
1. Introduction
In recent years, discrete-time service systems have taken abound attention of the re-

searchers mainly due to its compatibility to model the digital communication system rather
than continuous-time counterpart. Also, due to the slotted nature of the time axis, perfor-
mances and related behaviors (quality of service (QoS) etc.) of packet switching or circuit
switching networks, hybrid multiplexing, cellular base stations (femtocell etc.), internet pro-
tocol or ethernet that use variable sized packets and frames protocols, ATM multiplexer in
the broadband integrated services digital network (B-ISDN), circuit-switched time-division
multiple access (TDMA) systems etc., are better described by the modeling and analysis of
an analogous queueing or service systems in discrete-time set up. More application of such
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queueing or service systems can be found in [5], [2], [22], [18].
The modern telecommunication/wireless networks (5th generation mobile networks(5G),

4G/ LTE, 3GPP LTE-A etc.) are primarily intended for transferring information of some
kinds e.g., voice, video, data, signals, writings, images, sounds or intelligence of any nature
etc., which we usually refer as messages. Before the transmission begin, the messages/data
are broken into small, manageable packets, each bundled up with the necessary information
(cells) and then are transmitted to the proper destination over the network consisting of sev-
eral nodes by establishing the virtual connection. In queueing analogy, each node behaves
like a single/ multiple server queue with finite/infinite waiting space/buffer.

An individual node, in such facsimile systems behaves like a multiserver or as a sole
server offering batch transmission. Usually batch transmission in such systems occurs due
to the simultaneous transfer of multiple packets (may be with different bandwidth demands).
As an example, Point-to-multi point (P2M) connections, which are most frequently used in
wireless communications, are possible over multi drop links e.g., a mainframe and its ter-
minals. The device which is responsible for multi point connection is usually an intelligent
controller that manages the flow of information to attached devices. It is generally seen that
these P2M connections require lower investment cost as compared to point-to-point (P2P)
communications. Also, in modern mobile telecommunication 5G, numerous simultaneous
connections (within some threshold limits) is to be supported for massive sensor deploy-
ments. Also it offers huge data transfer rates up to 1 gigabit per second to multiple clients
depending on the number of clients at a time with a improved latency as compared to LTE.
Another popular example of batch service in telecommunications, is femtocell (a subset of
small cell) is a small, low-power, user installed, cellular base station, generally designed
for indoor coverage or small enterprizes. It connects to the service providers network via
broadband (such as DSL or cable). It currently support four to eight active mobile phones
in a residential setting, and eight to sixteen active mobile phones in enterprize settings.
Femtocells have the ability to provide services to huge number of mobile devices (within
certain threshold limits) and make transmission depending on the size of the transmitting
batch. Femtocells benefits both the mobile operator and the consumer especially in terms
of coverage and quality. So, the present telecommunication systems discussed here can be
modeled and analyzed by an analogous discrete-time batch service queue. It is quite percep-
tible that the transmission of packets in batches with varying size enhances the efficiency
of the system as well as it is cost-effective too. Furthermore, there are other telecommuni-
cation systems which behaves like a batch service queue e.g., IEEE 802.16, IEEE 802.11n
etc. These systems include a Base Station (BS) and one or more Subscriber Stations (SS).
Depending on the bandwidth demand BS allocates variable number of physical slots to each
SS. Now data transfer takes place from BS to SS and SS to BS using Time Division Multiple
Access (TDMA) within certain threshold of size of the batches and depending on the size
of transmission batches. So, from the above discussion, it may be concluded that the several
important telecommunication systems needs to be modeled as discrete-time batch service
queue with batch size sensitive transmission rates for efficient performance analysis.

In Fig 1 we display a virtual diagram of a general P2M architecture. Thus it is ob-
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Figure 1. Point to multi point architecture for base station.

served that many telecommunication systems are based on batch processing control (i.e.,
here the server processes in batch rather individually) as it improves quality of service, as
well as, adds flexibility to the system. However, it has been a major concern to the vendors
that how to achieve the most cost-effective combination of performance or reliability of the
system output. So, there is a need to model an acceptable standard representation of such
batch processing system in slotted time setup. Also, it has to be kept in mind that, in mod-
ern age the server utilization and processing rate should also be met together for maximum
response. This motivates us to model an infinite-buffer discrete-time batch processing trans-
mission channel where the transmission rates depend on the number of packets undergoing
transmission.

We choose Bernoulli arrival process and arbitrarily distributed service time for the
batches in the present study. Also, we use the versatile batch service rule to set up the
service policy. In this rule, the server is given a chance in beforehand to select the num-
ber of packets randomly for transmission following certain distribution. According to this
policy, on completion of a batch transmission if the server finds m ≥ 0 packets waiting in
the queue, then (i) When m < a, the server remains ‘idle’ until at least number ‘a’ packets
are accumulated, and the server takes the batch of size ‘a’ packets for the transmission, ac-
cording to the discrete random variable Y with support [a,B]. (ii) When m ≥ a, the server
takes a batch of size i(= min{m,Y }) packets for the transmission, according to the discrete
random variable Y with support [a,B].

Since in the most of the application the server is finitely capacitated, so we use the
service batch-size rule with a finite support. This rule is also called the ‘(a, Y )’ rule. The
reasons that drive us toward present assumptions are as follows:

• In modern day communication system, large number of data in the form of packets
are processed on a regular basis so, the waiting space needs to be large enough. So,
we opt for infinite waiting space despite of its analysis being not quite easy.

• Bernoulli input process is quite tractable and well suited for the arrivals admitting no
fractal characteristics like self similarity etc.

Queueing Models and Service Management

205



• In general, the processing times of batches do not follow certain well known distribu-
tion so the general service time distribution is assumed here.

• ‘(a, Y )’ rule is one of the most general and promising batch service policy available
in the literature.

• The present model unifies almost all the results of the earlier authors who used Bernoulli
input with batch transmission.

• We use batch size dependent transmission rates which essentially reduces congestion
and improves productivity of the system.

Keeping in view the myriad of literature on the discrete-time service systems with batch
processing, one can categorize the literature in the following way.

