
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1. Introduction 

In vacation queueing systems, the server may not be available for a period of time due 
to working on some supplementary jobs, doing some maintenance work or server’s failure 
that interrupt customer service or simply taking a break. Levy and Yechiali [11] introduced 
the concept of server vacaction. Doshi [5] gives an excellent review of work done in 
vacation queueing models until 1985. Further developments could be accessed from Takagi 
[13] and Tian and Zhang [14].  

In most of the work reported in queueing theory it is implicitly assumed that if the 
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server is ready to serve and the customers are available to receive service then the service 
process proceeds. Either availability of "additional" items required to provide service is not 
taken into consideration/ignored or its abundance is taken for granted. In the latter case the 
holding cost incurred is completely ignored. Sometimes the item(s) required for service 
maynot be available. In such cases service cannot be provided even when the server is 
readily available and customer(s) are waiting. Typical example in medical case is operation 
theatre. In the absence of ’stent’ for a heart patient in need of it, surgery cannot be performed. 
In a vehicle repair shop a vehicle requiring a specific part replacement, cannot be serviced 
if spares are not available.  
(Expansions of various abbreviations are given in ’Notations and abbreviations’ below the 
introduction.)  

Thus in several service systems, availability of both customers and servers cannot 
guarantee service. This will be explained in detail later. This naturally leads to the 
investigation of availability of additional item(s) required to provide service. As a 
consequence some optimization problems arise– how much of additional item(s) to be 
processed at a stretch (optimal value of L) and what should be the optimal value of N? This 
leads to the consideration of holding cost, shortage cost and associated revenue loss. 
Kazimirisky [10] seems to be the first to introduce ‘additional items needed for service’.  
He considered a single server queue with Batch Markovian Arrival and General Service 
time distribution denoted as BMAP/G/1 queue, with the server engaged in producing 
additional items whenever the customers are not waiting. Exactly one processed item is 
required for each customer. The customer service time distribution depends on whether 
processed item is available or not. Thus there are two distinct service time distributions.  

Baek et al. [2] considered MMAP (Marked Markovian Arrival Process) of customers 
of two types– type I (high priority) and type II (low priority). Both type of customers require 
a certain minimum number of additional items to start their service. Type I customers do 
not have a waiting space. If a type I customer is in service while another type I customer 
arrives, the latter leaves the system. On the other hand if a type II customer is in service, the 
former is pushed out of the system by the type I arrival provided the number of additional 
items available is at least equal to the minimum number required to start its service. Else, it 
leaves the system without changing the status. Type II customers have an infinite capacity 
waiting space. Additional items arrive to the system according to MAP. Dhanya et al. [3] 
extend the above to retrial queueing set up.  

Hanukov et al. [8] analyze a simple queueing system where again additional items are 
needed for service of a customer (one item for each customer). Arrival process is Poisson 
and service time is exponentially distributed. Accumulation of N customers ( N -policy) in 
queue to commence service, once server becomes idle, was introduced by Yadin and Naor 
[18]. This has the advantage that the length of a busy period becomes larger when server is 
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activated on accumulation of N or more customers, thereby bringing down the expected 
cost incurred per unit time. Divya et al. [4] considered single server queue in which the 
customers arrive according to Markovian Arrival Process. When the system is empty, the 
server goes for vacation and produces inventory for future use during this period. The 
maximum inventory level permitted is .L  The inventory processing time follows phase 
type distribution [12]. The server returns from vacation when there are N customers in the 
system. The service time follows two distinct phase type distributions depending on whether 
the processed item is available or not at service commencement epoch. They analysed the 
distribution of time until the number of customers hit N or the inventory level reaches ,L  
distribution of idle time, the distribution of time until the number of customers hit N and 
also the distribution of number of inventory processed before the arrival of first customer. 
They also provided Laplace Stieltjes Transform of busy cycles in which no item is left in 
the inventory and atleast one item is left in the inventory. They performed some numerical 
computations to evaluate the expected idle time, standard deviation and coefficient of 
variation of idle time of the server.  

In real life, people become impatient while waiting for service. Hence to model reality, 
we should take into consideration customers’ impatience. To characterize customers’ 
impatience, some terminologies like balking, reneging and retrials are employed in 
queueing system. Balking customers decide not to join the queue if it is too long and 
reneging customers leave the queue if they have waited too long for service. Retrial queues 
study systems where the customers do not wait in a line when server is found to be busy; 
instead they keep repeating their attempts to access the server at random time points (see 
Falin and Templeton [6], Artalejo and Gomaz-Corral [1]). Wang et al. [16] has presented a 
review on queueing systems with impatient customers. 

Yechiali [19] considers an M/M/c queue, where = 1c , or 1 < <c  , or =c  . At 
random epochs, the system as a whole gets shock and as a consequence it breaks down. This 
results in the loss of all customers who are either on the wait for service or undergoing 
service. When the system is down and undergoing repair process, newly arriving customers 
become impatient. Their impatience is reflected through a timer of random duration–each 
customer has his own timer. If a timer expires before the system is repaired, that customer 
abandons the queue. He analyzed the above described model and derived various quality of 
service measures such as mean sojourn time of a served customer; proportion of customers 
served; rate of lost customers due to disasters; and rate of abandonments due to impatience. 

Wang and Zhang [17] consider a single-server service-inventory system where 
customers arrive according to a Poisson process and service times are independent and 
exponentially distributed. A customer takes exactly one item from the inventory upon 
service completion. A continuous review policy is adopted to replenish the inventory. With 
two different information levels, i.e. the fully unobservable case and the partially observable 
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case, arriving customers decide whether to join or to balk the system. They investigated 
customers individually optimal and socially optimal strategies, and further consider the 
optimal pricing issue that maximises the servers revenue. Some numerical experiments were 
carried out to show that the individually optimal joining probability (or threshold) is not 
always greater than that of socially optimal one. It was observed that, to maximise the 
servers revenue, concealing some system information from customers may be more 
profitable. Conversely, to maximise the social welfare, customers need more system 
information. Finally, numerical results in the fully unobservable case illustrate a reasonable 
phenomenon that the revenue maximum is equal to social optimum in most cases.  

The present paper extends the work of Hanukov et al. [8] to a single server, Markovian 
Arrival, Phase Type distributed processing time and Phase Type distributed service time 
(Two distinct types-one when the processed item is available and the other when processed 
is not available)which we denote as MAP/(PH,PH)/1 queue under N -policy with 
requirement of one additional item to each customer. At service completion epoch, if the 
server becomes idle for want of customers, he starts processing additional items required to 
serve customers. A maximum of L items are processed at a stretch. However during this 
process, if number of customers in the system hits ,N  then the server immediately 
commences service. Processing time of items have Phase type distribution. Service time 
also follows Phase type distribution; however two distinct distributions are considered–one 
when an additional item is available to start service and the other when no additional item 
is available. This is already discussed in Divya et al. [4]. In this paper we extend that to the 
case where the customers are impatient. In addition we investigate the individual, social and 
system optimal strategies by introducing appropriate costs associated with certain system 
parameters. 

Next we turn to further details of the present work. We consider a single server 
queueing system in which the customers arrive according to Markovian Arrival process. 
When the system is empty, the server goes for vacation and produces inventory for future 
use during this period. The maximum inventory level is .L  The inventory processing time 
follows phase type distribution. The server returns from vacation when there are N  
customers in the system. Service time follows two distinct phase type distributions 
according as there is no processed item or there are processed items at the beginning of 
service. Customers join the queue with probability p and balk with probability 1 p . Also 
the customers waiting for service may become impatient and renege after a random time 
period which is exponentially distributed. Whereas Wang and Zhang [17] follow 
replenishment policy through external sources in the context of queueing-inventory, we 
investigate the system in which the item is processed by the server himself. Further, in Wang 
and Zhang model, the server has to stay idle when inventory level drops to zero; in the 
present model the server processes the item and serves customer if at a service 
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commencement epoch the item is not available.  
In all papers cited above that deal with additional items for service/inventory 

/processed item, it is assumed that service time duration for a customer in the presence of 
additional items are shorter than that starts in the absence of such an item. Thus the 
availability of such an item reduces the waiting time of customers in the system. This 
additional items are in some cases reusable. In this paper we consider the case of non-
reusable items.  

The rest of the paper is arranged as follows. The model description and mathematical 
formulation are given in section 2. Section 3 provides steady state analysis of the model, the 
distribution of time until the number of customers hit N and some other performance 
measures. For the special case of no reneging some numerical experiments for computing 
individual optimal strategy, maximum revenue to the server and social optimal strategy are 
discussed in section 4. Section 5 contains a special case in which the system is working in 
normal mode. 

Notations and abbreviations used in the sequel:   

    • ( )ae  = Column vector of 1s’ of order a .  

    • 'ae : Transpose of ae .  

    • e  = Column vector of 1s’ of appropriate order.  

