
However, to reduce computational complexity, each timeslot is defined as a one-hour
interval in this study (Assumption 1).

Break scheduling must comply with the provisions of the Labour Standards Act [17] of
Japan, which mandates a minimum break of 45 minutes when the total working time exceeds
300 minutes. In practice, short breaks of approximately 15 minutes at regular timeslots are
also commonly implemented. However, to simplify the modeling process, the following
assumptions are made: Assumption 2 sets a break duration of one hour, and Assumption 3
restricts the break period to either TS12 (12:00–13:00) or TS13 (13:00–14:00).

To enhance flexibility and better reflect real-world scenarios, Model 2 (Section 6)
relaxes Assumption 3. This adjustment provides greater adaptability, enabling more
practical and realistic break arrangements to meet operational demands.

Queueing Models and Service Management

79

Table 1. Assumptions in This Study
No. Assumption Sections
1 Each timeslot is one hour Section 3-6
2 The break duration is one timeslot Section 3-6
3 Breaks at TS12 or TS13 Section 3-5

2.2 Problem description

This section provides a detailed description of the call center. In the center, staff
members are required to handle various tasks, each with distinct skill requirements. Staff
members possess varying levels of proficiency for different tasks, and the scheduling
process aims to meet task demands as much as possible while minimizing understaffing
when full coverage cannot be achieved.

In this problem, as described in Section 1, the outputs from the first stage (staff service
level prediction, including staff proficiency and task demands) and the second stage (multi-
day scheduling, including monthly shift and shift pattern) are given as input. Accordingly,
this study focuses on optimizing task allocation within the given shift assignments, aiming
to minimize understaffing.

Table 2 is an example of task demands. For instance, task 1 has no demand during TS8,
whereas in all other timeslots, the demand is 2 person · hours.

Table 2. Example of Task Demands

Task
Timeslot

TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 TS16 TS17 TS18
Task 1 0 2 2 2 2 2 2 2 2 2 2
Task 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Task 3 1 1 1 1 1 1 1 1 1 1 0
Task 4 0 0 1 0 0 0 0 0 0 0 0

(Unit: person · hour)

Table 3 provides an example of task proficiency levels. For instance, Staff 1 has

proficiency levels of 2, 1, 0, and 0.5 for the four tasks, respectively. A proficiency level of
1 indicates that the staff member is capable of handling 1 person · hour of task 2, which
represents an average level of proficiency. A level of 2 for task 1 indicates proficiency at
twice the average level, while a level of 0.5 for task 4 reflects half the average level.
Proficiency level of 0 for task 3 means the staff member is not qualified to perform it.

Figure 1 shows the example of shift patterns. The color-coding highlights the working
status: green cells denote idle timeslots, and orange cells indicate active assigned timeslots.
For example, Shift ID 0 is completely idle, meaning it does not work throughout the day,
while Shift ID 1 is active from TS8 to TS16.

© Liu, Song, Kobayashi, Liu

80

Table 3. Example of Proficiency Levels

Staff ID
Task

Task 1 Task 2 Task 3 Task 4
1 2 1 0 0.5
2 2 0 1 0
3 0 0 1 1
4 2 0 0 0
5 1 0 1 0

Shift
ID

Timeslot
TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 TS16 TS17 TS18

0

1

2

3

4

5

6

7

8

9

10

11

Figure 1. Example of Shift Pattern

Table 4 presents the example of a part of the monthly shift. For instance, Staff 1 is

assigned Shift ID 1 on Day 1, which corresponds to the row labeled Shift ID 1 (active during
TS8–TS16) in Figure 1. Similarly, Staff 2 is assigned Shift ID 8 on Day 1, corresponding to
the row labeled Shift ID 8 (active during TS9–TS14).

Queueing Models and Service Management

81

Table 4. Example of a Part of the Monthly Shift

Staff ID
Timeslot

Day 1 Day 2 Day 3 Day 4 Day 5 ... Day31
1 1 2 2 0 0 ... 2
2 8 0 11 11 0 ... 8
3 8 8 8 0 0 ... 8
4 8 8 1 0 0 ... 2
5 0 1 9 1 0 ... 9

The objective of this study is to generate daily shift schedules as illustrated in Table 5.

In this table, each cell indicates the assigned task, break timeslot (denoted as "break"), or
idle timeslot (marked as "0"). For example, staff 1 is assigned to work on TK1 (task 1)
during TS9–TS15, takes a break during TS12, and has no assignment during TS16–TS18.
Staff 4 is assigned to TK4 during TS8–TS14, except that the task in TS10 is replaced by
TK3. The staff member takes a break during TS13 and has no assignment during TS15–
TS18. Staff 5 is assigned to a pair task, working on TK1 and TK2 simultaneously during
TS8–TS15.

Table 5. Example of Daily Staff Scheduling

Staff
ID

Timeslot
TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 TS16 TS17 TS18

1 0 TK1 TK1 TK1 break TK1 TK1 TK1 0 0 0
2 0 0 TK1 TK1 TK1 break TK1 TK1 TK1 0 0
3 0 0 TK3 TK3 break TK3 TK3 TK3 0 0 0
4 TK4 TK4 TK3 TK4 TK4 break TK4 0 0 0 0

5 TK1
TK2

TK1
TK2

TK1
TK2

TK1
TK2 break TK1

TK2
TK1
TK2

TK1
TK2 0 0 0

3. Model 1 Formulation
The problem is modeled using the set covering approach [5] and formulated as an MIP

model described below.
Symbols
I: number of staff, i = 1, 2, 3, …, I
J: number of task patterns, j = 1, 2, 3, …, J
K: number of tasks, k = 1, 2, 3, …, K
L: number of timeslots, l = 8, 9, …, L + 7
𝑏𝑏𝑘𝑘𝑘𝑘 : demand of task k at timeslot l (as shown in Table 2)
𝑝𝑝𝑖𝑖𝑖𝑖 : proficiency of staff i for task k (as shown in Table 3)
𝑠𝑠𝑖𝑖: shift ID of staff i (as shown in Table 4)

© Liu, Song, Kobayashi, Liu

82

𝑎𝑎𝑙𝑙𝑙𝑙 = �
1, if timeslot 𝑙𝑙 is in the working period of shift 𝑠𝑠(o𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 Figure 1)
 0, otherwise (green 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 Figure 1)

𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 = �
1, when task 𝑘𝑘 is assigned alone (not pair) in timeslot 𝑙𝑙 of pattern 𝑗𝑗

0.5, when pattern 𝑗𝑗 assigns task 𝑘𝑘 as part of a pair task in timeslot 𝑙𝑙
0, otherwise

𝑤𝑤𝑘𝑘 ∶ penalty per timeslot for understaffing of task k

The e in 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 represents effort. When 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 = 1, task k in task pattern j during timeslots
l is allocated the full effort alone; when 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 = 0.5, task k can only be assigned half of the
effort.
Decision Variables

𝑥𝑥𝑖𝑖𝑖𝑖 = �1, assigning pattern 𝑗𝑗 to staff 𝑖𝑖
0, otherwise

𝑧𝑧𝑘𝑘𝑘𝑘: amount of understaffing for task k at timeslot l

Model 1
Model 1 is the basic model for the daily shift problem.

Objective Function
 minimize ∑ ∑ 𝑤𝑤𝑘𝑘𝑧𝑧𝑘𝑘𝑘𝑘

𝐿𝐿+7
𝑙𝑙=8

𝐾𝐾
𝑘𝑘=1 (1)

Subject to

 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝐽𝐽
𝑗𝑗=1 = 1 (∀𝑖𝑖 ∈ {1,2, … , 𝐼𝐼}, with 𝑠𝑠𝑖𝑖 > 0) (2)

 ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝐽𝐽
𝑗𝑗=1

𝐼𝐼
𝑖𝑖=1 𝑎𝑎𝑙𝑙𝑠𝑠𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑧𝑧𝑘𝑘𝑘𝑘 ≥ 𝑏𝑏𝑘𝑘𝑘𝑘 (∀𝑘𝑘 ∈ {1,2, … , 𝐾𝐾}, ∀𝑙𝑙 ∈ {8,9, … , 𝐿𝐿 + 7}) (3)

 𝑥𝑥𝑖𝑖𝑖𝑖 = {0,1} (∀𝑖𝑖 ∈ {1,2, … , 𝐼𝐼}, ∀𝑗𝑗 ∈ {1,2, … , 𝐽𝐽}) (4)

 𝑧𝑧𝑘𝑘𝑘𝑘 ≥ 0 (∀𝑘𝑘 ∈ {1,2, … , 𝐾𝐾}, ∀𝑙𝑙 ∈ {8,9, … , 𝐿𝐿 + 7}) (5)
Equation (1) minimizes the total understaffing across all timeslots and tasks. Equation

(2) ensures that each staff member is assigned exactly one task pattern while working.
Equation (3) defines the relationship between processing capacity and demand. This
equation links staff processing capacity at a specific timeslot and task pattern to the
corresponding demand. The first term on the left-hand side represents the staff’s processing
capability for task k at timeslot l, which is determined by the staff’s proficiency (𝑝𝑝𝑖𝑖𝑖𝑖) and
the effort (𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗). The second term 𝑧𝑧𝑘𝑘𝑘𝑘 denotes understaffing. When the processing capacity
meets the demand, 𝑧𝑧𝑘𝑘𝑘𝑘 = 0; if the processing capacity is insufficient, understaffing occurs,
causing 𝑧𝑧𝑘𝑘𝑘𝑘 > 0.