1. (a) Late Arrival Delayed Access (LAS-DA) systems (b) Early Arrival Systems (EAS)

2. (a) With finite-buffer (b) with infinite-buffer

3. (a) With batch size dependent service (b) Without batch size dependent service

4. (a) Geometric service time (b) non-Geometric service time.

5. (a) Versatile batch service rule (with thresholds, minimum threshold preferably being
different from 1) (b) other batch service rule e.g., ‘General batch service rule’ or
‘(L,K)’rule, ‘Fixed batch service rule’ etc.

It is easily noticeable that the most of the literature deals with (1a), (2a), (3b), (4a), (5b)
while, there are very few papers that includes (2b), (3a) and (5a), for some recent refer-
ences see [3], [6], [7], [9], [10], [11], [12], [13], [14], [16], [15], [17], [19], [20], [21], [23],
[10], [4]. Chaudhury and Chang [8] has analyzed Geo/GY /1/N +B system, wherein they
obtained post transmission epoch state probabilities using embedded Markov chain tech-
nique and established a relationship amongst the random and pre-arrival epoch probabilities
using renewal theoretic arguments. Recently, [23] has considered Geo/G(a,Y )/1/K sys-
tem and obtained post transmission state epoch probabilities using embedded Markov chain
technique and established the relationship with the random epoch state probabilities using
“rate-in-rate out” principle. They both have considered the systems in finite buffer along
with unbiased service rates. In this paper, we consider the Geo/G

(a,Y )
n /1 system which

essentially includes the infinite-buffer case and batch size dependent service rates. Also,
since the detailed description of the busy states are very essential for the vendors, we have
successfully obtained the joint distribution of both server content and the queue content in a
quite tractable and presentable form, through the inversion of the the bi-variate probability
generating function (b.p.g.f.) associated with it, despite it needs an extensive mathematical
involvement. Some useful performance measures like ‘mean number of packets awaiting for
transmission’, ‘average number of packets with the server’, ‘mean waiting time’, ‘propor-
tion of the packets that have immediate access to transmission channel at post transmission
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epochs’ etc., are also obtained. Further, we develop a cost structure for the present system,
which may help the vendors to optimize the system cost according to his will on beforehand
by adjusting the system parameters. It may be also admitted that, the procedures adopted
here may be further utilized to explore more complex facsimile systems. Throughout the
paper the term ‘service’ is used to refer the transmission through the channel by the server.

This paper is organized as follows: Section 2 provides the model description; in sec-
tion 3 joint distribution of number of packets in the queue and with the server is obtained,
marginal distributions and some important performance measures are presented in section
4 and in section 5 a cost model is developed. Numerical results, optimality analysis and
conclusion are presented in section 6, 7 and 8, respectively, followed by references.

2. Model Description
For the present system, we assume that the packets arrive according to a Bernoulli pro-

cess with parameter λ, are transmitted in groups through a single channel, according to the
versatile batch-service rule or ‘(a, Y )’ rule, where Y is the random variable corresponding
to the serving batch size with the following distribution,

P (Y = i) =

{
yi, i = a, a+ 1, a+ 2, . . . B;
0, elsewhere, (1)

where yi, is the probability that the server takes i packets for transmission at the beginning
of service and B is the maximum serving capacity of the server, and mean batch size (y) is
given by y =

∑B
i=a iyi.

Further we assume that, the service time of the batch is arbitrarily distributed and is de-
pendent on the number of packets in the batch. Let Sr, a ≤ r ≤ B denotes the random vari-
ables for the service time corresponding to the batch of size r packets, which are assumed
to be independent and its probability mass function (p.m.f.) is given by, for a ≤ r ≤ B,

sr(n) = P (Sr = n), n = 1, 2, . . .. We then have
∞∑
n=1

sr(n) = 1. The corresponding

generating function for the service time of a batch of size r (a ≤ r ≤ B) is given by

s∗r(z) =
∞∑
n=1

sr(n)z
n. Let sr = 1

µr
= s

∗(1)
r (1) is the mean service time of a batch of size r,

where s
∗(1)
r (1) is the first order derivative of s∗r(z) evaluated at z = 1. Arriving packets are

not allowed to join the ongoing transmission even if there is an unused service capacity of
the server. It is assumed that, the successive service capacities, service times and the inter
arrival times are mutually independent sequences of random variables. For sake of conve-
nience, we denote our model mathematically by Geo/G

(a,Y )
n /1, where n indicates that the

service time of the batch depends on the number of packets in the batch.
For the service system in discrete-time set up, the time axis is divided into a sequence

of equal intervals of unit length, called slots, and it is assumed that inter-arrival and service
times are integral multiples of the slots. Under this discrete-time setting, an arrival and a
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transmission may take place simultaneously at a slot boundary. For the present model we
assume late arrival delayed access system (LAS-DA), where the packets are assumed to
arrive late during a slot, just prior to the end of a slot, while services are assumed to begin
and end only at the slot boundaries i.e., if the time axis be marked by 0, 1, 2, ..., k, ...., an
arrival occurs in (k−, k) and a transmission takes place in (k, k+) (see Fig 2).

K-  K K+ (K+1)- (K+1)  (K+1)+ t 

Potential Transmission 

Outside observer epoch 

Potential arrival 

Figure 2. Various epochs for LAS-DA Systems.

Although, in information transmission systems, actual arrivals may take place at random
time during a slot but usually, these arrivals are measured at slot boundaries, while the
service attunes to slot boundaries. Evidently, our present model complies well and good
with such kind of communication systems.

The present model, from a possible application point of view may be well understood
from the Fig 3. Here we pictorially describe how the packets arrive at a service station from
the sources and are transmitted through the server to the destined recipients with the present
service policy.
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Figure 3. Sample description of the present model.
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3. Joint Distribution of the Number of Packets in the Queue and with
the Server at Post Transmission Epoch
In this section, we obtain the joint distribution of the number of packets in the queue

and with the server at post transmission epoch using generating function approach (under
the stability condition of the system).

Theorem 1. The present queueing system is stable iff the traffic intensity ρ =

λ

B∑
i=a

yi
µi

y
< 1.

Proof. The proof is very straight forward and follows from the definition of the traffic inten-
sity. Also the stability condition can be perceived from Theorems 3 and 4 of the Appendix.