    • :CTMC  Continuous time Markov chain.  

    • aI  = identity matrix of order a .  

• ( )a be  = column vector of order b  with 1 in the a th position and the remaining 
entries zero.  

    • PH : Phase Type  

    • MAP : Markovian Arrival Process  

    • LST : Laplace-Steiltjes Transform  

    • LDQBD : Level Dependent Quasi-Birth and-Death  

    • ( )k
ijd : entries of , = 0 or 1kD k   

    • l : thl  entry of 1D e .  

Highlights of this paper are:   

• Extends Hanukov et al. [8] to the case of Markovian arrival process. In addition, we 
set an upper bound ( L ) on the maximum number items processed by the server at a 
stretch. Further we introduce the N -policy for the number of customers to 
accumulate, in order to start a fresh service cycle.  
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• The inventory processing time and service time distributions follow more general 
distributions (phase type).  

• Extends Divya et.al. [4] by introducing the two types of customer impatience: balking 
and reneging. Thus the system turns out to be a level dependent QBD.  

• For the special case of no reneging, some numerical experiments to compute 
individual optimal strategy, maximum revenue to the server and social optimal 
strategy are also discussed.  

2. Model Description and Mathematical formulation 
We assume that the customers arrive at a single server queueing system according to 

MAP with representation 0 1( , )D D of order n . At the end of a service if the system is left 
with no customer, the server goes for vacation and produces inventory for future use during 
this period. The maximum inventory level is restricted to L . Processing time for each item 
in the inventory follows phase type distribution ( , )PH T of order 1m . Server returns 
from vacation when there are N customers in the system. Service time follows ( , )PH S
of order 2m when there is no processed item and it follows ( , )PH U of order 3m when 
there are processed items. Customers join the queue with probability p and balk with 
probability 1 p . Also the customers waiting for service may become impatient and renege 
after a random time period which is exponentially distributed with parameter ( 1) , 1n n  , 
where n is the number of customers in the system.  

Let *
0 1=Q D D be the generator matrix of arrival process and * be its stationary 

probability vector. Hence * is the unique (positive) probability vector satisfying  

 * = 0, =1.Q* *  e  

The constant *
1= D * e , referred to as fundemental rate, gives the expected number of 

arrivals per unit of time in the stationary version of the MAP. It is assumed that arrival 
process is independent of the inventory processing and service process. 

The model described in above can be studied as a level dependent quasi-birth-and-
death (LDQBD) process. First we introduce the following notations: 

At time t: 
( )N t : the number of customers in the system at time t , 

( )I t : the number of processed inventory,  

0, ,
( )

1, .
when the server is on vacation

J t
when the server is busy serving a customer


 


 

( )K t : the phase of the inventory processing/service process,  

( )M t : the phase of arrival of customer. 
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It is easy to verify that {( ( ), ( ), ( ), ( ), ( )) : 0}N t I t J t K t M t t   is a LDQBD with state 
space  
   1 1 1(0) ={(0, ,0, , ) : 0 1,1 ,1 } {(0, ,0, ) :1 }.l i k l i L k m l n L l l n          
For 1 1h N   , 

  1 1 1( ) ={( , ,0, , ) : 0 1,1 ,1 } {( , ,0, ) :1 }l h h i k l i L k m l n h L l l n              
2 2 2{( ,0,1, , ) :1 ,1 }h k l k m l n    3 3 3{( , ,1, , ) :1 ,1 ,1 }h i k l i L k m l n       

and for h N , 
   2 2 2 3 3 3( ) ={( ,0,1, , ) :1 ,1 } {( , ,1, , ) :1 ,1 ,1 }l h h k l k m l n h i k l i L k m l n          . 
Note that when 0 ( ) 1N t N   and ( ) =I t L , the server will be idle as the inventory level 
reaches its maximum level ‘L’ and the number of customers doesnot hit ‘N’. So ( )K t
neednot be considered. 

The infinitesimal generator of this CTMC is   

0 0

1 1 1

2 2 1

1 2 2 1

1 1
( ) ( )
1 0
( 1) ( 1) ( 1)

2 1 0

= .N N

N N
N N

N
N N N

B C
B E I pD

B E I pD

B E I pD
B E F

B A A
A A A

 

 

  

 
 

 
  
 
  
 
 

 
 
 
  

 

The boundary blocks 0 0 1, ,B C B are of orders 1 1( 1) ( 1) ,Lm n Lm n    

1 1 2 1 3 3( 1) (( ) ( 1)( ) (1 ) ),Lm n m m n L m m n m n        1 2 1 3(( ) ( 1)( )m m n L m m n      

3 1(1 ) ) ( 1)m n Lm n   , respectively. For 2 1,h N   hB  and for 1 1,h N   hE  are 
square matrices of order 1 2( ) ( 1)m m n L   1 3 3( ) (1 )m m n m n   . F and NB are of 
orders 1 2 1 3 3 2 3(( ) ( 1)( ) (1 ) ) ( )m m n L m m n m n m Lm n        and 2 3 1( ) ((m Lm n m    

2 1 3 3) ( 1)( ) (1 ) ),m n L m m n m n     respectively. For ,h N ( ) ( )
0 1,h hA A and for 

1,h N  ( )
2

hA  are square matrices of order 2 3( )m Lm n . Define the entries ( , , , )2 2 2 2
0( , , , )1 1 1 1

i j k l

i j k l
B ,

( , , , )2 2 2 2
0( , , , )1 1 1 1

i j k l

i j k l
C and ( , , , )2 2 2 2

1( , , , )1 1 1 1

i j k l

i j k l
B as transition submatrices which contain transitions of the form 

1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2(0, , , , ) (0, , , , ), (0, , , , ) (1, , , , )i j k l i j k l i j k l i j k l  and 1 1 1 1(1, , , , )i j k l   

2 2 2 2(0, , , , )i j k l , respectively. Define ( , , , )2 2 2 2
( , , , )1 1 1 1

i j k l
h i j k l

E , ( , , , )2 2 2 2
( , , , )1 1 1 1

,i j k l
h i j k l

B F  and NB as transition 
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submatrices which contain transitions of the form 1 1 1 1 2 2 2 2( , , , , ) ( , , , , )h i j k l h i j k l , where 
1 1,h N   1 1 1 1 2 2 2 2( , , , , ) ( 1, , , , ),h i j k l h i j k l  where 2 1,h N   1 1 1 1( 1, , , , )N i j k l   

2 2 2 2( , , , , )N i j k l  and 1 1 1 1 2 2 2 2( , , , , ) ( 1, , , , ),N i j k l N i j k l   respectively. Define the entries 
( , , , ) ( , , , )( ) ( )2 2 2 2 2 2 2 2

2 ( , , , ) 1 ( , , , )1 1 1 1 1 1 1 1
,i j k l i j k lh h

i j k l i j k lA A  and ( , , , )( ) 2 2 2 2
0 ( , , , )1 1 1 1

i j k lh
i j k lA  as transition submatrices which contain 

transitions of the form 1 1 1 1 2 2 2 2( , , , , ) ( 1, , , , ),h i j k l h i j k l  where 1,h N 

1 1 1 1 2 2 2 2( , , , , ) ( , , , , )h i j k l h i j k l  and 1 1 1 1 2 2 2 2( , , , , ) ( 1, , , , ),h i j k l h i j k l   where ,h N  
respectively. Since none or one event alone could take place in a short interval of time with 
positive probability, in general, a transition such as 1 1 1 1 1 2 2 2 2 2( , , , , ) ( , , , , )h i j k l h i j k l has 
positive rate only for exactly one of 1 1 1 1 1, , , ,h i j k l  different from 2 2 2 2 2, , , ,h i j k l  

2 1 1 1 2 1 2 1 1 2

( , , , ) 1 2 1 2 1 2 1 1 22 2 2 2
0( , , , )1 1 1 1 1 2 1 1 2 1 2 1 1 2

1 2 1 2 1 2

= 1,0 2; = = 0;1 , ;1 ,
= 1, = ; = = 0;1 , ;1 ,

=
= ,0 1; = = 0;1 , ;1 ,
= = ; = = 0;1 ,

o
n

o
i j k l n
i j k l

T I i i i L j j k k m l l n
T I i L i L j j k k m l l n

B
T i i i L j j k k m l l n

i i L j j l l n

         
      


       
  






 

where  

     

1

2
0= (1 ) ,

n

D p






 
 
   
 
 
 

 

1( , , , ) 1 1 2 1 2 1 2 1 1 212 2 2 2
0( , , , )1 1 1 1 2 1 1 2 1 21

, 0 1; = ; = = 0;1 , , ;1 ,
= = ; = = 0;1 ,,

mi j k l

i j k l

I pD i L i i j j k k m l l n
C

i i L j j l l npD

          
 