For example, assume that 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 and 𝑎𝑎𝑙𝑙𝑠𝑠𝑖𝑖 = 1. Suppose in timeslot l, the demands for
task 1 and task 2 are 𝑏𝑏1𝑙𝑙 = 2 and 𝑏𝑏2𝑙𝑙 = 0.5, respectively. Consider staff i with proficiencies
𝑝𝑝𝑖𝑖1 = 2 for task 1 and 𝑝𝑝𝑖𝑖2 = 1 for task 2. If this staff is assigned only to task 1, at this point
𝑒𝑒𝑗𝑗1𝑙𝑙 = 1 and 𝑒𝑒𝑗𝑗2𝑙𝑙 = 0 , the demand for task 1 is fully satisfied because 𝑝𝑝𝑖𝑖1 × 𝑒𝑒𝑗𝑗1𝑙𝑙 = 2,
while the remaining demand for task 2 becomes 𝑧𝑧2𝑙𝑙 = 0.5.

Queueing Models and Service Management

83

In the other case, if the staff simultaneously performs task 1 and task 2 as a pair task in
the same timeslot, the effort is divided equally with 𝑒𝑒𝑗𝑗1𝑙𝑙 = 𝑒𝑒𝑗𝑗2𝑙𝑙 = 0.5. The staff member
contributes 𝑝𝑝𝑖𝑖1 × 𝑒𝑒𝑗𝑗1𝑙𝑙 = 1 unit of capacity to task 1 and 𝑝𝑝𝑖𝑖2 × 𝑒𝑒𝑗𝑗2𝑙𝑙 = 0.5 units to task 2.
Consequently, the residual demands are 𝑧𝑧1𝑙𝑙 = 𝑏𝑏1𝑙𝑙 – 𝑝𝑝𝑖𝑖1 × 𝑒𝑒𝑗𝑗1𝑙𝑙 = 1 and 𝑧𝑧2𝑙𝑙 = 𝑏𝑏2𝑙𝑙 – 𝑝𝑝𝑖𝑖2
× 𝑒𝑒𝑗𝑗2𝑙𝑙 = 0.

4. Algorithm for Task Pattern Generation
Task patterns play a critical role in solving multi-task call center problems using the set

covering model. However, obtaining an optimal solution requires the exhaustive
enumeration of all possible task pattern combinations, which makes the computation
extremely complex and impractical. Since the number of task patterns grows exponentially
with the increase in timeslots and tasks, we make certain trade-offs. Specifically, to ensure
that the obtained approximate solution meets our expectations (though not necessarily
optimal), we propose a heuristic algorithm to significantly reduce task patterns.

The proposed task pattern generation method considers both staff skill levels and task
demand. Specifically, we selected three types of task patterns that demonstrated higher
efficiency based on these factors, without considering other possible patterns, thereby
significantly reducing the computational complexity. This approach guarantees that the
generated task patterns are feasible for practical scheduling applications.

Algorithm 1 presents a heuristic algorithm for generating task patterns, which
significantly reduces the number of patterns. Algorithm 2 provides a further improvement
of the task patterns.

4.1. Algorithm 1

Figure 2 is the flow chart of Algorithm 1. The detailed steps are as follows (see
Appendix A for a detailed pseudocode):

 Step 2: Generate mix task patterns

 Step 3: Generate pair task patterns

 Step 4: Use Model 1 to obtain staff assignments

 Step 1: Generate uniform task patterns

Figure 2. Flowchart of Algorithm 1
Since Algorithm 1 described below refers to Table 2 as an example, we present Table 2

again here for ease of reference.

© Liu, Song, Kobayashi, Liu

84

Table 2 (Reproduced) Example of Task Demands

Task
Timeslot

TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 TS16 TS17 TS18
Task 1 0 2 2 2 2 2 2 2 2 2 2
Task 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Task 3 1 1 1 1 1 1 1 1 1 1 0
Task 4 0 0 1 0 0 0 0 0 0 0 0

(Unit: person · hour)

Step 1: Generate Uniform Task Patterns.
First, the uniform task pattern requires that only one type of task be performed in one

day. Specifically, all tasks are listed, and for each task k, two variances of task patterns are
generated based on different break times: k-A (with a break during TS12) and k-B (with a
break during TS13). Taking Table 2 as an example, Table 6 illustrates the uniform task
patterns.

Task pattern 1-A means that task 1 is performed throughout TS8–TS18, with a break
during TS12, while 1-B means the break is scheduled during TS13.
Step 2: Generate Mix Task Patterns.

Next, note that in Table 2, task 4 exhibits demand exclusively in TS10, with no demand
in the remaining timeslots. Assigning staff exclusively to this task for the entire day would
cause inefficient resource utilization. Therefore, we generate mix task patterns, which
allocate task 4 specifically to TS10 and assign other single-task types to the remaining
timeslots (given that some staff members have skills in both tasks).
Step 2-1: Identify tasks, denoted as k, that occur in three or fewer timeslots. Let 𝑡𝑡𝑘𝑘 represent
the timeslot where task k occurs.
Step 2-2: If there are staff members capable of performing both tasks k and k′, generate a
new task pattern. Assign task k to the timeslots 𝑡𝑡𝑘𝑘, and assign task k′ to the other timeslots.
k′ is a task that is processed during most of the timeslots and has a demand of at least 1 in
each timeslot.

As shown in Table 7, in task pattern (1+4)-A, the staff primarily performs task 1 and
switches to task 4 at TS10, with a break scheduled during TS12.
Step 3: Generate Pair Task Patterns.

The next step is to generate pair task patterns. As shown in Table 2, task 2 has a
consistent demand of 0.5 across most timeslots, which is lower than the average proficiency
level of 1. Assigning a staff member exclusively to this task may result in resource waste.
Therefore, we generate pair task patterns, allowing staff to handle two different tasks
simultaneously within the same timeslot: one with low demand (𝑏𝑏𝑘𝑘𝑘𝑘<1)—provided that the
staff member possesses the required skills for both tasks. This approach enhances overall
resource utilization.

Queueing Models and Service Management

85

Step 3-1: Identify task k whose demand strictly between 0 and 1 person · hour (i.e.,
0 < 𝑏𝑏𝑘𝑘𝑘𝑘 < 1) in most timeslots.
Step 3-2: If some staff members can perform both tasks k and k' (a task with 𝑏𝑏𝑘𝑘′𝑙𝑙 ≥ 1 in
most timeslots), generate a new task pattern by assigning both tasks k and k' to the same
timeslot as a task pair.

Table 6. Uniform Task Patterns (U)
Task

Pattern
Timeslot

TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 TS16 TS17 TS18
1-A 1 1 1 1 break 1 1 1 1 1 1
1-B 1 1 1 1 1 break 1 1 1 1 1
2-A 2 2 2 2 break 2 2 2 2 2 2
2-B 2 2 2 2 2 break 2 2 2 2 2
3-A 3 3 3 3 break 3 3 3 3 3 3
3-B 3 3 3 3 3 break 3 3 3 3 3
4-A 4 4 4 4 break 4 4 4 4 4 4
4-B 4 4 4 4 4 break 4 4 4 4 4

Table 7. Mix Task Pattern (M)

Task
Pattern

Timeslot
TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 TS16 TS17 TS18

(1+4)-A 1 1 4 1 break 1 1 1 1 1 1
(1+4)-B 1 1 4 1 1 break 1 1 1 1 1
(3+4)-A 3 3 4 3 break 3 3 3 3 3 3
(3+4)-B 3 3 4 3 3 break 3 3 3 3 3

As shown in Table 8, in task pattern (1&2)-A, staff members can perform task 1 and

task 2 simultaneously within a single timeslot, with a break scheduled during TS12.