Remark 1. The stability of the queue can be proved using the result given in Abolnikov
and Dukhovny [1]. If we consider the TPM of only queue length distribution at departure
epoch of a batch, the TPM will be ∆m,n type matrix. Then using the stability condition given
in [1], we conclude that the corresponding Markov chain is ergodic iff K ′(1) < B. Here
K(x) =

∑B
j=a yjs

∗
j(λ + λx)xB−j . Now to show the stability of the queueing system, it is

sufficient to show that K ′(1) < B ⇔ ρ < 1, which is given in Theorem 3 in Appendix.

Purpose of this section is to provide a clear insight and description of the busy and idle
states of the system. It is perceptible from the following analysis that the construction of
the b.p.g.f. (as the current state vector is two-dimensional) and extraction of the state prob-
abilities in a presentable form, through the inversion of the b.p.g.f. is quite mathematically
involving.

For the present system (with LAS-DA), we observe the state of the system just prior to
the beginning of a slot boundary. Let us define the following random variables just prior to
the potential arrival (i.e. at k−):

• N(k−):= Number of the packets in the queue waiting to be transmitted.

• J(k−):= Number of packets with the server.

• U(k−):= Remaining service time of the batch in service (if the server is busy).

Then the joint probabilities can be defined as,

pn,0(k−) = Pr{N(k−) = n, J(k−) = 0}, 0 ≤ n ≤ a− 1, (2)
pn,r(u, k−) = Pr{N(k−) = n, J(k−) = r, U(k−) = u}, u ≥ 1, n ≥ 0, a ≤ r ≤ B.

(3)

In steady-state, we write

pn,0 = lim
k−→∞

pn,0(k−), 0 ≤ n ≤ a− 1,

pn,r(u) = lim
k−→∞

pn,r(u, k−), u ≥ 1, n ≥ 0, a ≤ r ≤ B. (4)
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3.1. Governing equations

Now observing the states of the system just prior to the beginning of the slot boundary,
i.e., at the time epochs k− and (k + 1)−, we write the following difference equations in
steady-state (for u ≥ 1).

p0,0 = λp0,0 + λ
B∑
i=a

p0,i(1), (5)

pn,0 = λpn,0 + λ

B∑
r=a

pn,r(1) + λpn−1,0 + λ

B∑
r=a

pn−1,r(1), 1 ≤ n ≤ a− 1, (6)

p0,a(u) = λp0,a(u+ 1) + λsa(u)
B∑

r=a

pa,r(1)
B∑

j=a

yj + λsa(u)
B∑

r=a

pa−1,r(1)
B∑

j=a

yj

+λpa−1,0sa(u), (7)

p0,r(u) = λp0,r(u+ 1) + λ
B∑
i=a

pr,i(1)
B∑
j=r

yjsr(u) + λ
B∑
i=a

pr−1,i(1)
B∑
j=r

yjsr(u),

a+ 1 ≤ r ≤ B, (8)

pn,r(u) = λpn,r(u+ 1) + λ
B∑
i=a

pn+r,i(1)yrsr(u) + λ
B∑
i=a

pn+r−1,i(1)yrsr(u)

+λpn−1,r(u+ 1), n ≥ 1, a ≤ r ≤ B, (9)

where λ = 1− λ.
Next we define the probability generating function of pn,r(u) as

p∗n,r(z) =
∞∑
u=1

pn,r(u)z
u, |z| ≤ 1, and pn,r := p∗n,r(1). (10)

The normalizing condition is given by

a−1∑
n=0

pn,0 +
∞∑
n=0

B∑
r=a

pn,r = 1. (11)

In order to find the joint distribution of the packets in the queue as well as in the transmission
channel (i.e., with the server) at post transmission epoch and random epoch, we adopt the
following notations.

• p+n,r := probability that there are n packets in the queue at post transmission epoch of
a batch and r packets with the departing batch, n ≥ 0, a ≤ r ≤ B,
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• p+n : =probability that the queue contains n packets at post transmission epoch of a

batch=
B∑

r=a

p+n,r, n ≥ 0,

• q+k :=probability that there are k packets in the transmission channel at post transmis-

sion epoch of a batch=
∞∑
n=0

p+n,k, a ≤ k ≤ B.

Now we obtain pn,0, (0 ≤ n ≤ a− 1), pn,r, (a ≤ r ≤ B, n ≥ 0) and p+n,r, (a ≤ r ≤ B, n ≥
0). For this first we prove the following lemmas.

Lemma 1. Probabilities pn,0, 0 ≤ n ≤ a− 1 and pn,r(1), a ≤ r ≤ B, n ≥ 0 are related by
the following relation

1−
a−1∑
n=0

pn,0 = sa

a−1∑
n=0

B∑
r=a

pn,r(1) +
∞∑

n=B

B∑
i=a

pn,i(1)
B∑

r=a

sryr

+
B−1∑
n=a

B∑
r=a

pn,r(1)


λ{

B∑
j=n

yjsn +
n−1∑

k=min(a,n−1)

yksk}




+
B−1∑
n=a

B∑
r=a

pn,r(1)

[
λ{

B∑
j=n+1

yjsn+1 +
n∑

k=a

yksk}

]
. (12)

Proof. Multiplying the equations (7) to (9) by zu and adding over u from 1 to ∞ we get,
(
z − λ

z

)
p∗0,a(z) = λpa−1,0s

∗
a(z)

B∑
i=a

yi + λs∗a(z)
B∑
i=a

pa,i(1)
B∑
i=a

yi

+λs∗a(z)
B∑
i=a

pa−1,i(1)
B∑
i=a

yi − λp0,a(1), (13)

(
z − λ

z

)
p∗0,r(z) = λ

B∑
i=a

pr,i(1)
B∑
j=r

yjs
∗
r(z) + λ

B∑
i=a

pr−1,i(1)
B∑
j=r

yjs
∗
r(z)

−λp0,r(1), a+ 1 ≤ r ≤ B, (14)
(
z − λ

z

)
p∗n,r(z) = λ

B∑
i=a

pn+r,i(1)yrs
∗
r(z)− λpn−1,r(1) + λ

B∑
i=a

pn+r−1,i(1)yrs
∗
r(z)

+
λ

z
p∗n−1,r(z)− λpn,r(1), n ≥ 1, a ≤ r ≤ B. (15)