0
( , , , ) 1 2 1 2 1 2 2 1 1 22 2 2 2
1 0( , , , )1 1 1 1 1 2 1 1 2 1 3 2 1 1 2

, = =0; =1, =0;1 ,1 ;1 ,
=

, 1 ; = 1; =1, =0;1 ,1 ;1 , .
i j k l n
i j k l

n

S I i i j j k m k m l l n
B

U I i L i i j j k m k m l l n



       


         
 

For 1 1h N   , 
0

1 2 1 1 2 1 2 1 1 2
0

1 2 1 2 1 1 1 2

1 2 1 1 2 1 2 1 1 2( , , , ) 12 2 2 2
( , , , )1 1 1 1 11

, 0 2, = 1; = =0;1 , ;1 ,
,  = 1, = ; = =0;1 ;1 ,
( 1) , = ,0 1; = =0;1 , ;1 ,

=
( 1) ,

n

n

m ni j k l
h i j k l

m n

T I i L i i j j k k m l l n
T I i L i L j j k m l l n
T h I i i i L j j k k m l l n

E
S h I i







        

     
        

  2 1 2 1 2 2 1 2

1 2 1 1 2 1 2 3 1 21

1 2 1 2 1 2

= =0, = =1,1 , ,1 ,

( 1) , = ,1 ; = =1,1 , ,1 ,

( 1) , = = ; = =0;1 , .
m n

n

i j j k k m l l n

U h I i i i L j j k k m l l n

h I i i L j j l l n










    
        
   
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For 2 1h N   ,   

1 1 2 1 2 1 2 1 1 21

1 2 1 2 1 2 1 1 2
0

1 2 1 2 1 2 2 1 2( , , , ) 22 2 2 2
( , , , )1 1 1 1 13

( 1) , 0 1, = ; = = 0;1 , ;1 ,

( 1) , = = ; = = 0;1 , ;1 ,

( 1) , = = 0; = = 1;1 , ;1 ,
=

( 1) , 1 ,

m n

n

n m ni j k l
h i j k l

m n

h I i L i i j j k k m l l n

h I i i L j j k k m l l n
S I h I i i j j k k m l l n

B
h I i L





 



       

    

      

   1 2 1 2 1 2 3 1 2

0
1 2 1 2 1 3 2 2 1 2

0
1 2 1 1 2 1 2 3 1 2

= ; = = 1;1 , ;1 ,

, = 1, = 0; = = 1;1 ,1 ;1 ,

, 2 , = 1; = = 1;1 , ;1 ,
n

n

i i j j k k m l l n

U I i i j j k m k m l l n
U I i L i i j j k k m l l n












   


      
        
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n

m n

S I h I i i j j k k m l l n

U I i i j j k m k m l l n
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=
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Remarks: When = 0L (that is, no item processed during vacation) the problem discussed 
reduces to classical N -policy. 

3. Steady State Analysis  
3.1. Stability condition 

Lemma 3.1. The system under consideration is stable.  

Proof. We use the following result to prove this(see Tweedie [15]).  

Result (Tweedie [15]) Let { ( )}X t be a Markov process with discrete state space  
and rates of transition , , , = 0sr srr

q s r q  . Assume that there exist 
1. a function ( ), ,s s   which is bounded from below (this function is said to be a 
Lyapunov or test function); 
2. a positive number such that:   

• variables = ( ( ) ( )) <s srr s
q r s 


 y for all ;s S   

• s  y  for all s S except perhaps a finite number of states.  

Then the process { ( )}X t is regular and ergodic.  
For the model under discussion, we consider the following test function:  

( ) = ( , , , , ) =s h i j k l h  . 

The mean drifts   

 
 

, 1 , 1

( ) ( )

= .

s sr
r s

s s s s

q r s

q q

 


 

 



y
                          (1) 

We have , 1 1=s sq r , say (a constant) and , 1 2= ( 1)s sq r s    , where 2r is a constant. 
Hence from (1), 1 2= ( 1)s r r s   y , which depends only on the level s . Now,  

= .s slim  y  

Thus the assumptions of Tweedie’s result hold and hence the Markov process under 
consideration is regular and ergodic. Hence the system is stable.   

3.2. Steady state vector 

By finite truncation method we get steady state vectors of the LDQBD approximately. 
In this method, we truncate the infinitesimal genarator at a finite level K . The level K is 
chosen in such a way that probability of customer loss due to truncation is small. To get an 
appropriate level,say , fK , we start with an initial value for K and increasing it in unit 
steps until a properly chosen cut-off criterion is satisfied. Here, we use the algorithm by 
Artalejo et al. [1], the steps of which are explained below. 
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With K as cut-off level, the modified generator is   

0 0

1 1 1

2 2 1

2 2 1

1 1
( ) ( )
1 0
( 1) ( 1) ( 1)

2 1 0

( 1) ( 1) ( 1)
2 1 0

( ) ( )
2

( ) = ,
N N

N N
N N

N
N N N

K K K

K K

B C
B E I pD

B E I pD

B E I pD
Q K B E F

B A A
A A A

A A A
A 

 

 

  

  

 
 
 
  
 
 

 
 
 
 
 
 
 
 
 
 
  

 

where ( ) ( ) ( )
1 0= .K K KA A   Let  be the stationary distribution of ( )Q K which satisfies  

( ) = 0,
= 1,

Q K
 e

                                 (2) 

where = [ (0), (1), , ( )]K    . Define 0 1= [ ( ), ( )]K Ky y y with  

0

1

( ) = [ (0), (1), , ( 1)],
( ) = ( ).
K K
K K

  


y
y

  

Now ( , ) = ( ), 0 .K i i i K y Here 0 ( )Ky is a row vector of dimension 1= ( 1)m Lm n 

2 1 3 2 3( 1)[ ( ) ] ( )( )N m n L m m n n K N m Lm n       and 1( )Ky is a row vector of 
dimension 2 3( )m Lm n . Now from (2), we have  

 00 01
0 1 ( )2 3

10 11

( ) ( )
[ ( ), ( )] [ , ],

( ) ( ) m m Lm n

H K H K
K K

H K H K 

 
 

 
0 0y y          (3) 

where 00( )H K is obtained from ( )Q K by deleting the last column matrices and last row 
matrices. ( 1)

01 0( ) = [0,0, ,0, ]K TH K A  , ( )
10 2( ) = [0,0, ,0, ]KH K A  and ( )

11( ) = KH K  . 
These are block structured matrices with , 1,1K K K K    and 1 1 blocks respectively. 

m0  and ( )2 3m Lm n0 are row vectors of dimensions m and 2 3( ) ,m Lm n  respectively, with 
all entries equal to zero. From (3), we get  

             1
1 10 00 0( ) ( ) ( ) = ( ),K H K H K K y y                         (4) 
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 1
1 11 10 00 01 ( )2 3
( )[ ( ) ( ) ( ) ( )] = m Lm nK H K H K H K H K

 0y .        (5) 

Also we have  

 00 01
00

0 1

( 1) ( 1)
( ) = ,

( 1) ( 1)
H K H K

H K
J K J K

  
   

 

where  

 
( 1)

0 2
( 1)

1 1

( 1) = [0, ,0, ],
( 1) = .

K

K

J K A
J K A








 

The inverse of matrix 00( )H K can be determined using theorem 4.2.4 in Hunter [9] as 

 00 011
00

10 11

( ) ( )
( ) = ,

( ) ( )
M K M K

H K
M K M K

  
 
 

 

where 

 

1 1
00 00 01 1 0

1
01 1 0 00

1 1
11 1 0 00 01

1
01 00 01 11

( ) = [ ( 1) ( 1) ( 1) ( 1)] ,
( ) = ( 1) ( 1) ( ),
( ) = [ ( 1) ( 1) ( 1) ( 1)] ,
( ) = ( 1) ( 1) ( ).

M K H K H K J K J K
M K J K J K M K
M K J K J K H K H K
M K H K H K M K

 



 



    
  

    
  

 

Now we can see that the structure of the block matrices 01( 1)H K  and 0( 1)J K  simplify 
the above set of equations. We have  

011 ( 2)
00 01 0

11

( 1)
( 1) ( 1) =

( 1)
KM K

H K H K A
M K

  
    

.  

Also 1 ( 1) ( 2)
0 00 01 2 11 0( 1) ( 1) ( 1) = ( 1)K KJ K H K H K A M K A      . 

By example 4.2.2 (Hunter [9]), we have 1 1 1 1 1 1 1( ) = ( ) .X AYB X X A Y BX A BX          
Then we have  

 1 1 1 1 1 1( ) = [ ( ) ] .X AYB I X A Y BX A B X         

Here, we have 1
00 01 1= ( 1), = ( 1), = ( 1)X H K A H K Y J K     and 0= ( 1)B J K  . 