Table 8. Pair Task Pattern (P)

Task
Pattern

Timeslot
TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 TS16 TS17 TS18

(1&2)-A 1
2

1
2

1
2

1
2

brea
k

1
2

1
2

1
2

1
2

1
2

1
2

(1&2)-B 1
2

1
2

1
2

1
2

1
2

brea
k

1
2

1
2

1
2

1
2

1
2

(3&2)-A 3
2

3
2

3
2

3
2

brea
k

3
2

3
2

3
2

3
2

3
2

3
2

(3&2)-B 3
2

3
2

3
2

3
2

3
2

brea
k

3
2

3
2

3
2

3
2

3
2

© Liu, Song, Kobayashi, Liu

86

Step 4: Use Model 1 to obtain the staff assignments.
Finally, we replace the fully enumerated task patterns with the derived task patterns and

incorporate them into the set covering model. For the given set of generated task patterns,
the obtained solution is optimal. However, since many task patterns are not considered
during the generation process, the solution is an approximate solution to the original
problem. In Section 4.3, we will evaluate the quality of this solution.

Next, we present numerical experiments where the task patterns generated by the
proposed method are applied to Model 1.

4.2. Numerical experiment for Team 1
All experiments in this paper are conducted using a PC with Intel(R) Core (TM) i9-

12900HQ 2.80GHz CPU, 32GB of RAM. The software environment included Python 3.9,
the PuLP library, and the CBC solver. The experimental data is provided by SENKO
Business Support Corporation, Japan.

In this experiment, Model 1 is used to solve the daily scheduling problem for Team 1
(Days 1-5). The team is composed of 23 staff members and is responsible for 16 tasks. The
penalty for understaffing task k in each timeslot, denoted as 𝑤𝑤𝑘𝑘, is set to 0.1.

Table 9 presents the task demands in Team 1 on Day 4 (Appendix B provides the
remaining input data for Team 1).

The proficiency levels and the task demand table are first input into Algorithm 1, as
described in Section 4.1, to generate the task patterns. Subsequently, all input data is
incorporated into the set covering model. The resulting daily staff scheduling outcomes are
presented in Table 10.

As illustrated in Table 10, staff 1 is assigned a uniform task pattern, working on TK11
from TS8-TS17, with a break during TS12. Staff 13 is assigned a mixed task pattern, mainly
working on TK8 from TS9 to TS18 but reassigned to TK16 during TS10, TS17, and TS18.
In addition, staff 7 is assigned a pair task pattern and work on both TK1 and TK4
simultaneously within each timeslot, with a break during TS12. Since staff 10, 14, 16, 19,
and 20 have a day off, they are not shown on the table.

Additionally, staff 9 and 21 do not resume work after a break, resulting in an unnatural
allocation. This issue will be addressed in Section 6.

Table 11 presents a comparison of the number of task patterns and computation times
for Team 1 over Days 1 to 5, under three task pattern strategies: U, UM, and UMP. Here, U
refers to uniform task patterns; UM includes both uniform and mix task patterns; and UMP
incorporates uniform, mix, and pair task patterns. From the perspective of task pattern
quantity, even when excluding pair task patterns (i.e., without applying UMP), obtaining an
optimal solution through the set covering model would require enumerating up to 1611
combinations. In contrast, under the UMP setting based on experimental data, the number
of task patterns is reduced to a maximum of only 64.

Regarding computation time, it is evident that as task pattern complexity increases, both
the number of task patterns and the corresponding computation time increase accordingly.
For example, during Day 2, the computation times for the U, UM, and UMP strategies are
0.63s, 2.02s, and 3.54s, respectively. Over the five-day period, the average computation
times for U, UM, and UMP are 0.77 s, 1.82 s, and 3.06 s, respectively.

Having discussed runtime, we now examine the solution quality of Algorithm 1 in
Section 4.3.

Queueing Models and Service Management

87

Table 9. Task Demands in Team 1 on Day 4
Task
ID

Timeslot
TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 TS16 TS17 TS18

Task1 1 1 1 0 1 1 1 1 1 0 0
Task2 0 3 3 3 1 2 3 3 3 3 1
Task3 0 1 1 1 0 1 1 1 1 1 0
Task4 0 0.5 0.5 0.5 0 0.5 0.5 0.5 0.5 0.5 0
Task5 0 0 2 2 1 1 2 2 2 2 0
Task6 0 0 0 0 0 0 0 0 0 0 0
Task7 0 0 0 0 0 0 0 0 0 0 0
Task8 0 2 2 2 1 1 1 1 1 1 0
Task9 0 1 1 1 0 1 1 1 1 1 0

Task10 0 0 0 0 0 0 0 0 0 0 0
Task11 2 3 3 3 1 2 3 3 3 3 0
Task12 0 1 1 1 1 0 1 1 1 1 0
Task13 0 0 0 0 0 0 0 0 0 0 0
Task14 0 1 0 0 0 0 0 0 0 0 0
Task15 0 2 2 2 1 1 2 2 2 2 0
Task16 0 0 1 0 0 0 0 0 0 1 1

(Unit: person · hour)
Table 10. Daily Scheduling of Staff Assignments on Day 4

Staff
ID

Timeslot
TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 TS16 TS17 TS18

1 TK11 TK11 TK11 TK11 break TK11 TK11 TK11 TK11 TK11 0
2 TK11 TK11 TK11 TK11 break TK11 TK11 TK11 TK11 TK11 0
3 0 TK11 TK11 TK11 TK11 break TK11 TK11 TK11 TK11 0
4 TK1 TK1 TK1 TK1 TK1 break TK1 TK1 TK1 TK1 0
5 0 TK2 TK2 TK2 break TK2 TK2 TK2 TK2 TK2 TK2
6 0 TK2 TK2 TK2 TK2 break TK2 TK2 TK2 0 0
7 0 TK4

TK1
TK4
TK1

TK4
TK1 break TK4

TK1
TK4
TK1

TK4
TK1

TK4
TK1 0 0

8 0 TK3 TK3 TK3 break TK3 TK3 TK3 TK3 0 0
9 0 TK7 TK7 TK7 break 0 0 0 0 0 0

11 0 TK5 TK5 TK5 TK5 break TK5 TK5 TK5 0 0
12 0 TK5 TK5 TK5 break TK5 TK5 TK5 TK5 TK5 0
13 0 TK8 TK16 TK8 break TK8 TK8 TK8 TK8 TK16 TK16
15 0 TK8 TK8 TK8 TK8 break TK8 TK8 TK8 TK8 TK8
17 0 TK12 TK12 TK12 TK12 break TK12 TK12 TK12 TK12 0
18 0 TK9 TK9 TK9 break TK9 TK9 TK9 TK9 TK9 0
21 0 TK15 TK15 TK15 TK15 break 0 0 0 0 0
22 0 TK15 TK15 TK15 break TK15 TK15 TK15 TK15 TK15 0
23 0 TK14 TK15 TK15 TK15 break TK15 TK15 TK15 TK15 0

© Liu, Song, Kobayashi, Liu

88

Table 11. Comparison of the Number of Task Patterns and Computation Time in Team 1
Day Strategies Number of Task Patterns Computation Time (seconds)

1
U 32 0.80

UM 38 1.94
UMP 38* 1.94

2
U 32 0.63

UM 56 2.02
UMP 64 3.54

3
U 32 0.75

UM 56 1.53
UMP 64 3.56

4
U 32 0.80

UM 56 1.57
UMP 64 3.64

5
U 32 0.85

UM 48 2.03
UMP 56 2.63

* no pair task pattern was generated due to zero demand for Task 4 on Day 1.

4.3. Evaluation of solution quality for algorithm 1

Here, we evaluate solution quality by comparing Algorithm 1 with a linear model that
offers a theoretical lower bound.

Table 12 presents the understaffing results of three task pattern strategies—U, UM, and
UMP—in Algorithm 1. To better understand the performance boundaries of Algorithm 1, a
linear model is introduced as a benchmark for comparison.