Now, using the equations (5) and (6) we obtain the following relation

λpn,0 =
n−1∑
k=0

B∑
i=a

pk,i(1) + λ
B∑
i=a

pn,i(1), 0 ≤ n ≤ a− 1. (16)
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Now using the relation (16) in (13) and then adding the equations (13) to (15), we get for
|z| < 1

1

z

∞∑
n=0

B∑
r=a

p∗n,r(z) =
s∗a(z)− 1

z − 1

a−1∑
n=0

B∑
r=a

pn,r(1)

+

B−1∑
n=a

B∑
r=a

pn,r(1)


λ{

B∑
j=n

yjs
∗
n(z) +

n−1∑
k=min(a,n−1)

yks
∗
k(z)}




z − 1

+
B−1∑
n=a

B∑
r=a

pn,r(1)


λ{

B∑
j=n+1

yjs
∗
n+1(z) +

n∑
k=a

yks
∗
k(z)}


− 1

z − 1

+

B∑
r=a

s∗r(z)yr − 1

z − 1

∞∑
n=B

B∑
i=a

pn,i(1). (17)

Now, taking limit z → 1 in the above expression and using L’ Hôpital’s rule we get the
desired result.

In the following lemma we establish the relationship between post transmission and
random epoch state probabilities.

Lemma 2. The probabilities p+n,r and pn,r(1), n ≥ 0, a ≤ r ≤ B are connected by the
following relations

p+0,r = κλp0,r(1), a ≤ r ≤ B,

p+n,r = κ(λpn,r(1) + λpn−1,r(1)), a ≤ r ≤ B, n ≥ 1,
(18)

where κ−1=
∞∑
n=a

B∑
r=a

pn,r(1).

Proof. It may be noted that pn,r(1) denotes the probability that there are n packets in the
queue and r with the server and the remaining service time is just one slot, whereas p+n,r
denotes the probability that there are n packets in the queue and r packets with with the
departing batch. So it can be perceived that

p+0,r ∝ λp0,r(1), a ≤ r ≤ B,

p+n,r ∝ (λpn,r(1) + λpn−1,r(1)), a ≤ r ≤ B, n ≥ 1.

Let κ be the proportionality constant and its value can be easily obtained by the relation
∞∑
n=0

B∑
r=a

p+n,r = 1. Hence the lemma is proved.
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The following lemma gives an native expression for κ, which will be used in a later
stage.

Lemma 3. The value of κ is given by

κ−1 = ψ−1

(
1−

a−1∑
n=0

pn,0

)
, (19)

where

ψ = sa

a∑
n=0

p+n +
B∑

n=a+1

p+n

[
B∑

j=n

yjsn +
n−1∑
j=a

yjsj

]
+

∞∑
n=B+1

p+n

B∑
r=a

yrsr.

Proof. The proof is easy and follows from Lemma 1 after some algebraic manipulations.

3.2. Construction of b.p.g.f. for queue and server content at post transmission epoch

The aim of this section is to derive the b.p.g.f. corresponding to the queue and server
content at post transmission epoch and extract the probabilities p+n,r, n ≥ 0, a ≤ r ≤ B from
it through the inversion of the b.p.g.f. For this purpose let us define the following p.g.f.s

P̃ (z, x, ξ) =
∞∑
n=0

B∑
r=a

p∗n,r(z)x
nξr, |x| ≤ 1, |ξ| ≤ 1. (20)

P+(x) =
∞∑
n=0

p+nx
n, |x| ≤ 1. (21)

P+(x, ξ) =
∞∑
n=0

B∑
r=a

p+n,rx
nξr, |x| ≤ 1, |ξ| ≤ 1. (22)

P+(x, 1) =
∞∑
n=0

B∑
r=a

p+n,rx
n =

∞∑
n=0

p+nx
n = P+(x), |x| ≤ 1. (23)

Now multiplying (13) to (15) by the appropriate powers of x and ξ and summing over n
from 0 to ∞ and r from a to B, we get
[
z − (λ+ λx)

z

]
P̃ (z, x, ξ) = s∗a(z)

a−1∑
n=0

B∑
r=a

[
λpn,r(1) + λpn−1,r(1)

]
ξa

+
B∑

n=a

B∑
r=a

[
λpn,r(1) + λpn−1,r(1)

] B∑
j=n

yjξ
ns∗n(z)

+
∞∑
n=1

B∑
r=a

B∑
i=a

[
λpn+r,i(1) + λpn+r−1,i(1)

] [
yrΓ̂

(r)(x)ξrxn
]

−
∞∑
n=0

B∑
r=a

[
λpn,r(1) + λpn−1,r(1)

]
xnξr. (24)
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Now substituting z = λ + λx and using Γ̂(r)(x) = s∗r(λ + λx), (a ≤ r ≤ B) in (24), and
multiplying by κ on both sides, then after some algebraic manipulations we get

P+(x, ξ) = Γ̂(a)(x)
a−1∑
n=0

p+n ξ
a +

B∑
n=a

p+n

[
B∑

j=n

yjξ
nΓ̂(n)(x)

]

+
∞∑
n=1

B∑
r=a

p+n+r

[
yrΓ̂

(r)(x)ξrxn
]
. (25)

Next we substitute ξ = 1 in (25) and after using some simple algebra, we get

P+(x) =
N(x)

χ(x)
, (26)

where

N(x) =
a∑

n=0

p+n

[
Γ̂(a)(x)xB − xn

B∑
j=a

yjΓ̂
(j)(x)xB−j

]

+
B−1∑

n=a+1

p+n

[
xBΓ̂(n)(x)

B∑
j=n

yj − xn

B∑
j=n

yjΓ̂
(j)(x)xB−j

]
, (27)

χ(x) = xB −
B∑

j=a

yjΓ̂
(j)(x)xB−j. (28)

Now using the expressions of P+(x) in (25) and after simplification, we finally get

P+(x, ξ) =
φ1(x, ξ)

χ(x)
, (29)

where

φ1(x, ξ) =
a∑

n=0

p+n

{
χ(x)

(
Γ̂(a)(x)ξa −

B∑
r=a

yrξ
rΓ̂(r)(x)xn−r

)