Finally, we get  

 

1
00 01 0 00

( 1) ( 2) 1
11 1 2 11 0

01 ( 2)
01 0 11

11
1

10 1 0 00

( ) = [ ( ) ( 1)] ( 1),
( ) = [ ( 1) ( 1) ] ,

( 1)
( ) = ( ),

( 1)
( ) = ( 1) ( 1) ( ).

K K

K

M K I M K J K H K
M K J K A M K A

M K
M K A M K

M K
M K J K J K M K



  





  
  

 
   
  
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Thus the computation of the vector 1( )Ky reduces to solving the system of equations (5) 
subject to the normalizing condition  

1
10 00( )[ ( ) ( ) ] = 1K H K H K e e . 

The vector 0 ( )Ky can be solved by substituting 1( )Ky in (4). To get the cut-off value, 
successive increments of K are made, starting from 2N  and we stop at the point

= cK K when  

 0 | ( , ) ( 1, ) | <i K c cc
max K i K i   y y , 

where > 0 is infinitesimal quantity and || . || is the infinity norm (see Goswami and 
Selavaraju [7]).  

Now we suppose that , , , ,h i j k lx represent the steady state probability that system is in 
state ( , , , , )h i j k l . 

3.3. Distribution of time until the number of customers hit N 
We show that this is a phase type distribution where the underlying Markov process 

has state space  

1{( , , , ) : 0 1,0 1,1 ,1 }h i j k h N i L j m k n            

{( , , ) : 0 1,1 } {*},h L k h N k n      

where * denotes the absorbing state indicating the number of customers reaching N . The 
infinitesimal generator is 

 
(0)

1 1= , where
0

V V 
 
 

1V
0

 

0 1 11

0 1 11

2 2 1 11

2 2 1 11

1 1

= ,

Lm

Lm

Lm

N N Lm

N N

H I pD

H I pD

G H I pD

G H I pD

G H







  

 

 
 

 
  
 
 

 
 
  

1V  

0

0
0

1 0 0

1

0 0
0 0

= , with = .
0 0

( 1) 0 0 0

n

n

n

T T I
T T I

V H
T T I

Lm p






   
      
    
       

0

0
e

 

Queueing Models and Service Management

179



For 2 1h N   ,   

                   ( 1)1
= ( 1)h Lm nG h I   

and  

0

1
0

1
0

1

1

( 1) 0 0

0 ( 1) 0
=

0 0 ( 1)

0 0 0 ( 1)

m n n

m n n

h
m n n

m n

T h I T I

T h I T I
H

T h I T I

h I

 

 





    
 

    
 

    
 

    

. 

The initial probability vector is 

 1 0,0,1,1 0,0,1, 0,0, ,1 0,0, , 0, 1, ,1 0, 1, ,1 1 1 1
1

1= ( )( , , , , , , , , , ,0),n m m n L m L m nw w w w w w
d

    

where  

 
32

0,0, , 1,0,1, , 1,1,1, ,(0) (0)
=1 =1

= ,
mm

k k k k
k l k l k l

k kll k k ll k k

w x x
d S d U
    

 
    


      

            
3

0, , , 1, 1,1, ,(0)
=1

= , with 1 1,
m

k k
i k l i k l

k ll k k

w x i L
d U
 


  

  
   

and 
1 1

1 0, , ,=1 =0 =1
= n L m

i k ll i k
d w   , where 0 is a zero matrix of order 11 (( 1) )N Lm n n   . 

Here, k  represents the absorption rate to phase k  from ( , )PH S , k  represents the 
absorption rate to phase k  from ( , )PH U , k kS   represent the k k  th entry of S , k kU  

represent the k k  th entry of ,U  k  denote the kth component of the intial distribution 
of inventory processing and (0)

lld represent the diagonal entry in l th row of 0D .  

3.4. Some other Performance Measures 
    • Probability that the server is idle,  

 
1

, ,0,
=0 =1

=
N n

idle h L l
h l

P x


 . 

    • The fraction of time the server is idle waiting for Nth customer,  

 1, ,0,
=1

=
n

id N L l
l

P x  . 
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    • The fraction of time the server is busy in inventory production,  

 
1 1 1

, ,0, ,
=0 =0 =1 =1

=
mN L n

pro h i k l
h i k l

P x
 

 . 

    • The fraction of time the server is busy serving,  

 
32

,0,1, , , ,1, ,
=1 =1 =1 =1 =1 =1 =1

=
mmK n K L n

ser h k l h i k l
h k l h i k l

P x x  . 

    • Expected number of customers in the system,  
                     

1 1 11 2

, ,0, , , ,0, ,0,1, ,
=1 =0 =1 =1 =1 =1 =1 =1 =1

3

, ,1, ,
=1 =1 =1 =1

( ) =

.

m mN L n N n K n

h i k l h L l h k l
h i k l h l h k l

mK L n

h i k l
h i k l

E S hx hx hx

hx

  

 



  


      (6) 

    • Expected number of items in the inventory,  
1 1 1 31

, ,0, , , ,0, , ,1, ,
=0 =1 =1 =1 =0 =1 =1 =1 =1 =1

( ) =
mmN L n N n K L n

h i k l h L l h i k l
h i k l h l h i k l

E it ix Lx ix
  

    .           (7) 

    • Expected rate at which the inventory processing is switched on,  
32

1,0,1, , 1, ,1, ,
=1 =1 =1 =1 =1

( ) =
mm n L n

k k l k i k l
k l i k l

E ipo x x   . 

4. Special Cases 
1. = 1, = 0p   

In this case, the present model reduces to Divya et al. [4]. We see that the model can 
be studied as a LIQBD process. 

2. = 0  
In this case also, the model can be studied as a LIQBD process with obvious 
modifications in Divya et al. [4].  

From now on we concentrate in the case = 0 .  
First, we find the LST of the waiting time distribution.  

4.1. Waiting time analysis 

To find the waiting time of a customer who joins for service at time t , we have to 
consider different possibilities depending on the status of server at that time.The server may 
be on vacation or in normal mode. Let ( )W t be the waiting time of a customer in the system 
who arrives at time t and *( )W s be the corresponding LST. 
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Case I. (Vacation mode)  

Let 1Ev denote the event that the tagged customer immedietly after his arrival finds 
the system in the state ( 1, ,0, , )h i k l    or in the state ( 1, ,0, ),h L l  where 

10 2, 0 1, 1 ,h N i L k m          1 l n  .  
In this case, the waiting time is the time until absorption in a Markov process whose 

state space is given by 1 1 1{( , , , ) :1 1,0 1,1 ,1 }h i k l h N i L k m l n           
* * * *

2 2 2 3{( , , ) :1 1,1 } {( ,0, ) :1 1,1 } {( , , ) :1h L l h N l n h k h N k m h i k h          

3 31,1 ,1 } {*}N i L k m      where 1( , , , )h i k l  denote the states that correspond to the 
server being on vacation with h customers in the system , i , items in inventory, 1k , the 
processing phase and l , the arrival phase, ( , , )h L l denote the state that correspond to the 
server being on vacation mode with h customers in the system, L items in inventory and 
l , the arrival phase. *

2( ,0, )h k denote the states that correspond to the tagged customer 
being in the position *h  when the server is on normal mode, 2k , the service phase when 
there is no processed item, *

3( , , )h i k denote the states that correspond to the tagged 
customer being in position *h when the server is in normal mode with i processed items 
in the inventory and 3k denote the service phase and * denote the absorbing state indicating 
the service completion of the tagged customer. Thus the conditional waiting time can be 
studied by a phase type distribution with representation 1 1( , )PH W where   

11 12 0
1 1 0
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= , = ,
0
M M

W W
M M

  
  

   
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


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12 1 1
= ( 1) '( 1) ,N hM e N e N F    where 
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( ) ( )
( ) ( )
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e m p
e m p
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
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Thus the conditional LST,  
* 1 0

1 1 1 1( | ) = ( ) ,W s Ev sI W W   

where 1 is the initial probabilty vector which ensures that the Markov chain always starts 
from the level h . 

Case II. (Normal mode)  

Let 2Ev denote the event that the tagged customer immedietly after his joining finds 
the system in the state ( 1,0,1, , )h k l   , where 21, 1 , 1h k m l n       or in the state 
( 1, ,1, , ),h i k l     where 31 1, 1 , 1 ,1h N i L N h k m l n                or in the 
state ( 1, ,1, , ),h i k l     where ,h N   31 , 1 , 1i L k m l n        .  