The linear model is formulated by directly assigning workforce allocation for each
timeslot, without using task patterns. The advantage of this model lies in its ability to assign
theoretically optimal staffing levels for each timeslot without relying on predefined task
patterns. However, it also has two major limitations: first, it does not restrict the number of
tasks assigned within a single timeslot, which may result in more than three tasks being
allocated simultaneously; second, frequent task switching may occur throughout the day,
which is inconsistent with practical operational requirements for task continuity.
Nevertheless, this linear model can serve as a theoretical lower bound for Algorithm 1,
allowing the evaluation of how closely its solution approaches the bound.

As shown in Table 12, we first observe that as the number of task patterns increases
from U to UMP, the total understaffing steadily decreases.

Furthermore, we compare the UMP-based solutions of Algorithm 1 with those of the
linear model. On Day 1, both Algorithm 1 and the linear model successfully satisfied 100%
of the task demands. On Day 4, based on the total task demand of 132 person · hours

Queueing Models and Service Management

89

calculated from Table 9, the UMP solution in Algorithm 1 and the linear model yielded
weighted understaffing values of 0.25 and 0.10, respectively (𝑤𝑤𝑘𝑘 is set to 0.1). This
indicates that the solutions fulfilled 98.1% and 99.2% of the task demands, respectively. For
Days 2, 3, and 5, the UMP-based solutions covered 95.5%, 94.3%, and 95.8% of the task
demands, while the linear model achieved 97.9%, 98.7%, and 97.2%, respectively. These
results clearly demonstrate that the solutions obtained using UMP in Algorithm 1 are close
to those of the linear model, validating the effectiveness of the proposed heuristic algorithm.

To further narrow the performance gap with the linear model, the algorithm is improved
in Section 5 to enhance the task pattern generation process.

Table 12. Comparison of Results in Team 1

Day Strategies Understaffing
(Algorithm 1)

Understaffing
(Linear Model)

1
U 0

0.00 UM 0
UMP 0

2
U 0.70

0.25 UM 0.60
UMP 0.55

3
U 0.80

0.15 UM 0.70
UMP 0.65

4
U 0.45

0.10 UM 0.35
UMP 0.25

5
U 0.65

0.30 UM 0.50
UMP 0.45

5. Improvement of Task Patterns
Based on the numerical experiment results presented in Section 4, further analysis

reveals that in several timeslots while some tasks experience understaffing, others are
overstaffed during the same timeslot.

Figure 3 illustrates the distribution of understaffing and overstaffing for Team 1 on Day
4. In this heatmap, positive values (represented in red) represent overstaffing, whereas
negative values (represented in blue) indicate understaffing. As shown in the figure,
overstaffing and understaffing occur simultaneously at TS17. To address this issue, the
following algorithm is introduced to generate new task patterns aimed at reducing
understaffing.

© Liu, Song, Kobayashi, Liu

90

Figure 3. Distribution of overstaffing and understaffing

5.1. Algorithm 2

Figure 4 presents the flowchart of Algorithm 2. Steps 1 to 4 are the same as those in the
algorithm described in Section 4, while the subsequent steps represent the task pattern
improvements introduced in Algorithm 2 (see Appendix C for detailed pseudocode).

In this context, the following new symbol, 𝑐𝑐𝑘𝑘𝑘𝑘, is introduced:
𝑐𝑐𝑘𝑘𝑘𝑘: amount of overstaffing for task k at timeslot l.

The following additional steps are as follows:
Step 5: Check whether the task pattern can be improved.
Step 5-1: For each task k, timeslot l, compute the values of understaffing 𝑧𝑧𝑘𝑘𝑘𝑘 and
overstaffing 𝑐𝑐𝑘𝑘𝑘𝑘.
Step 5-2: If ∃ 𝑙𝑙, 𝑘𝑘, 𝑘𝑘′ such that 𝑧𝑧𝑘𝑘𝑘𝑘 > 0, 𝑐𝑐𝑘𝑘′𝑙𝑙 > 0, and at least one staff member has skills
in both k and 𝑘𝑘′, then proceed to Step 6. Otherwise, go to Step 7.
Step 6: Task pattern improvement.

For each combination of l, k and 𝑘𝑘′ identified in Step 5-2, generate four new task
patterns:

The first two patterns are mix task patterns, where task k is assigned at the timeslots l
that satisfy both 𝑧𝑧𝑘𝑘𝑘𝑘 > 0 and 𝑐𝑐𝑘𝑘′𝑙𝑙 > 0, and task 𝑘𝑘′ is assigned in the remaining timeslots
l (see Table 13 for an example).

The other patterns are pair task patterns, where both tasks k and k′ are assigned
simultaneously at the timeslots l that satisfy both 𝑧𝑧𝑘𝑘𝑘𝑘 > 0 and 𝑐𝑐𝑘𝑘′𝑙𝑙 > 0 , and task k′ is
assigned in the remaining timeslots l (see Table 14 for an example).

Note: This pair task pattern differs from that in Algorithm 1; pairing occurs only at

Queueing Models and Service Management

91

timeslot 𝑙𝑙, while other timeslots remain assigned to 𝑘𝑘′or are set to break.
Step 6-2: Return to step 4.
Step 7: Stop.

 Step 2: Generate mix task patterns

 Step 3: Generate pair task patterns

 Step 4: Use Model 1 to obtain the staff assignments

 Step 1: Generate uniform task patterns

Step 5: Can task
Patterns be improved?

 Step 6: Task pattern improvement

Yes

 Step 7: Stop

No

Figure 4. Flowchart of pattern improvement

Table 13. Improved Mix Task Pattern Generation

Task
Pattern

Timeslot
TS8 … TS12 TS13 … l-1 l l+1 … TS18

[𝑘𝑘′+ k]-A 𝑘𝑘′ … break … … 𝑘𝑘′ k 𝑘𝑘′ … 𝑘𝑘′
[𝑘𝑘′+ k]-B 𝑘𝑘′ … … break … 𝑘𝑘′ k 𝑘𝑘′ … 𝑘𝑘′

*Notation [] is used to avoid naming conflicts with the task patterns in Algorithm 1.

Table 14. Improved Pair Task Pattern Generation

Task
Pattern

Timeslot
… l-1 l l+1 … TS12 TS13 … TS18

[𝑘𝑘′& k]-A … 𝑘𝑘′ k
𝑘𝑘′ 𝑘𝑘′ … break … … 𝑘𝑘′

[𝑘𝑘′& k]-B … 𝑘𝑘′ k
𝑘𝑘′ 𝑘𝑘′ … … break … 𝑘𝑘′

© Liu, Song, Kobayashi, Liu

92

5.2 Numerical experiments on algorithm 2 (Team 1)

Table 15 summarizes the experimental results for Team 1 over all five days. The results
show that, except for Day 1 where the optimal value had already been achieved, the
objective function values of Model 1 improved on the remaining days and approached those
of the linear model. Notably, on Day 4, the result reached the theoretical lower bound. These
findings provide strong evidence supporting the effectiveness of Algorithm 2.

Table 15. Improvement results for 5 days
Date Algorithm 1 Algorithm 2 Linear Model

Day 1 0.00 0.00 0.00
Day 2 0.55 0.45 0.25
Day 3 0.65 0.40 0.15
Day 4 0.25 0.10 0.10
Day 5 0.45 0.30 0.25

The improved task patterns effectively reduce understaffing and bring the solution

closer to the theoretical lower bound. In the next section, we introduce Model 2 to better
incorporate real-world conditions into the set covering model.

6. Model Improvements (Model 2)

6.1. Overview of model improvements

By applying the above algorithms, the task patterns are greatly reduced and improved,
and these task patterns are successfully incorporated into Model 1. The model serves as a
fundamental analytical framework that clearly formulates the core structure and essential
constraints of the scheduling problem in a simplified and tractable form. It enables us to
clarify the key decision variables and objective functions, and by comparing its solution
with the theoretical lower bound, we can confirm its feasibility and usefulness. Although
Model 1 abstracts from certain real-world aspects, this abstraction is intentional, as it allows
us to isolate and understand the fundamental mechanism of the problem. To better align the
model with real-world requirements, we introduce the following extensions and refinements,
leading to the development of Model 2.
(A) Neglected Tasks (NT):

Neglected Tasks (NT) refer to tasks that have task demands but remain entirely
unassigned throughout the day.