+

[
Γ̂(a)(x)xB − xn

B∑
r=a

yrΓ̂
(r)(x)xB−r

]
B∑

r=a

yrξ
rΓ̂(r)(x)x−r

}

+
B−1∑

n=a+1

p+n

{
χ(x)

(
B∑

r=n

yrξ
nΓ̂(n)(x)−

B∑
r=n

yrξ
rΓ̂(r)(x)xn−r

)

+

[
xBΓ̂(n)(x)

B∑
r=n

yr − xn

B∑
r=n

yrΓ̂
(r)(x)xB−r

]
B∑

r=a

yrξ
rΓ̂(r)(x)x−r

}
. (30)

Now for the inversion of the b.p.g.f. P+(x, ξ), we need to evaluate all the B unknowns p+n ,
0 ≤ n ≤ B − 1, which are placed in φ1(x, ξ). Using the Rouché’s theorem (see, Theorem
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4 in Appendix), it is proved that χ(x) admits B zeros viz., x0 = 1, x1, . . . , xB−1 in the
closed unit disk {x ∈ C : |x| ≤ 1}. Since, under stability condition P+(x) is analytic in
this closed unit disk. So, P+(x) admits no singularities inside this domain. Hence the zeros
of χ(x) must also be the zeros of N(x) inside this domain. Now these B unknowns can be
found using the following steps.

Step 1. First obtain the B − 1 linear equations using the fact that P+(x) has zeros xi,
1 ≤ i ≤ B − 1 inside the unit disk. Which are as follows

0 =
a∑

n=0

p+n


Γ̂(a)(xi)xi

B − xi
n

B∑
j=a

yjΓ̂
(j)(xi)xi

B−j




+
B−1∑

n=a+1

p+n


xiBΓ̂(n)(xi)

B∑
j=n

yj − xi
n

B∑
j=n

yjΓ̂
(j)(xi)xi

B−j


 . (31)

Step 2. Next using the normalizing condition P+(1) = 1 (after using L’ Hôpital’s rule),
we get another equation.

Thus in aggregate we obtain B independent equations, which are sufficient for the eval-
uation of the unknowns p+n , 0 ≤ n ≤ B − 1.

3.3. Extraction of the joint state probabilities {p+n,r} from the b.p.g.f. P+(x, ξ)

Since P+(x, ξ) is completely known to us after evaluation of the unknown probabilities
p+n , 0 ≤ n ≤ B − 1, our task reduces to the extraction of the state probabilities {p+n,r}. The
entire procedure adopted for extraction of the state probabilities are described below in a
stepwise manner.

Step 1. First we collect the coefficients of ξa from both sides of (29). Which gives,

∞∑
n=0

p+n,ax
n =

Na(x)

χ(x)
, (32)

where

Na(x) =
a∑

n=0

p+n

{
χ(x)

(
Γ̂(a)(x)− yaΓ̂

(a)(x)xn−a

)

+

[
Γ̂(a)(x)xB − xn

B∑
r=a

yrΓ̂
(r)(x)xB−r

]
yaΓ̂

(a)(x)x−a

}

+
B−1∑

n=a+1

p+n

{[
xBΓ̂(n)(x)

B∑
r=n

yr − xn

B∑
r=n

yrΓ̂
(r)(x)xB−r

]
yaΓ̂

(a)(x)x−a

}
.
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Step 2. Next, we collect the coefficients of ξj , a + 1 ≤ j ≤ B − 1 from both sides of (29).
Which gives,

∞∑
n=0

p+n,jx
n =

Nj(x)

χ(x)
, (33)

where

Nj(x) =
a∑

n=0

p+n

{
χ(x)

(
− yjΓ̂

(j)(x)xn−j

)

+

[
Γ̂(a)(x)xB − xn

B∑
r=a

yrΓ̂
(r)(x)xB−r

]
yjΓ̂

(j)(x)x−j

}

+ p+j χ(x)
B∑

r=j+1

yrΓ̂
(j)(x)− χ(x)

j−1∑
n=a+1

p+n yjΓ̂
(j)(x)xn−j

+
B−1∑

n=a+1

p+n

{[
xBΓ̂(n)(x)

B∑
r=n

yr − xn

B∑
r=n

yrΓ̂
(r)(x)xB−r

]
yjΓ̂

(j)(x)x−j

}
.

Step 3. Next, we collect the coefficients of ξB from both sides of (29), which results in

∞∑
n=0

p+n,Bx
n =

NB(x)

χ(x)
, (34)

where

NB(x) =
a∑

n=0

p+n

{
χ(x)

(
− yBΓ̂

(B)(x)xn−B

)

+

[
Γ̂(a)(x)xB − xn

B∑
r=a

yrΓ̂
(r)(x)xB−r

]
yBΓ̂

(B)(x)x−B

}

+
B−1∑

n=a+1

p+nχ(x)

(
− yBΓ̂

(B)(x)xn−B

)

+
B−1∑

n=a+1

p+n

{[
xBΓ̂(n)(x)

B∑
r=n

yr − xn

B∑
r=n

yrΓ̂
(r)(x)xB−r

]
yBΓ̂

(B)(x)x−B

}
.

Step 4. Next step is to get the state probabilities {p+n,r} through the inversion of the generat-
ing functions (32)-(34), which are completely known functions for a specific service
time distribution. Since in most of the cases (32)-(34) generating functions are ra-
tional functions, we can proceed for the partial fraction technique on the generating
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functions to extract the state probabilities. We explain the entire procedure in the
following.