In this case, the waiting time is the time until absorption in a Markov process whose 
state space is given by 2{( ,0, ) : 2 ,1 } {( , , ) : 2 1,1h k h K k m h i k h N i L            

3 3,1 } {( , , ) : ,1 ,1 } {*}N h k m h i k N h K i L k m          where ( ,0, )h k denote 
the states that correspond to the server being in normal mode with h customers in the 
system, service phase k when there is no processed item, ( , , )h i k denote the states that 
correspond to the server being in normal mode with h customers in the system, service 
phase k when there are i processed items and * denote the absorbing state indicating the 
service completion of the tagged customer and K is chosen in such a way that

 =0
>1 0K

hh
P x   e for every > 0 . Thus the conditional waiting time can be studied 

by a truncated phase type distribution with representation 2 2( , )Ph W where   
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Thus the conditional LST,  
* 1 0

2 2 2 2( | ) = ( ) ,W s Ev sI W W   

where 2 is the initial probabilty vector which ensures that the Markov chain always starts 
from the level h . 

Let , , , ,h i j k lw and , ,0,h L lw denote the probabaility that the tagged customer finds the 
system in the state ( , , , , )h i j k l and ( , ,0, )h L l respectively immedietly after his arrival. 
Then  

(1)
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Thus we have the following theorem.  

Theorem 4.1. The LST of the waiting time is given by  

1 1 11
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      .   (9) 

Now,we assume that each customer receives a reward of R units after service 
completion and he has to pay a price (0 < )q q R for an item. Let wh denote the waiting 
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cost per unit time of a customer in the system.  

4.2. Individual equillibrium strategy 
Define  

 1( ) = ( ).wF p R q h E W   
We have to find an equillibrium strategy according to which the customers join the system. 

4.3. Revenue maximization 

We have to find an optimal price q to maximize the revenue of the server given by  

 *
2 1 1 2( ) = ( ) ( ) ( )eF q p q D e h E S h E it cE ipo    , 

where 

1 :h  holding cost/unit customer/unit time, 

2 :h  holding cost/unit item/unit time, 
:c  switching on cost of inventory processing/unit time, 

:ep  Individual equillibrium strategy corresponding to q . 

4.4. Social optimal strategy 

Next we consider social optimal strategy. For a given price q and a joining probability 
,p  the surplus of all customers 1S and the server revenue 2S are given by 

*
1 1= ( ( ))wS pD e R q h E W    and *

2 1 1 2= ( ) ( ) ( ).S pq D e h E S h E it cE ipo     

Therefore, the expected social welfare per unit time is,  

 *
3 1 2 1 1 2( ) ( ( )) ( ) ( ) ( ).wF p S S pD e R h E W h E S h E it cE ipo        

4.5. Numerical results 

We fix = 3, = 2N L ,  = = 1 0  ,  = 0.8 0.2 , 
50 50

= ,
0 50

T
 
  

  

80 80
=

0 80
S

 
  

, 
150 150

=
0 150

U
 
  

, 1 2= 75, = 60, = 50, = 2, =1, = 30.wR q h h h c  

We find the individual optimum and social optimum corresponding to the above parameters. 
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  Table 1. Effect of p on various performance measures, when 0 1= ( 20), = (20)D D . 

p  ( )E W  ( )E S  ( )E it  ( )E ipo  1F  3F  
0.1 0.5045 1.0248 1.8794 0.6445 -10.2243 76.2876 
0.2 0.2571 1.0514 1.7601 1.2429 2.1430 238.8498 
0.3 0.1762 1.0806 1.6421 1.7921 6.1878 339.5609 
0.4 0.1368 1.1129 1.5254 2.2882 8.1599 472.8811 
0.5 0.1138 1.1486 1.4102 2.7271 9.3077 607.5573 
0.6 0.0991 1.1881 1.2965 3.1041 10.0449 743.7425 
0.7 0.0891 1.2316 1.1848 3.4149 10.5461 881.5515 
0.8 0.0821 1.2794 1.0752 3.6551 10.8954 1021.0406 
0.9 0.0773 1.3325 0.9680 3.8207 11.1356 1162.1853 
1.0 0.0743 1.3925 0.8635 3.9081 11.2870 1304.8471 

  Table 2. Effect of p on various performance measures, when 0 1= ( 25), = (25)D D . 

p  ( )E W  ( )E S  ( )E it  ( )E ipo  1F  3F  
0.1 0.4052 1.0312 1.8494 0.7985 -5.2584 108.9862 
0.2 0.2084 1.0657 1.7009 1.5239 4.5807 273.3550 
0.3 0.1446 1.1045 1.5545 2.1694 7.7701 439.4306 
0.4 0.1138 1.1486 1.4102 2.7271 9.3077 607.5573 
0.5 0.0962 1.1986 1.2684 3.1882 10.1881 778.0391 
0.6 0.0853 1.2549 1.1297 3.5441 10.7364 951.0852 
0.7 0.0783 1.3187 0.9946 3.7865 11.0843 1126.7485 
0.8 0.0743 1.3925 0.8635 3.9081 11.2869 1304.8471 
0.9 0.0728 1.4827 0.7371 3.9027 11.3611 1484.8406 
1.0 0.0741 1.6035 0.6156 3.7651 11.2950 1665.6008 

  Table 3. Effect of p on various performance measures, when 0 1= ( 30), = (30)D D . 

p  ( )E W  ( )E S  ( )E it  ( )E ipo  1F  3F  
0.1 0.3392 1.0378 1.8196 0.9496 -1.9586 141.7398 
0.2 0.1762 1.0806 1.6421 1.7921 6.1878 339.5609 
0.3 0.1240 1.1303 1.4676 2.5151 8.8023 540.0395 
0.4 0.0991 1.1881 1.2965 3.1041 10.0449 743.7425 
0.5 0.0853 1.2549 1.1297 3.5441 10.7365 951.0857 
0.6 0.0773 1.3324 0.9680 3.8207 11.1356 1162.1853 
0.7 0.0734 1.4260 0.8124 3.9215 11.3322 1376.6660 
0.8 0.0732 1.5501 0.6636 3.8363 11.3401 1593.3114 
0.9 0.0777 1.7424 0.5222 3.5570 11.1132 1809.3387 
1.0 0.0898 2.1045 0.3886 3.0780 10.5080 2018.3028 
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In Tables 1,2 and 3, ( )E W denotes the expected waiting time of an arbitrary customer. 
We can see that the ( )E W decreases as p increases upto some 1p (shown in bold letters) 
and after that it increases. This is due to the effect of N -policy. As p increases (upto 1p ), 
the number of customers in the system hit N more fast so that the server stops processing 
of service items and start serving customers and hence ( )E W decreases. When p becomes 

1p , ( )E W starts increasing due to the diminished effect of .N  Hence 1F  increases as p
increases upto 1p  and after that it decreases. As we expect, ( )E S increases as p increases. 
As p increases, ( )E it decreases, since larger number of customers are served in a cycle. 

( )E ipo  increases upto 1p , as p increases. This is due to the effect of N -policy. As p
increases, the number of customers in the system hit N more rapidly and hence customers 
leave the system quickly sothat the server can switch on to processing at a faster rate. When
p increases beyond 1p , ( )E ipo decreases as p increases due to the diminished effect of 
N .  

From Tables 1, 2 and 3, We can see that 1F is strictly increasing on [0, 1p ] and strictly 
decreasing on [ 1p ,1]. Thus,   

1. If 1 1( ) 0F p  , then 1( ) 0F p  for all [0,1]p . In this case, the maximum benefit 
is negative which implies that customers do not join the system even if there is no 
customer in the system.  

2. If 1(0) > 0F and 1(1) > 0F , then 1( ) > 0F p for all [0,1]p . In this case, 
customers prefer to join the system, because the minimal benefit is positive.  

3. If 1 1( ) 0F p  and 1(0) < 0F ,  1[0, ]ep p such that 1( ) = 0eF p .  

4. If 1 1( ) 0F p  and 1(1) < 0F ,   1[ ,1]ep p  such that 1( ) = 0eF p .  

5. If 1 1( ) 0F p  , 1(0) < 0F and 1(1) < 0F then  1[0, ]ep p such that 1( ) = 0eF p
and 1[ ,1]ep p   such that 1( ) = 0eF p .  

Hence, if, either of the cases 3,4 and 5 happen, then customers are indifferent between 
joining and balking the system. Suppose that, case 3 holds. Then the above discussions 
imply that when the joining probability p adopted by other customers is greater than ep , 
the expected net benefit of an arriving customer is positive provided he joins, thus the unique 
best response is 1. Conversely, the unique best response is 0 if < ep p because then the 
expected net benefit is negative. If = ep p , every strategy is the best response since the 
expected net benefit is always 0. This behaviour illustrates a situation that an individual’s 
best response is an increasing function of the strategy selected by other customers. Therefore, 
we expect a crowd situation in this case due to the effect of N -policy.  

Next, suppose that, case 4 holds. Then the above discussions imply that when the 
joining probability p adopted by other customers is smaller than ep , the expected net 
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benefit of an arriving customer is positive provided he joins, thus the unique best response 
is 1. Conversely, the unique best response is 0 if > ep p  because then the expected net 
benefit is negative. If = ep p , every strategy is the best response since the expected net 
benefit is always 0. This behaviour illustrates a situation that an individual’s best response 
is a decreasing function of the strategy selected by other customers. Therefore, we can avoid 
a crowd situation. This is due to the diminished effect of N -policy. 