For instance, as shown in Table 16, task 1 has a demand of 1 from TS10 to TS18, while
task 2 only has a demand of 1 at TS18. In this setting, assume that a staff member has the
skills to perform both task 1 and task 2. Under this assumption, Model 1 may produce two
different scheduling outcomes, as illustrated in Table 17.

Queueing Models and Service Management

93

In Scenario 1, the staff member is assigned to task 1 from TS8 to TS18. Since task 2
receives no assignment throughout the entire day, it becomes an NT. In Scenario 2, the staff
member is assigned to task 1 from TS8 to TS17 and to task 2 at TS18. Although task 1
experiences a slight understaffing during one timeslot, no NT occurs in this case.

In these two scenarios, the total understaffing is both equal to 1. However, in practical
applications, it is undesirable for tasks with demand to be completely neglected. Therefore,
the assignment shown in Scenario 2 is regarded as more desirable. To address this issue, a
penalty mechanism is introduced to prevent NT.

Table 16. Example of Task Demands for NT

Task ID
Timeslot

TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 TS16 TS17 TS18
Task 1 0 0 1 1 1 1 1 1 1 1 1
Task 2 0 0 0 0 0 0 0 0 0 0 1

Table 17. Two Scenarios of Task Assignment

Scenario Task Assignment
Understaffing

Task 1 Task 2

1 TS8-TS18: Task 1 0 1

2 TS8-TS17: Task 1; TS18: Task 2 1 0

(B) Shift Flag:
Model 1 simplifies computation by assuming that all staff take breaks during TS12 or

TS13. However, this assumption overlooks the diversity of real-world shifts—some shifts
do not require breaks (e.g., staff 9 and 21 in Table 10), while others require break timeslots
later in the schedule.

As illustrated in Figure 5, the color highlights the working status: green cells denote
idle timeslots, and orange cells indicate active assigned timeslots. The diversity of shift
patterns makes it inappropriate to fix all breaks at TS12 or TS13. For example, shifts 0 and
1 do not require breaks at all. For shift 2, which starts at TS8 or TS9 and extends beyond
six hours, allocating breaks around TS12 or TS13 is reasonable. However, for shifts that
begin later in the day, forcing breaks at TS12 or TS13 does not reflect practical operations.
Therefore, Model 2 introduces a “Shift Flag” mechanism to flexibly map break periods
according to the actual structure of each shift.

Figure 6 presents examples of shift flags, which are categorized into five types: 0, 1, 2,
3, and 4. In the figure, yellow cells indicate the possible break periods corresponding to each
shift flag. Specifically, shift flag 0 indicates no break time; for shift flag 1, break times may
be assigned to TS12 or TS13; for shift flag 2, to TS13 or TS14 and so on.

It should be noted that as the number of potential break timeslots increases, the number
of task patterns also grows accordingly. This aspect is further discussed in the numerical
experiments (Section 6.3).

© Liu, Song, Kobayashi, Liu

94

Shift
ID

Timeslot Shift
Flag TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 TS16 TS17 TS18

0 0

1 0

2 1

3 2

4 3

5 4

Figure 5. Examples of Shifts and Their Corresponding Shift Flags

Shift
Flag

Timeslot
… TS11 TS12 TS13 TS14 TS15 TS16 TS17 …

0

1

2

3

4

Figure 6. Shift Flag and Break Time Allocation Table
(C) Balanced Understaffing Constraint During Break Timeslots:

Through multiple numerical experiments, we observed that Model 1 may lead to
imbalanced task assignments around the break timeslot. As shown in Table 18, consider a
situation where the total understaffing for task k during TS12 and TS13 is 2. In Scenario 3,
the entire understaffing is concentrated in TS12. However, in practice, it is preferable to
distribute the understaffing more evenly across the two timeslots (Scenario 4). To better
reflect this operational preference, we introduce additional constraints aimed at
discouraging the concentration of understaffing in a single timeslot.

Table 18. Comparison of Understaffing Distribution Between the Two Scenarios

Task Scenario
Understaffing

TS12 TS13

k
3 2 0
4 1 1

Queueing Models and Service Management

95

In the process of validating numerical results, we found that the imbalance mostly
occurs between TS12 and TS13, with few occurrences in other timeslots. Therefore, we
introduce constraints that attempt to impose restrictions only on TS12 and TS13 to keep the
fluctuation in understaffing generally within the range of -1 to 1.

6.2. Model 2 formulation

Considering the three situations (A), (B) and (C), we develop Model 2 as follows.

Symbols
This section defines several new symbols specific to the current context in addition to

those defined in Section 3.1.
h = penalty for NT. A large constant ensuring that NT incur a significantly higher penalty
compared to understaffing. The value of h is chosen such that h ≫ 𝑤𝑤𝑘𝑘.
M, ε: M is a sufficiently large positive number and ε is a sufficiently small positive number.
𝐶𝐶𝑖𝑖: the shift flag ID of the shift assigned to staff i.
𝐹𝐹𝑗𝑗: the shift flag ID associated with task pattern j (as shown in Table 20).

𝛿𝛿𝑖𝑖𝑖𝑖 = �
1, if 𝐶𝐶𝑖𝑖 = 𝐹𝐹𝑗𝑗
0, otherwise

The symbols 𝐶𝐶𝑖𝑖 and 𝐹𝐹𝑗𝑗 are solely introduced to define 𝛿𝛿𝑖𝑖𝑖𝑖 and are not involved in
other parts of the model.
Decision variables

𝑢𝑢𝑘𝑘 = �1, if task 𝑘𝑘 is an NT
0, otherwise

Model 2
Objective function

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ℎ ∑ 𝑢𝑢𝑘𝑘 +𝐾𝐾
𝑘𝑘=1 ∑ ∑ 𝑤𝑤𝑘𝑘𝑧𝑧𝑘𝑘𝑘𝑘

𝐿𝐿+7
𝑙𝑙=8

𝐾𝐾
𝑘𝑘=1 (1')

Subject to

 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝐽𝐽
𝑗𝑗=1 = 1 (∀𝑖𝑖 = {1,2, … , 𝐼𝐼} with 𝑠𝑠𝑖𝑖 > 0) (2)

 ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝐽𝐽
𝑗𝑗=1

𝐼𝐼
𝑖𝑖=1 𝑎𝑎𝑙𝑙𝑠𝑠𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑧𝑧𝑘𝑘𝑘𝑘 ≥ 𝑏𝑏𝑘𝑘𝑘𝑘 (∀𝑘𝑘 ∈ {1,2, … , 𝐾𝐾}, ∀𝑙𝑙 ∈ {8,9, … , 𝐿𝐿 + 7}) (3)

 𝑥𝑥𝑖𝑖𝑖𝑖 = {0,1} (∀𝑖𝑖 ∈ {1,2, … , 𝐼𝐼}, ∀𝑗𝑗 ∈ {1,2, … , 𝐽𝐽}) (4)

 𝑧𝑧𝑘𝑘𝑘𝑘 ≥ 0 (∀𝑘𝑘 ∈ {1,2, … , 𝐾𝐾}, ∀𝑙𝑙 ∈ {8,9, … , 𝐿𝐿 + 7}) (5)

 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝛿𝛿𝑖𝑖𝑖𝑖 (∀𝑖𝑖 ∈ {1,2, … , 𝐼𝐼}, ∀𝑗𝑗 ∈ {1,2, … , 𝐽𝐽}) (6)

 ∑ 𝑏𝑏𝑘𝑘𝑘𝑘
𝐿𝐿+7
𝑙𝑙=8 − ∑ 𝑧𝑧𝑘𝑘𝑘𝑘

𝐿𝐿+7
𝑙𝑙=8 ≥ −𝑀𝑀 ∙ 𝑢𝑢𝑘𝑘 (∀𝑘𝑘 ∈ {1,2, … , 𝐾𝐾}) (7)

 ∑ 𝑏𝑏𝑘𝑘𝑘𝑘
𝐿𝐿+7
𝑙𝑙=8 − ∑ 𝑧𝑧𝑘𝑘𝑘𝑘

𝐿𝐿+7
𝑙𝑙=8 ≤ 𝑀𝑀 ∙ (1 − 𝑢𝑢𝑘𝑘) − 𝜖𝜖 (∀𝑘𝑘 ∈ {1,2, … , 𝐾𝐾}) (8)