One can see that Γ̂(j)(x), (a ≤ j ≤ B) is a rational function for most of the distri-
butions (e.g., geometric, negative binomial, etc.) and hence Nj(x) and χ(x) are also
rational functions. So after substituting Nj(x) and χ(x) in (32)-(34), we get ratio-
nal functions whose numerators and denominators are different from Nj(x) and χ(x).
For this we denote the numerators of the generating functions (32)-(34) as Ñj(x),
a ≤ j ≤ B and denominators as D̃j(x), a ≤ j ≤ B, respectively, to maintain the
continuity of our analysis. Clearly, the degrees of Ñj(x) and D̃j(x) will vary on the
selection of different service time and service batch-size rule. Let us assume that the
degrees of Ñj(x) and D̃j(x) be Fj and Gj respectively. Now we obtain {p+n,r}, n ≥ 0,
a ≤ r ≤ B in terms of the roots of D̃j(x) = 0. Let us assume that α1,j, α2,j, . . . , αGj ,j

be the the distinct roots of D̃j(x) = 0, a ≤ j ≤ B. As the degree of D̃j(x) is Gj , and
B inside roots are canceled out with the roots of the numerator, so there are Gj − B
remaining roots (say, α1,j, α2,j, . . . , αGj−B,j) that lies in |x| > 1. Now the following
cases arise:

Case 1. Fj ≥ Gj

Now applying the partial fraction expansion, the rational function
∞∑
n=0

p+n,jx
n,

a ≤ j ≤ B, can be uniquely expressed as,

∞∑
n=0

p+n,jx
n =

Fj−Gj∑
i=0

ωi,jx
i +

Gj−B∑
k=1

ϑk,j

αk,j − x
. (35)

Now the constants ωi,j and ϑk,j are to be determined. ωi,j can easily be obtained
through the division of the polynomials Ñj(x) and D̃j(x) and collecting the
corresponding coefficients of the quotient. Next, using residue theorem, we have

ϑk,j = − Ñj(αk,j)

D̃j

′
(αk,j)

, k = 1, 2, . . . , Gj − B,

where D̃j

′
(αk,j) is the first order derivative of D̃j(x) evaluated at x = αk,j . Now,

collecting the coefficients of xn from both sides of (35), we have for a ≤ j ≤ B

p+n,j =




ωn,j +

Gj−B∑
k=1

ϑk,j

αn+1
k,j

, 0 ≤ n ≤ Fj −Gj,

Gj−B∑
k=1

ϑk,j

αn+1
k,j

, n > Fj −Gj.

(36)
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Case 2. Fj < Gj

In this case using partial fraction expansion, the rational function
∞∑
n=0

p+n,jx
n,

a ≤ j ≤ B, can be uniquely expressed as,

∞∑
n=0

p+n,jx
n =

Gj−B∑
k=1

ϑk,j

αk,j − x
. (37)

Where ϑk,j are determined by ϑk,j = − Ñj(αk,j)

D̃j

′
(αk,j)

, k = 1, 2, . . . , Gj − B.

Now, collecting the coefficients of xn from both sides of (37), we have

p+n,j =

Gj−B∑
k=1

ϑk,j

αn+1
k,j

, n ≥ 0, a ≤ j ≤ B. (38)

Remark 1. We have discussed here only the case when D̃j(x) = 0 admits distinct
roots. If some of the roots are repeated then this partial fraction technique can easily
be modified to get the desired result.

After determination of post transmission epoch state probabilities, we obtain the random
epoch state probabilities by establishing a relationship between these two.

3.4. Relationship between random epoch and post transmission epoch state probabilities

It is always desirable for the vendors to know the number of packets in the transmission
channel as well as in the queue waiting for transmission at a any random epoch. We now
establish a relationship among the arbitrary and departure epoch state probabilities.

Theorem 2. The state probabilities {pn,0, pn,r} and {p+n,r, p+n } are connected by the follow-
ing relations

pn,0 =
1

Ẽ

n∑
j=0

p+j , 0 ≤ n ≤ a− 1, (39)

p0,a =
1

Ẽ

(
a∑

n=0

p+n − p+0,a

)
, (40)

p0,r =
1

Ẽ

(
p+r

B∑
j=r

yj − p+0,r

)
, a+ 1 ≤ r ≤ B, (41)

pn,r = pn−1,r +
1

Ẽ

(
p+n+ryr − p+n,r

)
, n ≥ 1, a ≤ r ≤ B, (42)
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where

Ẽ = λψ +
a−1∑
j=0

(a− j)p+j . (43)

Proof. The proof is quite straight forward and can be easily done assuming z → 1 in equa-
tions (13)-(15), and simple algebraic manipulations with the equations (5)-(9) and (18)-(19).

Remark 2. The present analysis can be utilized to obtain the results for some important
queueing models, listed below.

1. The Geo/G/1 model
This is the most basic model in queueing theory. The server transmits packets one by
one and it cannot be idle as long as the queue is non-empty. So, this model can be
obtained if we set a = B = 1, ya = y

B
= 1 in our case.

2. The Geo/G[k]/1 model
In this queue, the server transmits only a fixed number (say, k) of packets. The server
remains idle until there are ‘k’ packets in the queue. If number of packets in the
queue is larger than ‘k’ then he takes only ‘k’ packets for transmission. (this type of
service rule is known as ‘fixed batch size rule). This model can be obtained if we set
a = B = k, yk = 1 in our present set up.

3. The Geo/G
(l)
n /1 model

Here the server is allowed to take up to l number of packets. The server cannot be
idle if at least one packets is waiting for transmission. If the queue is non-empty then
he takes min(l, whole queue) packets into his service. This model can be obtained if
we take a = 1, B = l and yl = 1 in our model.

4. The Geo/G
[Y ]
n /1 model

Here the server transmits packets with random-batch-size Y with the p.m.f. P (Y = i) =
yi, i = 1, 2, . . . , B with finite mean E(Y ), where B is the maximum transmission ca-
pacity of the server. If at the beginning of the transmission, the server has a serving
capacity i, then the server takes min(i, the whole queue) packets for service with
the probability yi (i.e., with random batch-size rule with a maximum threshold B).
To best of authors’ knowledge, no such results are available in the literature for this
model. This can be obtained from our model, if we take a = 1.

5. The Geo/G
[a,b]
n /1 model

This model is known as ‘General Batch Service rule’ model can be obtained from our
model if we take B = b and yb = 1. In this rule, the server remains idle until there
are ‘a’ packets in the queue. If number of packets in the queue is larger than ‘a’ then
he takes min(b, the whole queue) packets for transmission.
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4. Marginal Distributions and Performance Measures
In the following we present some important marginal distributions, as well as, perfor-

mance measures which may be useful to the vendors to determine the service policy before-
hand.

4.1. Marginal distributions

1. Distribution of the number of packets in the system (P n
system, n ≥ 0), where

P n
system =





pn,0, n ≤ a− 1,∑n
r=a pn−r,r, a ≤ n ≤ B,∑B
r=a pn−r,r, n ≥ B + 1.