Next, suppose that case 5 holds, then the above discussions imply that when the joining 
probability p adopted by other customers is greater than ep and less than ,ep the expected 
net benefit of an arriving customer is positive provided he joins, thus the unique best 
response is 1. Conversely, the unique best response is 0 if < ep p or > ep p because then 
the expected net benefit is negative. If = ep p or = ep p , every strategy is the best 
response since the expected net benefit is always 0.   

Table 4. Individual optimum when 0 1= ( 20), = (20).D D  

p q   10 20 30 40 50 60 70 75 
0.02 -50.11 -60.11 -70.11 -80.11 -90.11 -100.11 -110.11 -120.11 
0.1 39.78 29.78 19.78 9.78 -0.22 -10.22 -20.22 -30.22 
0.2 52.14 42.14 32.14 22.14 12.14 2.14 -7.86 -17.86 
0.3 56.19 46.19 36.19 26.19 16.19 6.19 -3.81 -13.81 
0.4 58.16 48.16 38.16 28.16 18.16 8.16 -1.84 -11.84 
0.5 59.31 49.31 39.31 29.31 19.31 9.31 -0.69 -10.69 
0.6 60.04 50.04 40.04 30.04 20.04 10.04 0.04 -9.96 
0.7 60.55 50.55 40.55 30.55 20.55 10.55 0.55 -9.45 
0.8 60.90 50.90 40.90 30.90 20.90 10.90 0.90 -9.1 
0.9 61.14 51.14 41.14 31.14 21.14 11.14 1.14 -8.86 
1.0 61.29 51.29 41.29 31.29 21.29 11.29 1.29 -8.71 

Table 5. Individual optimum when 0 1= ( 25), = (25).D D  

p q   10 20 30 40 50 60 70 75 
0.02 -25.12 -35.12 -45.12 -55.12 -65.12 -75.12 -85.12 -95.12 
0.1 44.74 34.74 24.74 14.74 4.74 -5.26 -15.26 -25.26 
0.2 54.58 44.58 34.58 24.58 14.58 4.58 -5.42 -15.42 
0.3 57.77 47.77 37.77 27.77 17.77 7.77 -2.23 -12.23 
0.4 59.31 49.31 39.31 29.31 19.31 9.31 -0.69 -10.69 
0.5 60.19 50.19 40.19 30.19 20.19 10.19 0.19 -9.81 
0.6 60.74 50.74 40.74 30.74 20.74 10.74 0.74 -9.26 
0.7 61.08 51.08 41.08 31.08 21.08 11.08 1.08 -8.92 
0.8 61.29 51.29 41.29 31.29 21.29 11.29 1.29 -8.71 
0.9 61.36 51.36 41.36 31.36 21.36 11.36 1.36 -8.64 
1.0 61.30 51.30 41.30 31.30 21.30 11.30 1.30 -8.70 
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 Table 6. Individual optimum when 0 1= ( 30), = (30).D D  

p q   10 20 30 40 50 60 70 75 
0.02 -8.46 -18.46 -28.46 -38.46 -48.46 -58.46 -68.46 -78.46 
0.1 48.04 38.04 28.04 18.04 8.04 -1.96 -11.96 -21.96 
0.2 56.19 46.19 36.19 26.19 16.19 6.19 -3.81 -13.81 
0.3 58.80 48.80 38.80 28.80 18.80 8.80 -1.20 -11.20 
0.4 60.05 50.05 40.05 30.05 20.05 10.05 0.05 -9.95 
0.5 60.74 50.74 40.74 30.74 20.74 10.74 0.74 -8.26 
0.6 61.14 51.14 41.14 31.14 21.14 11.14 1.14 -8.86 
0.7 61.33 51.33 41.33 31.33 21.33 11.33 1.33 -8.67 
0.8 61.34 51.34 41.34 31.34 21.34 11.34 1.34 -8.86 
0.9 61.12 51.12 41.12 31.12 21.12 11.12 1.12 -8.88 
1.0 60.51 50.51 40.51 30.51 20.51 10.51 0.51 -9.49 

From Tables 4,5 and 6, we get the values of 1F corresponding to different values of
p and q when the arrival rates are 20, 25 and 30 respectively. 

In our experiment,   a 1q such that 1 1( ) 0,F p  1 1(0) < 0, (1) 0F F  and   exactly 
one equillibrium ep in 1(0, ]p for all 1[0, )q q where 10 < <q R (in Table 6, 1 = 70.51q ). 
Also ep is strictly increasing for all q in 1[0, )q (in Figure 1, ( ,0)ep corresponding to 
different q’s are plotted using squares). This is due to the effect of N -policy. Also,   a 

2q , where 1 2 <q q R such that when 1 2q q q  ,  1[0, ]ep p  and 1[ ,1]ep p  such 
that ep is strictly increasing and ep is strictly decreasing in 1 2[ , ]q q  (in Table 6, 

2 = 71.34q ). This case is shown in Figure 2. When 2( , ]q q R , 1( ) < 0F p for [0,1]p
and there is no equillibrium probability. Hence, if q increases (up to 1q ), more customers 
are supposed to join the queue, since the server can start service only if the number of 
customers in the system hit N . When q increases from 2q to R , customers do not join 
the system since the maximum benefit is negative. 
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Figure 1. Effect of 1(< )q q on individual equillibrium strategy. 

      

 
Figure 2. Effect of 1 2( )q q q q  on individual equillibrium strategy. 

Figure 1 shows individual equillibrium probabilities ep as q varies ( 10 < <q q ), 
corresponding to different arrival rates. We can see that ep increases as q increases for the 
three different arrival rates. But ep decreases as arrival rate increases. Figure 2 shows 
individual equillibrium probabilities ep , ep as q varies ( 1 2q q q  ) corresponding to 
different arrival rates. We see that ep increases and ep decreases as q increases and 
coincides when 2=q q for three different arrival rates.  

Tables 7 and 8 show the effect of q on revenue of the server. Here, we see that 2F
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decreases as q increases upto 1q . This happens because when q increases upto 1q , ep
increases and hence the rate of hitting N becomes faster so that ( )E ipo increases. But we 
see that when q increases in 1 2[ , ]q q , after a certain q -value, revenue function increases 
if ep is the joining probability. This is due to the diminished effect of N -policy. Here, in 
all the cases, maximum revenue occur corresponding to = 10q and the revenue decreases 
if a higher q is levied upto 1q . But when q increases beyond 1q , after a certain q -value, 
revenue increases if a higher q is levied. 

Table 7. Revenue Maximization ( 10 < <q q ). 

q  0 1= ( 20), = (20)D D  0 1= ( 25), = (25)D D  0 1= ( 30),  = (30)D D  

ep  2F  ep  2F  ep  2F  
10 0.0646 -15.31 0.0327 -11.22 0.0320 -12.45 
20 0.0735 -16.82 0.0477 -14.45 0.0461 -16.08 
30 0.0824 -18.32 0.0628 -17.67 0.0603 -19.67 
40 0.0913 -19.82 0.0778 -20.81 0.0745 -23.20 
50 0.1018 -21.56 0.0929 -23.92 0.0886 -26.65 
60 0.1827 -34.50 0.1535 -35.91 0.1240 -35.01 
70 0.5932 -84.23 0.4784 -84.63 0.3960 -84.29 

            Table 8. Revenue Maximization ( 1 2q q q  ). 

0 1,D D  q  ep  2F  ep  2F  
(-20), (20) 71.29( 1 2=q q ) 1 -100.89 1 -100.89 

(-25), (25) 
71.30( 1q ) 0.8143 -100.76 1 -91.78 

71.33 0.8571 -99.87 0.9500 -95.52 
71.36( 2q ) 0.9000 -98.28 0.9000 -98.28 

(-30), (30) 

70.51( 1q ) 0.4667 -92.10 1 -66.92 
71 0.5650 -98.98 0.9197 -80.85 

71.15 0.6053 -100.39 0.8864 -85.567 
71.30 0.6842 -100.66 0.8182 -93.25 

71.34( 2q ) 0.8000 -94.85 0.8000 -94.85 

Again, from Tables 1,2 and 3, we can see that 3F increases as p inreases. But the rate 
of increase decreases as p increases. Here, the social optimum corresponds to = 1p ( sp ) 
in all cases. 

Next, we vary values of N and L and see the effect of p on different performance 

measures. We fix  = = 1 0  ,  = 0.8 0.2 , 
50 50

= ,
0 50

T
 
  
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150 150
=

0 150
U

 
  

, 1 2= 75, = 60, = 50, = 2, =1, = 30.wR q h h h c  

Table 9. Effect of p on different performances varying N and L . 