© Liu, Song, Kobayashi, Liu

96

 𝑧𝑧𝑘𝑘,12 − 𝑧𝑧𝑘𝑘,13 ≤ 1 (∀𝑘𝑘 ∈ {1,2, … , 𝐾𝐾}) (9)

 𝑧𝑧𝑘𝑘,12 − 𝑧𝑧𝑘𝑘,13 ≥ −1 (∀𝑘𝑘 ∈ {1,2, … , 𝐾𝐾}) (10)

 𝑢𝑢𝑘𝑘 = {0,1} (∀𝑘𝑘 ∈ {1,2, … , 𝐾𝐾}) (11)

Equation (1') primarily seeks to minimize the number of NT, while reducing
understaffing. This dual objective aims to provide more efficient and balanced staff
scheduling. Equations (2) - (5) are the same as in Model 1 (Section 3). Equation (6) ensures
that each staff member is only allowed to select task patterns with the same shift flag of his
shift. Equations (7) and (8) enforce the binary variable 𝑢𝑢𝑘𝑘 to equal 1 if k is a NT, and 0
otherwise. Equations (9) and (10) ensure that the difference in understaffing between two
consecutive break timeslots (TS12 and TS13) remains within the range of -1 to 1. The
purpose of this constraint is to balance staffing levels during break timeslots.

6.3. Numerical experiment for Team 2

Team 2 consists of 22 staff members responsible for 30 tasks, and the task patterns are
generated based on the heuristic algorithm proposed above.

Table 19 presents a part of the monthly shift of Team 2, where each staff member is
assigned a specific shift ID for each day. Figure 7 illustrates the corresponding shift patterns,
showing that Team 2 operates under 15 different shifts. Each shift is associated with a shift
flag, which is visually distinguished by different colors in Figure 7. For example, shift IDs
1, 4, 5, and 15 belong to shift flag 0 (gray).

Table 19. Team 2: A part of the Monthly Shift

Staff ID
Timeslot

Day 1 Day 2 … Day 27 Day 28 Day 29 Day 30
1 0 10 … 0 8 8 8
2 8 0 … 8 8 8 0
3 3 0 … 3 3 3 3
4 8 8 … 8 8 8 8
5 8 3 … 8 0 0 8
6 8 0 … 8 8 8 8
7 1 0 … 0 8 8 8

… … … … … … … …
22 0 0 … 13 14 13 0

Queueing Models and Service Management

97

Figure 7. Team 2: Shift Pattern

In Team 2, five types of shift flags are defined: 0, 1, 2, 3, and 4 (as described in Section
6.1). Except for shift flag 0, which indicates no break timeslot, each shift flag corresponds
to a specific set of permissible break timeslots. For example, shift flag 1 allows breaks
during TS12 or TS13, while shift flag 2 corresponds to breaks during TS13 or TS14.

To illustrate how these shift flags influence task pattern construction in Model 2, we
refer to the task patterns assigned on Day 1 (Table 20). It should be noted that Table 20 only
presents the Uniform task patterns, and in Section 4, task patterns were previously denoted
as 1-A and 1-B to represent task 1 with breaks assigned to TS12 and TS13, respectively.
However, in this table, due to the incorporation of shift flags, the task patterns are labeled
from 1-0 to 1-8 to distinguish each variation. In this manner, all types of task patterns—
Uniform, Mix, and Pair—have been increased to 4.5 times their original number.

It is important to note that some task patterns share identical task assignments but differ
in their shift flags (for example, 1-2 and 1-3, 1-4 and 1-5). This design is intentional, as each
staff member is restricted to task patterns that match the shift flag of their assigned shift.
For instance, in Table 19, staff member 2 is assigned to shift 8 on Day 1. According to Figure
7, shift 8 corresponds to shift flag 1, which means this staff member can only be assigned
to task patterns such as 1-1 or 1-2, rather than 1-3 or any others.

Table 21 summarizes the one-month scheduling outcomes for Team 2. As shown in the
results, the number of UMP task patterns does not exceed 400, and the computation time for
each day remains below 1.43s. To provide a more intuitive comparison of the NT values and
understaffing with Model 1, a comparison is provided in Figure 8.

© Liu, Song, Kobayashi, Liu

98

Table 20. Team 2: Uniform Task Pattern on Day 1
Task

Pattern
Timeslot Shift

Flag … TS12 TS13 TS14 TS15 TS16 …
1-0 … 1 1 1 1 1 … 0
1-1 … break 1 1 1 1 … 1
1-2 … 1 break 1 1 1 … 1
1-3 … 1 break 1 1 1 … 2
1-4 … 1 1 break 1 1 … 2
1-5 … 1 1 break 1 1 … 3
1-6 … 1 1 1 break 1 … 3
1-7 … 1 1 1 break 1 … 4
1-8 1 1 1 1 break 4
… … … … … … … … …

30-8 … 30 30 30 30 break … 4

Table 21. Results for Team 2

Day
Pattern
Number
(UMP)

Calculation Time
(seconds) Number of NT Understaffing

1 217 0.75 0 0.43
2 181 0.56 1 0.48
3 145 0.48 0 1.20
4 397 1.43 0 1.83
5 334 1.15 0 2.90
6 379 1.37 0 1.95
7 370 1.38 0 1.75
8 199 0.65 1 1.13
9 199 0.67 0 0.75
10 145 0.46 0 1.83
… … … … …
29 307 1.15 0 1.40

Figure 8 compares the performance of Models 1 and 2 in terms of understaffing and NT.

The bar charts show the daily understaffing, with blue indicating Model 2 and orange
representing Model 1. The line charts show the daily number of NT, with green for Model
2 and red for Model 1. The left vertical axis represents understaffing values, whereas the
right vertical axis indicates the number of NT.

As intended, a certain trade-off was observed between NT and understaffing. As shown

Queueing Models and Service Management

99

in Figure 8, Model 2 exhibits slightly higher understaffing compared to Model 1, primarily
due to the introduction of additional constraints. Meanwhile, Model 2 demonstrates a
significant advantage in reducing NT, effectively mitigating the issue of unassigned low-
demand tasks. Analysis indicates that the number of NT instances in Model 2 is reduced by
90.48% compared to Model 1.

Figure 8. Comparison of understaffing and NT by model for Team 2

6.4. Results of Team 3

In addition to the numerical result mentioned above, we have conducted experiments
on several other teams (one set per month) to validate the effectiveness and generalizability
of the model. Here, we present only the results for Team 3.

Data for Team 3 includes 9 staff members and 22 tasks. Due to the relatively small
number of staff in Team 3, the computation time and the number of NT are comparatively
lower.

Figure 9 presents a comparison of understaffing and NT between models for Team 3.
As shown in the figure, NT is reduced by 100%.

6.5. Summary

In this section, we present several enhancements to Model 2, including the introduction
of shift flags, a penalty mechanism for NT, and additional constraints to balance
understaffing during break timeslots. These improvements aim to enhance the model’s
practicality and adaptability to real-world scenarios. Numerical experiments provide strong
evidence for their effectiveness: the incorporation of shift flags enabled more flexible break
scheduling for staff. While there was a slight increase in understaffing, NT was significantly
reduced—by 90.48% for Team 2 and eliminated (100%) for Team 3.

© Liu, Song, Kobayashi, Liu

100

Figure 9. Comparison of understaffing and NT by model for Team 3

From a time-efficiency perspective, in the current field operations of SENKO Business
Support Corporation, the daily shift scheduling for an average size team over a one-month
period is typically completed by the team leader and takes more than 8 hours. In contrast,
Model 2 accomplishes the same task in approximately 30 seconds. Given that the company
manages about ten teams, Model 2 markedly reduces the total scheduling time.

From a practical standpoint, a web-based application is also developed to enable team
leaders to complete daily shift scheduling through a simple and intuitive interface. Although
numerical experiments demonstrate that the proposed model effectively reduces
understaffing, a small number of NT and some understaffing remain, which require minor
manual adjustments by team leaders to satisfy specific operational constraints.

The schedules generated by our model have already been adopted by the company and
are currently in preparation for deployment in actual operations. Feedback from users
further supports its practicality. First, team leaders emphasized that, compared with the
previous manual scheduling process, the model greatly reduced the time required for
preparing daily schedules. Second, although some minor manual adjustments are still
required, the generated schedules are generally consistent with operational expectations,
ensuring the feasibility of daily shift scheduling in practice.