2. Distribution of the number of packets in the channel awaiting transmission (P n
queue, n ≥

0), where

P n
queue =

{
pn,0 +

∑B
r=a pn,r, n ≤ a− 1,∑B

r=a pn,r, n ≥ a.

3. Distribution of the number of packets with the server (P n
server, n ≥ 0), where

pserverr =




a−1∑
n=0

pn,0, when r = 0;

∞∑
n=0

pn,r, when a ≤ r ≤ B.

4.2. Performance characteristics

1. Probability that the server is idle (pidle) =
a−1∑
n=0

pn,0.

2. Probability that the server is busy (pbusy) = 1−
a−1∑
n=0

pn,0.

3. Mean number of packets awaiting transmission (Lqueue)=
∞∑
n=0

npqueuen .

4. Mean waiting time (W ) = Lqueue

λ
.

5. Proportion of the packets that have immediate access to transmission channel at post

transmission epochs Pims =
B∑

n=a

p+n .

C  Gupta and Kumar

220



6. Average number of packets with the server (Lserver) =
B∑

r=a

rpserverr .

7. Average number of packets in the system (Lsystem)=
∞∑
n=0

npsystemn .

5. System Outlay Model
It is very often important to the vendors to minimize the system cost as much as possible

in a pre-operating phase. The objective of the present section is to demonstrate the effects
of the system parameters viz., a, B and service batch-size rule Y on the system cost, which
may help the vendors to design the service system accordingly. For the present model, we
associate some level dependent cost to the system characteristics viz.,
(i) Cw:= waiting cost per packet per unit time in the system during transmission phase.
(ii) Idleness cost (Cidle) := cost per packet per unit time either due to empty queue or due
to less packets (dependent on the lower threshold of the serving capacity)
(ii) Closs:= cost per unit time due to incapability of the server to take the packets beyond the
maximum serving capacity.
Hence the total system cost is given by,

S(a,B, Y ) = Cw

∞∑
n=0

n


pa−1,0 +

1

Ẽ




B∑
i=a

B∑
j=i

p+i yj − p+0


 +

1

Ẽ

n∑
j=1

(
B∑
i=a

p+i+jyi − p+j

)


+ Cidle

a−1∑
n=0

n

(
1

Ẽ

n∑
i=0

p+i

)
+ Closs

[ ∞∑
n=B+1

np+n −B

]
. (44)

Our objective is to minimize the system cost by controlling the parameters a, B for a
specified service batch-size rule i.e., Y . Hence, our optimization problem is as follows,

Minimize S(a,B, Y ) (45)
a,B ∈ N, a ≤ B (46)

Remark 3. It is evident from the above complicated expression of the cost function that, it
is very hard to obtain the optimized value of S(a,B, Y ) as a function of a and B through
conventional optimization procedures e.g., ‘Direct Search Method’ etc. So, in this case
some numerical procedures can be opted for optimization purpose. We have carried out an
extensive number of numerical examples to observe the effects of the system parameters and
as well as service batch-size rule on the system cost. Due to lack of space we present a few
of them in the following sections.

6. Numerical Results
The purpose of this section is to validate our analysis as well as to provide an insight

to the readers from the possible application point of view. Following we present some ex-
amples where service time distribution is taken as geometric, deterministic, and the discrete
PH-type.
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6.1. The Geo/Geon
(a,Y )/1 system

Example 1: Here we consider service time distribution as geometric (Geo) and demon-
strate some of the numerical results.

Input parameters

• Threshold value: We have taken a = 2 and B = 7.

• Arrival Process: Packets are arriving singly according to Bernoulli arrival process
with the parameter λ = 0.7.

• Service batch − size rule: We have chosen arbitrary service batch-size rule with
y2 =

1
3
, y3 =

1
6
, y4 =

1
6
, y5 =

1
9
, y6 =

1
9
, y7 =

1
9
.

• Service T ime Distribution: Transmission time follows geometric distribution and
depends on the service batch-size rule with parameter µr =

1
r+1

, (a ≤ r ≤ B).

Output

In Table 1 and 2, we present the distribution of the stationary probabilities at post transmis-
sion and random epochs, respectively. Some important performance measures related to the
model are also given in the last row of Table 2.

Table 1. Stationary distribution of the state probabilities at post transmission-epoch for
geometric service time distribution.

n p+n,2 p+n,3 p+n,4 p+n,5 p+n,6 p+n,7

∑B
r=a p+n,r p+n

0 0.03723881 0.00526434 0.00253747 0.00115897 0.00055722 0.00020949 0.04696631 0.04696631
1 0.11201309 0.01688644 0.00847671 0.00392763 0.00198794 0.00084507 0.14413690 0.14413690
2 0.07595248 0.01469963 0.00841909 0.00408071 0.00236707 0.00128832 0.10680731 0.10680731
3 0.05272838 0.01262161 0.00802584 0.00405375 0.00257730 0.00159040 0.08159727 0.08159727
4 0.03763969 0.01078390 0.00747670 0.00392187 0.00267216 0.00178829 0.06428260 0.06428260
5 0.02772708 0.00922107 0.00687504 0.00373269 0.00268866 0.00190906 0.05215360 0.05215360
6 0.02112339 0.00792086 0.00627788 0.00351608 0.00265254 0.00197271 0.04346346 0.04346346
7 0.01664732 0.00685149 0.00571447 0.00329048 0.00258178 0.00199410 0.03707964 0.03707964
8 0.01354912 0.00597583 0.00519785 0.00306694 0.00248892 0.00198441 0.03226307 0.03226307
9 0.01135110 0.00525824 0.00473179 0.00285182 0.00238277 0.00195206 0.02852779 0.02852779

10 0.00974756 0.00466746 0.00431511 0.00264851 0.00226946 0.00190344 0.02555154 0.02555154
. . . . . . . . .

20 0.00392998 0.00195586 0.00194739 0.00128669 0.00124678 0.00118491 0.01155163 0.01155163
. . . . . . . . .

50 0.00056461 0.00027904 0.00027661 0.00018340 0.00018303 0.00018319 0.00166989 0.00166989
. . . . . . . . .