(N, L) p  ( )E W  ( )E S  ( )E it  ( )E ipo  1F  

(3,2) 

0.1 0.5045 1.0248 1.8794 0.6445 -10.2243 
0.2 0.2571 1.0514 1.7601 1.2429 2.1430 
0.3 0.1762 1.0806 1.6421 1.7921 6.1878 
0.4 0.1368 1.1129 1.5254 2.2882 8.1599 
0.5 0.1138 1.1486 1.4102 2.7271 9.3077 

(3,3) 

0.1 0.4888 1.0241 2.8168 0.6562 -9.4391 
0.2 0.2433 1.0487 2.6346 1.2652 2.8337 
0.3 0.1642 1.0746 2.4528 1.8402 6.7919 
0.4 0.1263 1.1028 2.2713 2.3687 8.6865 
0.5 0.1047 1.1341 2.0905 2.8433 9.7656 

(3,4) 

0.1 0.4880 1.0240 3.8110 0.6506 -9.4013 
0.2 0.2421 1.0481 3.6104 1.2686 2.8936 
0.3 0.1628 1.0728 3.3952 1.8514 6.8617 
0.4 0.1249 1.0988 3.1640 2.3942 8.7560 
0.5 0.1035 1.1271 2.9182 2.8892 9.8269 

(4,3) 

0.1 0.7456 1.5143 2.8244 0.4878 -22.2785 
0.2 0.3761 1.5217 2.6469 0.9567 -3.8066 
0.3 0.2556 1.5286 2.4667 1.4062 2.2207 
0.4 0.1968 1.5389 2.2847 1.8296 5.1614 
0.5 0.1624 1.5550 2.1023 2.2174 6.8805 

(4,4) 

0.1 0.7301 1.5151 3.7633 0.4919 -21.5035 
0.2 0.3626 1.5217 3.5220 0.9736 -3.1325 
0.3 0.2438 1.5282 3.2756 1.4414 2.8079 
0.4 0.1866 1.5391 3.0260 1.8842 5.6683 
0.5 0.1521 1.5585 3.6070 2.3134 7.3953 

(5,4) 

0.1 0.9844 2.0093 3.7704 0.3916 -34.2183 
0.2 0.4924 2.0047 3.5349 0.7743 -9.6201 
0.3 0.3324 1.9939 3.2917 1.1511 -1.6189 
0.4 0.2546 1.9837 3.0421 1.5163 2.2700 
0.5 0.2093 1.9793 2.7891 1.8599 4.5362 

(5,5) 

0.1 0.9689 2.011 4.7101 0.3947 -33.4434 
0.2 0.4792 2.0051 4.4102 0.7881 -8.9589 
0.3 0.3210 1.9937 4.0986 1.1806 -1.0519 
0.4 0.2450 1.9853 3.7787 1.5617 2.7517 
0.5 0.2013 1.9855 3.4557 1.9168 4.9373 
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From Table 9, we can see that when N increases (keeping L fixed), ( )E W increases. 
This happens because as N increases, the number of customers in the system hits N at a 
slower rate and thus the server switches to service mode at a slower rate. When L increases 
(keeping N fixed), ( )E W decreases. This is because when L increases, more customers 
get service according to ( , )PH U whose service rate is greater than that of ( , )PH S . As 
a result, when N increases (keeping L fixed) 1F decreases and when L increases 
(keeping N fixed), 1F increases.  

When N increases (keeping L fixed), ( )E S increases as expected. As N increases 
(keeping L fixed), ( )E it increases since lesser number of customers are served in a cycle. 
When L increases (keeping N fixed), ( )E it increases, since more items are processed in a 
cycle. ( )E ipo decreases as N increases since the server switches to service mode at a 
slower rate and as a result to inventory processing at a slower rate.  

Next, we consider the following two sets of matrices for 0D  and 1D . 

1. MAP with positive correlation (MPA) 

 0

27.0697 27.0697 0
= 0 45.0981 0

0 0 595.5331
D

 
  
  

, 1

0 0 0
= 42.3911 0 2.7070

189.4878 0 406.0453
D

 
 
 
  

 

2. MAP with negative correlation (MNA) 

 0

7.9382 7.9382 0
= 0 13.2250 0

0 0 404.0521
D

 
  
  

, 1

0 0 0
= 0.7938 0 12.4311

119.0723 0 284.9797
D

 
 
 
  

 

These two MAP processes are normalized so as to have an arrival rate of 20. The arrival 
process labeled MNA has correlated arrivals with correlation between two successive 
interarrival times given by -0.1368 and the arrival process corresponding to the one labelled 
MPA has a positive correlation with value 0.1368. 

We fix other parameters same as in the case of Poisson arrivals.   

Table 10. Effect of p on various performance measures, when arrival follows MPA. 

p  ( )E W  ( )E S  ( )E it  ( )E ipo  1F  
0.1 0.0905 1.0695 1.7309 1.3096 10.4728 
0.2 0.0931 1.1486 1.5323 2.1580 10.3428 
0.3 0.1002 1.2185 1.3794 2.7405 9.9915 
0.4 0.1060 1.2807 1.2585 3.1396 9.7006 
0.5 0.1108 1.3371 1.1609 3.4116 9.4579 
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Table 11. Effect of p on various performance measures, when arrival follows MNA. 

p  ( )E W  ( )E S  ( )E it  ( )E ipo  1F  
0.1 0.1657 0.7477 1.7519 0.9167 6.7171 
0.2 0.1148 0.8068 1.5702 1.3605 9.2616 
0.3 0.1116 0.9362 1.4262 1.7000 9.4198 
0.4 0.1140 1.0727 1.3100 1.9477 9.2978 
0.5 0.1181 1.2100 1.2148 2.1222 9.0960 

From Table 10, we can see that the ( )E W increases as p increases, different from 
the case of Poisson arrivals. This is due to the effect of positive correlation. Hence, 1F  
decreases as p increases. But in the case of MNA (Table 11), ( )E W decreases as p
increases upto some 1p (here 1 = 0.3p ) and after that it increases, as in the case of Poisson 
arrivals and hence 1F increases as p increases upto 1p and after that it decreases. In both 
cases, as we expect, ( )E S increases as p increases. As p increases, ( )E it decreases, 
since larger number of customers are served in a cycle. ( )E ipo increases as p increases. 
This is because as p increases, the number of customers in the system hit N more rapidly 
and hence customers leave the system quickly sothat the server can switch on to processing 
at a faster rate.  

5. Special Case: The System in Normal Mode 
5.1. Waiting time analysis 

To find the waiting time of a customer who joins for service at an epoch in the long 
run, we have to consider different possibilities depending on the status of server at that time. 
Let Ev denote the event the system is working in normal mode. Let ( | )W t Ev be the 
conditional waiting time of a customer who arrives at time t and *( | )W s Ev be the 
corresponding conditional LST.  

Let , , , ,h i j k lw denote the probabaility that the tagged customer finds the system in the 
state ( , , , , )h i j k l  immedietly after his arrival when the system is in normal mode. 

Then  
(1)

,0,1, , 1,0,1, , 2(0)
=1

, 2 1, or 1, 1 ,
(1 )

                                                                          1 .

n
l l

h k l h k l
l l l l kk

pdw x h N h N k m
d p S

l n





   

       
   

 

  

(1)

,0,1, , 1,0,1, , 2(0)
=1

, 1 , 1 .
(1 )

n
l l

N k l N k l
l l l l kk

pdw x k m l n
d p S




   

    
      
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(1)

, ,1, , 1, ,1, ,(0)
=1

3

, 2 1, 1 1,
(1 )

                                                                          1 , 1 .

n
l l

h i k l h i k l
l l l l kk

pdw x h N L N h
d p U

k m l n





   

       
   

   

   

(1)

, ,1, , 1, ,1, , 3(0)
=1

, 1, 1 , 1 ,
(1 )

                                                                          1 .

n
l l

h i k l h i k l
l l l l kk

pdw x h N i L k m
d p U

l n





   

      
   

 

   

(1)

, ,1, , 1, ,1, , 2 2(0)
=1

, 1 ,1 ,1 .
(1 )

n
l l

N i k l N i k l
l l l l kk

pdw x i L k m l n
d p S




   

      
      

Case I: L N  

Case (1)  
 Let 1Ev denote the event that the tagged customer immedietly after his arrival 

finds the system in the state ( 1,0,1, , )r k l , where 21, 1 , 1r k m l n     . In this case, 
processed item is not available to any customer. Thus waiting time is the sum of residual 
service time and r service time each following ( , )PH S .  

* 1 0 1 0
1( | , ) = ( ) ( ( ) ) .r

uW s Ev Ev e sI S S sI S S     
Case (2)  

 Let 2Ev denote the event that the tagged customer immedietly after his arrival 
finds the system in the state ( 1, ,1, , ),r i k l  where 1 1, 1 ,r N i L N r      

31 , 1k m l n    . In this case, processed item is available to i customers. Thus waiting 
time is the sum of residual service time and 1i  service time each following ( , )PH U
and 1r i  service time each following ( , )PH S .  