7. Summary and Future Work
This study aims to apply a set covering model to address the daily shift scheduling

problem in a multi-task call center. Since the traditional set covering model requires
enumerating all possible task patterns, the model size grows exponentially with the number
of tasks, resulting in significant computational burdens in practical applications. To address
this problem, we proposed a heuristic algorithm that generated a restricted set of task
patterns and integrated them into the solution process, thereby reducing the number of

Queueing Models and Service Management

101

patterns required. To improve pattern quality, we developed Algorithm 2, which further
reduced understaffing and narrowed the gap to the theoretical bound. To better reflect real-
world conditions, we introduced Model 2 and validated its effectiveness through numerical
experiments. The model has been adopted by the company and is now being prepared for
practical deployment.

When the team size expands to several hundred members, Model 2 may incur excessive
runtime or degradation of solution quality. At such extreme scales, alternative formulations
or more efficient solution procedures may be required to maintain reliability. However, from
an organizational perspective, large-scale teams are usually divided into several teams. In
the context of this study, the largest team in the call center examined has just over one
hundred members. Empirical evaluations indicate that, at this scale, Model 2 still performs
well in both computational runtime and solution quality.

Additionally, we recognize that the current model still leaves room for improvement in
solution quality. Moreover, although daily shift scheduling has been automated in this study,
monthly schedules are still generated manually. Therefore, future work will focus on
developing an integrated model that simultaneously addresses daily and monthly schedules.

Acknowledgment
This paper is based on results obtained from a project commissioned by SENKO Group

Holdings Co., Ltd. and SENKO Business Support Co., Ltd.

References
[1] Aldor-Noiman, S., Feigin P. D., & Mandelbaum, A. (2010). Workload forecasting for

a call center: Methodology and a case study. arXiv preprint arXiv:1009.5741.
[2] Aykin, T. (2000). A comparative evaluation of modeling approaches to the labor shift

scheduling problem. European Journal of Operational Research, 125, 381–397.
[3] Avramidis, A. N., Chan, W., Gendreau, M., L’Ecuyer, P., & Pisacane, O. (2010).

Optimizing daily agent scheduling in a multiskill call center. European Journal of
Operational Research, 200(3), 822–832.

[4] Bhulai, S., Koole, G., & Pot, A. (2008). Simple methods for shift scheduling in
multitask call centers. Manufacturing & Service Operations Management, 10(3), 411–
420.

[5] Dantzig, G. B. (1954). A comment on Edie’s traffic delay at toll booths. Journal of the
Operations Research Society of America, 2(2), 339–341.

[6] Demiriz, A., & Türker, T. (2018). An integrated approach for shift scheduling and
rostering problems with break times for inbound call centers. Mathematical Problems
in Engineering, 2018, 1–19.

[7] Ding, S., & Koole, G. (2022). Optimal call center forecasting and staffing. Probability
in the Engineering and Informational Sciences, 36(2), 254–263.

© Liu, Song, Kobayashi, Liu

102

[8] Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and
rostering: A review of applications, methods and models. European Journal of
Operational Research, 153, 3–27.

[9] Fukunaga, A., Hamilton, E., Fama, J., Andre, D., Matan, O., & Nourbakhsh, I. (2002).
Staff scheduling for inbound call and customer contact centers. AI Magazine, 23(4), 30.

[10] Hurkens, C. A. J., & Firat, M. (2012). An improved MIP-based approach for a multi-
skill workforce scheduling problem. Journal of Scheduling, 15(3), 363–380.

[11] Lavoie, S., Minoux, M., & Odier, E. (1988). A new approach for crew-pairing problems
by column generation with an application to air transportation. European Journal of
Operational Research, 35, 45–58.

[12] Li, C., Liu, Z., Song, Y., Liu, H., Liu, H., & Liu, X. (2024). Quantum computing
approaches to optimize employee scheduling in multi-task call centers. Lecture Notes
in Mechanical Engineering, 3–9, Springer. doi: 10.1007/978-981-97-0194-0_1

[13] Liu, H., Liu, X., Li, C., & Song, Y. (2023). A Two-stage Model for Multi-Task Call
Center Shift Scheduling. In Proceedings of the 9th International Conference on
Engineering, Applied Sciences and Technology, 75–78.
doi: 10.1109/ICEAST58324.2023.10157399

[14] Liu, H., Song, Y., & Liu, X. (2025). Two-stage optimization for multi-task call center
daily shift scheduling. To appear in Asian Journal of Management Science and
Applications.

[15] Liu, X., Liu, H., Song, Y., & Li, C. (2023). Improvement of Task Pattern Generation
in Multi-task Call Centers. In Proceedings of the 8th International Conference on
Business and Industrial Research, 1269–1273.
doi: 10.1109/ICBIR57571.2023.10147714

[16] Mason, A, J., Ryan, D. M. R., & Panton, D. M. (1998). Integrated simulation, heuristic
and optimization approaches to staff scheduling. Operations Research, 46(2), 161–175.

[17] Ministry of Health, Labour and Welfare. Labour Standards Act of Japan.
https://www.mhlw.go.jp/english/ (accessed on 14 October 2025).

[18] Néron, E. (2002). Lower bounds for the multi-skill project scheduling problem. In
Proceedings of the Eighth International Workshop on Project Management and
Scheduling, 274–277, Valencia, Spain.

[19] Shen, H., Huang, J. Z., & Lee, J. W. (2008). Forecasting time series of inhomogeneous
Poisson processes with application to call center workforce management. arXiv
preprint, arXiv:0807.4071.

[20] Su, C., Li, Y., & Lee, J. (2024). A quantitative model for staffing problems in inpatient
units with multi-type patients. Queueing Models and Service Management, 7(2), 45–
62.

[21] Thompson, G. M. (1996). A simulated annealing heuristic for shift scheduling using
non-continuously available employees. Computers & Operations Research, 23(3),
275–288.

Queueing Models and Service Management

103

[22] Zhao, M., Sun, J., & Nakade, K. (2025). A study of the multi-objective flexible job-
shop scheduling model considering human factors. Asian Journal of Management
Science and Applications, 8(2), 134-159. doi: 10.1504/AJMSA.2025.148898

[23] Zhang, J., Yamamoto, H., Sun, J., & Kajihara, Y. (2022). A study of optimal assignment
with different workers’ capacities for each process in a reset limited-cycle problem with
multiple periods. Asian Journal of Management Science and Applications, 6, 163–188.

Appendix A. Pseudocode for Algorithm 1
Algorithm 1: Heuristic Task Pattern Generation and Staff Assignments

Input: Staff set ℐ, task set 𝒦𝒦, timeslot set ℒ, demand 𝑏𝑏𝑘𝑘𝑘𝑘, staff proficiency 𝑝𝑝𝑖𝑖𝑖𝑖, break
rule: one break at TS12 (variant “–A”) or TS13 (variant “–B”).
Output: Staff assignments.
Step 0: Initialization

Initialize the task pattern set 𝒥𝒥←∅.
Step 1: Generate Uniform Task Patterns
1.1 For each task 𝑘𝑘 ∈ 𝒦𝒦:
 Construct two patterns:
 k-A: assign task k to all 𝑙𝑙 ∈ ℒ, break at TS12.
 k-B: same rule; but break at TS13.
1.2 Add k-A and k-B to 𝒥𝒥.
Step 2: Generate Mix Task Patterns
2.1 Define the set of ℒ𝑘𝑘

+: ℒ𝑘𝑘
+ ← {𝑙𝑙 ∈ ℒ|𝑏𝑏𝑘𝑘𝑘𝑘 > 0}.