 * 1 0 1 0 1 1 0 1
2( | , ) = ( ) ( ( ) ) ( ( ) ) .i r i

uW s Ev Ev e sI U U sI U U sI S S           
Case (3)  

 Let 3Ev denote the event that the tagged customer immedietly after his arrival 
finds the system in the state ( 1, ,1, , )r i k l , where 3, 1 , 1 , 1r N i L k m l n       . In 
this case, processed item is available to i customers. Thus waiting time is the sum of 
residual service time and 1i  service time each following ( , )PH U and 1r i  service 
time each following ( , )PH S .  

 * 1 0 1 0 1 1 0 1
3( | , ) = ( ) ( ( ) ) ( ( ) )i r i

uW s Ev Ev e sI U U sI U U sI S S          . 
Thus the conditional LST of the waiting time,  

1 32
* * *

1 1,0,1, , 2 1, ,1, ,
=1 =1 =1 =1 =1 =1 =13

1( | ) = [ ( | , ) ( | , )
mm n N L N r n

r k l r i k l
r k l r i k l

W s Ev W s Ev Ev w W s Ev Ev w
d

   

      

3
*

3 1, ,1, ,
= =1 =1 =1

( | , ) ]
mL n

r i k l
r N i k l

W s Ev Ev w


 ,  (10) 
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where  

   
1 3 32

3 1,0,1, , 1, ,1, , 1, ,1, ,
=1 =1 =1 =1 =1 =1 =1 = =1 =1 =1

=
m mm n N L N r n L n

r k l r i k l r i k l
r k l r i k l r N i k l

d w w w
    

        .       (11) 

Case II: >L N  

Case (1)  
Let 1Fv denote the event that the tagged customer immedietly after his arrival finds 

the system in the state ( 1,0,1, , )r k l , where 21, 1 , 1r k m l n     . In this case, 
processed item is not available to any customer. Thus waiting time is the sum of residual 
service time and r service time each following ( , )PH S .  

 * 1 0 1 0
1( | , ) = ( ) ( ( ) ) .r

uW s Ev Fv e sI S S sI S S     
Case (2)  

Let 2Fv denote the event that the tagged customer immedietly after his arrival finds 
the system in the state ( 1, ,1, , ),r i k l where 1 1, 1 ,r N i L N r       31 ,k m   
1 l n  . 

Case (i), 1 < 1i r   
In this case, processed item is available to i customers. Thus the conditional LST,  
 * 1 0 1 0 1 1 0 1

2( | , ) = ( ) ( ( ) ) ( ( ) )i r i
uW s Ev Fv e sI U U sI U U sI S S          . 

  Case (ii), 1r i L N r      
In this case, processed item is available to all the 1r  customers. Thus the 

conditional LST,  
 * 1 0 1 0

2( | , ) = ( ) ( ( ) )r
uW s Ev Fv e sI U U sI U U    . 

Case (3)  
 Let 3Fv denote the event that the tagged customer immedietly after his arrival 

finds the system in the state ( 1, ,1, , )r i k l , where 3, 1 , 1 , 1r N i L k m l n       . 
Case (i), N r L   

Case (a), 1 < 1i r   
In this case, processed item is available to i customers. Thus the conditional LST,  
 * 1 0 1 0 1 1 0 1

3( | , ) = ( ) ( ( ) ) ( ( ) )i r i
uW s Ev Fv e sI U U sI U U sI S S          . 

Case (b), 1r i L    
In this case, processed item is available to all the 1r  customers. Thus the 

conditional LST,  
 * 1 0 1 0

3( | , ) = ( ) ( ( ) )r
uW s Ev Fv e sI U U sI U U    . 

Case (ii), 1r L   
In this case, processed item is available to i customers. Thus the conditional LST,  
 * 1 0 1 0 1 1 0 1

3( | , ) = ( ) ( ( ) ) ( ( ) )i r i
uW s Ev Fv e sI U U sI U U sI S S          . 

Thus the conditional LST of the waiting time,  
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1 32
* * *

1 1,0,1, , 2 1, ,1, ,
=1 =1 =1 =1 =1 =1 =14

1( | ) = [ ( | , ) ( | , )
mm n N L N r n

r k l r i k l
r k l r i k l

W s Ev W s Ev Fv w W s Ev Fv w
d

   

      

3
*

3 1, ,1, ,
= =1 =1 =1

( | , )) ],
mL n

r i k l
r N i k l

W s Ev Fv w


     (12) 

where  

 
1 3 32

4 1,0,1, , 1, ,1, , 1, ,1, ,
=1 =1 =1 =1 =1 =1 =1 = =1 =1 =1

=
m mm n N L N r n L n

r k l r i k l r i k l
r k l r i k l r N i k l

d w w w
    

        . (13) 

We fix = 3, = 2N L ,  = = 1 0  ,  = 0.8 0.2 , 
50 50

= ,
0 50

T
 
  

  

80 80
=

0 80
S

 
  

,
150 150

=
0 150

U
 
  

, 1 2= 75, = 60, = 50, = 2, =1, = 30.wR q h h h c  

Table 12. Effect of p on various performance measures, when 0 1= ( 20), = (20)D D . 

p  ( )E W  ( )E S  ( )E it  ( )E ipo  1F  3F  
0.1 0.0485 1.5214 0.6972 19.3813 12.5747 -440.0284 
0.2 0.0499 1.5604 0.6564 18.3266 12.5034 -263.5605 
0.3 0.0512 1.6081 0.6117 17.2386 12.4386 -86.3546 
0.4 0.0524 1.6657 0.5640 16.1240 12.3798 91.4217 
0.5 0.0535 1.7341 0.5145 14.9939 12.3259 269.4597 
0.6 0.0545 1.8144 0.4645 13.8595 12.2749 447.4200 
0.7 0.0555 1.9081 0.4153 12.7308 12.2237 624.9757 
0.8 0.0566 2.0174 0.3677 11.6154 12.1681 801.8239 
0.9 0.0579 2.1455 0.3224 10.5189 12.1027 977.6669 
1.0 0.0596 2.2971 0.2796 9.4448 12.0200 1152.1810 

From Table 12, we see that ( )E W increases as p increases. This happens since when 
the system is working in normal mode, the number of customers accumulating in the system 
increases with increasing value of p . As p increases 1F decreases consequent to increase 
in ( )E W . As we expect, ( )E S increases as p increases. As p increases, ( )E it decreases, 
since larger number of customers get served in a cycle. ( )E ipo decreases as p increases. 
This happens due to the fact that when p increases more customers accumulate in the 
system and hence customers leave the system slowly so that the server switch on to 
processing at a slower rate. Also from table 12, we see that 3F increases as p increases. 
Thus the social optimum corresponds to = 1p .  
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 Figure 3. Effect of q on individual equillibrium strategy when 0 1= ( 20), = (20)D D . 

Here when < 72.02q , the expected net benefit is always positive. When q increases 
beyond 72.02, (see Table 12), we can find a [0,1]ep  such that 1( ) = 0eF p and ep is 
decreasing (see Figure 3). Here when the joining probability p adopted by other customers 
is smaller than ep , the expected net benefit of an arriving customer is positive provided he 
joins. Thus the unique best response is 1. Conversely, the unique best response is 0 if

> ep p since, the expected net benefit is negative. If = ep p , every strategy is the best 
response since the expected net benefit is always 0. This behaviour illustrates a situation 
that an individuals best response is a decreasing function of the strategy selected by other 
customers. Therefore, we can avoid a crowd situation. 

Table 13. Effect of q on Revenue function.  

q  ep  2F  
72.1 0.9000 -302.1809 
72.2 0.7400 -357.9769 
72.3 0.5500 -425.8322 
72.4 0.3667 -491.4621 
72.5 0.2000 -549.3741 

Also, in this case revenue function 2F decreases as q increases. This happens due to 
the fact that as q  increases, the equillibrium probability ep decreases and hence ( )E ipo
increases (see Table 13). 
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6. Conclusion 
In this paper, we considered a MAP/PH/1 queue with processing of service items under 

Vacation and N-policy with impatient customers. We studied this system as a Level 
Dependent QBD. We explained how to find the steady state vectors of the system 
approximately by finite truncation method. We found the distribution of time until the 
number of customers hit N . Several system performance characteristics were computed. 
We computed LST of the waiting time distribution for the case of no reneging. Also we 
performed some numerical experiments for computing individual optimal strategy, 
maximum revenue to the server and social optimal strategy for the special case of no 
reneging. We discussed the special case in which the system is in normal mode. In this case 
also, we computed LST of the waiting time distribution and performed some numerical 
experiments for computing individual optimal strategy, maximum revenue to the server and 
social optimal strategy. 
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