2.2 Identify the set of sparse tasks: 𝒦𝒦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← {𝑘𝑘 ∈ 𝒦𝒦: |ℒ𝑘𝑘
+| ≤ 3}.

2.3 Identify the set of main tasks: 𝒦𝒦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ← {𝑘𝑘 ∈ 𝒦𝒦: |{𝑙𝑙 ∈ ℒ|𝑏𝑏𝑘𝑘𝑘𝑘 ≥ 1}| ≥ 6}.
2.4 If 𝒦𝒦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≠ ∅ and 𝒦𝒦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≠ ∅:
 go to Step 2.5.
 else:
 go to Step 3.
2.5 For two tasks k and 𝑘𝑘′ with 𝑘𝑘 ∈ 𝒦𝒦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑘𝑘′ ∈ 𝒦𝒦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚:

if ∃𝑖𝑖 ∈ ℐ with 𝑝𝑝𝑖𝑖𝑖𝑖 > 0 and 𝑝𝑝𝑖𝑖𝑘𝑘′ > 0, construct two task patterns:
 (k+𝑘𝑘′)-A: assign task k on timeslot 𝑙𝑙 ∈ ℒ𝑘𝑘

+; otherwise, assign task 𝑘𝑘′; break at
TS12.
 (k+𝑘𝑘′)-B: same rule; break at TS13.
2.6 Add (k+𝑘𝑘′)-A and (k+𝑘𝑘′)-B to 𝒥𝒥.
Step 3: Generate Pair Task Patterns
3.1 Identify the set of low demand tasks: 𝒦𝒦𝑙𝑙𝑙𝑙𝑙𝑙 = {𝑘𝑘 ∈ 𝒦𝒦: |{𝑙𝑙 ∈ ℒ|0 < 𝑏𝑏𝑘𝑘𝑘𝑘 < 1}| ≥ 6}.
3.2 If 𝒦𝒦𝑙𝑙𝑙𝑙𝑙𝑙 ≠ ∅:
 go to Step 3.3.
 else:
 go to Step 4.
3.3 For each pair (k, 𝑘𝑘′) with 𝑘𝑘 ∈ 𝒦𝒦𝑙𝑙𝑙𝑙𝑙𝑙, 𝑘𝑘′ ∈ 𝒦𝒦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚:

© Liu, Song, Kobayashi, Liu

104

if ∃𝑖𝑖 ∈ ℐ with 𝑝𝑝𝑖𝑖𝑖𝑖 > 0 and 𝑝𝑝𝑖𝑖𝑘𝑘′ > 0, construct two task patterns:
 (k&𝑘𝑘′)-A: in every timeslot, assign both tasks k and 𝑘𝑘′simultaneously; break at
TS12.
 (k&𝑘𝑘′)-B: same rule; break at TS13.
3.4 Add (k&𝑘𝑘′)-A and (k&𝑘𝑘′)-B to 𝒥𝒥.
Step 4: Use Model 1 to obtain staff assignments

Use 𝒥𝒥 and Model 1 to obtain staff assignments.

Appendix B. Data of Team 1
Table A.1. Proficiency Levels in Team 1

Staff ID
Task ID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
4 2 2 0 0 0 2 0 2 0 0 0 0 0 0 0 1.5 1
5 2 2 0 2 0 2 0 0 0 0 0 0 0 0 0 1.5 1
6 0 2 0 0 0 2 0 0 0 0 0 0 0 1.5 0 0 1
7 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 1.5 1
8 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1
9 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 2 2 2 0 0 0 0 0 0 0 2 1.5 1
11 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 1
12 0 0 0 0 2 2 2 2 0 0 0 0 2 0 0 1.5 1
13 0 0 0 0 0 0 0 2 2 0 0 0 2 0 1.5 1.5 1
14 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1.5 1
15 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 1
16 2 2 2 0 0 0 0 0 0 0 0 2 2 0 0 1.5 1
17 0 0 0 0 0 0 0 0 2 0 0 2 2 0 0 1.5 1
18 0 0 0 0 0 0 0 0 2 0 0 2 2 1.5 0 1.5 1
19 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 0 0 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
21 0 0 0 0 0 0 0 0 0.75 0 0 0 0 0 2 1.5 1
22 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 2 1.5 1
23 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 1.5 0 1

(Unit: person · hour)

Queueing Models and Service Management

105

Table A.2. Part of the Monthly Shift

Staff ID Timeslot
Day 1 Day 2 Day 3 Day 4 Day 5

1 3 3 3 3 3
2 3 3 0 3 3
3 2 2 2 2 2
4 4 0 4 3 4
5 1 1 2 1 0
6 5 5 5 5 5
7 5 5 5 5 5
8 5 5 5 5 5
9 6 6 6 10 6

10 1 2 2 0 0
11 5 5 5 5 5
12 0 0 1 2 7
13 2 2 0 1 2
14 2 2 2 0 0
15 7 1 1 1 2
16 0 1 1 0 1
17 2 0 0 2 0
18 8 2 8 2 8
19 6 6 6 0 0
20 0 0 0 0 0
21 9 9 9 9 0
22 2 1 0 2 7
23 2 8 2 2 8

Appendix C. Pseudocode for Algorithm 2
Algorithm 2: Pattern Improvement

Input: Staff set ℐ, task set 𝒦𝒦, timeslot set ℒ, demand 𝑏𝑏𝑘𝑘𝑘𝑘, staff proficiency 𝑝𝑝𝑖𝑖𝑖𝑖, break
rule: one break at TS12 (variant “–A”) or TS13 (variant “–B”).
Output: Refined staff assignments.
Steps 0-3: Identical to those in Algorithm 1.
Step 4: Use Model 1 to obtain staff assignments
 Use 𝒥𝒥 and Model 1 to obtain staff assignments.
Step 5: Check whether the task pattern can be improved
5.1 For every (k, l) compute:
 understaffing 𝑧𝑧𝑘𝑘𝑘𝑘 (already in the solution).

 overstaffing 𝑐𝑐𝑘𝑘𝑘𝑘 (surplus of assigned capacity over 𝑏𝑏𝑘𝑘𝑘𝑘).
5.2 Define the set of under-staffed timeslots: ℒ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ← {𝑙𝑙 ∈ ℒ: ∃𝑘𝑘 ∈ 𝒦𝒦 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑧𝑧𝑘𝑘𝑘𝑘 > 0}.
5.3 For each 𝑙𝑙 ∈ ℒ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and two tasks 𝑘𝑘, 𝑘𝑘′ ∈ 𝒦𝒦:

© Liu, Song, Kobayashi, Liu

106

 if 𝑧𝑧𝑘𝑘𝑘𝑘 > 0 and 𝑐𝑐𝑘𝑘′𝑙𝑙 > 0 and ∃𝑖𝑖 ∈ ℐ with 𝑝𝑝𝑖𝑖𝑖𝑖 > 0 and 𝑝𝑝𝑖𝑖𝑘𝑘′ > 0:
 set 𝑙𝑙←𝑙𝑙, 𝑘𝑘�←𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘�′←𝑘𝑘′.
 go to Step 6.

 else:
 go to Step 7.

Step 6: Task Pattern improvement (generate additional task patterns)
6.1 For 𝑙𝑙, 𝑘𝑘� and 𝑘𝑘�′ in Step 5, generate four new patterns:
 (a) Mix [𝑘𝑘� +𝑘𝑘�′]-A: assign 𝑘𝑘� at timeslot 𝑙𝑙 ; assign 𝑘𝑘�′ at the remaining timeslots;
break at TS12.
 (b) Mix [𝑘𝑘�+𝑘𝑘�′]-B: same rule with (a); break at TS13.
 (c) Pair [𝑘𝑘� &𝑘𝑘�′] -A: assign 𝑘𝑘� and 𝑘𝑘�′ simultaneously at timslot 𝑙𝑙 ; at remaining
timeslots assign only 𝑘𝑘′; break at TS12.
 (d) Pair [𝑘𝑘�&𝑘𝑘�′]-B: same rule with (c); break at TS13.
6.2 Add patterns (a)–(d) to the set 𝒥𝒥.
6.3 Return to Step 4.
Step 7 Stop
 Output the result of Step 4.

	1. Introduction
	2. Assumptions and Problem Description
	2.1 Assumptions
	2.2 Problem description

	3. Model 1 Formulation
	Model 1
	Objective Function
	Subject to

	4. Algorithm for Task Pattern Generation
	4.1. Algorithm 1
	4.2. Numerical experiment for Team 1
	4.3. Evaluation of solution quality for algorithm 1

	5. Improvement of Task Patterns
	5.1. Algorithm 2
	5.2 Numerical experiments on algorithm 2 (Team 1)

	6. Model Improvements (Model 2)
	6.1. Overview of model improvements
	6.2. Model 2 formulation
	6.3. Numerical experiment for Team 2
	6.4. Results of Team 3
	6.5. Summary

	7. Summary and Future Work
	Acknowledgment
	References
	Appendix A. Pseudocode for Algorithm 1
	Appendix B. Data of Team 1
	Appendix C. Pseudocode for Algorithm 2