100 0.00002337 0.00001155 0.00001145 0.00000759 0.00000758 0.00000759 0.00006914 0.00006914
. . . . . . . . .

200 0.00000004 0.00000002 0.00000002 0.00000001 0.00000001 0.00000001 0.00000012 0.00000012
. . . . . . . . .

≥250 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
Total 0.53194034 0.15781355 0.12484290 0.07339076 0.06083550 0.05117695 1.00000000 1.00000000
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Table 2. Stationary distribution of the state probabilities at random-epoch for geometric
service time distribution.

Idle Busy
n pn,0 pn,2 pn,3 pn,4 pn,5 pn,6 pn,7 pqueuen

0 0.01502009 0.08336430 0.01571328 0.00946747 0.00518903 0.00291065 0.00125059 0.13291543
1 0.06111590 0.05624030 0.01373923 0.00953641 0.00547738 0.00359249 0.00212677 0.15182846
2 0.03880291 0.01181804 0.00916058 0.00548993 0.00398192 0.00272846 0.07198183
3 0.02749974 0.01009822 0.00857025 0.00533995 0.00417139 0.00312779 0.05880734
4 0.02009564 0.00862585 0.00789881 0.00509942 0.00422476 0.00337738 0.04932187
5 0.01518112 0.00739655 0.00722069 0.00481363 0.00418641 0.00351600 0.04231441
6 0.01186505 0.00638397 0.00657491 0.00451066 0.00408726 0.00357248 0.03699434
7 0.00958225 0.00555475 0.00597963 0.00420750 0.00394895 0.00356841 0.03284150
8 0.00797301 0.00487589 0.00544105 0.00391404 0.00378664 0.00352006 0.02951068
9 0.00680734 0.00431800 0.00495884 0.00363566 0.00361089 0.00343976 0.02677050

10 0.00593747 0.00385636 0.00452932 0.00337493 0.00342909 0.00333689 0.02446406
. . . . . . . .

20 0.00251307 0.00166611 0.00207389 0.00164632 0.00186775 0.00203776 0.01180490
. . . . . . . .

50 0.00036249 0.00023887 0.00029598 0.00023549 0.00027419 0.00031366 0.00172068
. . . . . . . .

100 0.00001501 0.00000989 0.00001225 0.00000975 0.00001135 0.00001300 0.00007124
. . . . . . . .

200 0.00000003 0.00000002 0.00000002 0.00000002 0.00000002 0.00000002 0.00000012
. . . . . . . .

≥251 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
Total 0.07613599 0.35724689 0.14131510 0.13973916 0.09857729 0.09533215 0.09165342 1.00000000

(pserver0 ) (pserver2 ) (pserver3 ) (pserver4 ) (pserver5 ) (pserver6 ) (pserver7 )
Performance

Measures Lqueue = 10.93024048, Lserver = 3.40384898, W = 15.61462925, Pims = 0.38538388

6.2. The Geo/Dn
(a,Y )/1 system

Example 2: Here we consider deterministic (D) service time distribution and demon-
strate some of the numerical results.

Input parameters

• Threshold value: We have taken a = 3 and B = 7.

• Arrival Process: Packets are arriving singly according to Bernoulli arrival process
with the parameter λ = 0.6.

• Service batch− size rule: We have chosen service batch-size rule as

yi :=

{ 2i
(B+a)(B−a+1)

, i = a . . . B;
0, elsewhere.

• Service T ime Distribution: Transmission time follows deterministic distribution
and depends on the service batch-size rule with parameter sr = r + 2, (a ≤ r ≤ B).

Output

In Table 3 and 4, we present the distribution of the stationary probabilities at post transmis-
sion and random epochs, respectively, along with some important performance measures
related to the model.
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Table 3. Stationary distribution of the state probabilities at post transmission-epoch for
deterministic service time distribution.

n p+n,3 p+n,4 p+n,5 p+n,6 p+n,7

∑B
r=a p+n,r p+n

0 0.00497948 0.00096463 0.00018246 0.00002039 0.00000155 0.00614851 0.00614851
1 0.03767495 0.00878301 0.00193540 0.00024801 0.00002149 0.04866285 0.04866285
2 0.11469473 0.03350765 0.00883386 0.00132560 0.00013296 0.15849479 0.15849479
3 0.17695553 0.06890014 0.02255414 0.00407696 0.00048441 0.27297117 0.27297117
4 0.14199551 0.08154627 0.03499744 0.00792859 0.00115104 0.26761884 0.26761884
5 0.05440932 0.05480588 0.03350569 0.01008265 0.00186662 0.15467015 0.15467015
6 0.01044190 0.01968880 0.01921243 0.00838494 0.00210281 0.05983087 0.05983087
7 0.00439751 0.00435937 0.00629444 0.00447012 0.00164989 0.02117135 0.02117135
8 0.00157756 0.00154686 0.00142080 0.00153337 0.00090318 0.00698178 0.00698178
9 0.00053403 0.00052131 0.00047710 0.00041919 0.00035807 0.00230971 0.00230971

10 0.00017642 0.00017224 0.00015765 0.00013852 0.00011833 0.00076316 0.00076316
. . . . . . . .

15 0.00000070 0.00000068 0.00000062 0.00000055 0.00000047 0.00000301 0.00000301
. . . . . . . .

20 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000001 0.00000001
. . . . . . . .

≥ 25 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
Total 0.54792404 0.27488120 0.12964925 0.03869673 0.00884879 1.00000000 1.00000000

Table 4. Stationary distribution of the state probabilities at random-epoch for deterministic
service time distribution.

Idle Busy
n pn,0 pn,3 pn,4 pn,5 pn,6 pn,7 pqueuen

0 0.00166822 0.13058643 0.06363572 0.03016553 0.00843584 0.00160797 0.23609971
1 0.01487150 0.12907770 0.06796716 0.03288710 0.00974716 0.00213254 0.25668316
2 0.05787453 0.10299440 0.06147316 0.03163913 0.00984213 0.00227193 0.26609529
3 0.05693057 0.04369815 0.02589857 0.00888637 0.00219848 0.13761214
4 0.01909345 0.02187599 0.01652835 0.00678487 0.00190534 0.06618800
5 0.00455835 0.00710624 0.00747895 0.00406565 0.00140523 0.02461443
6 0.00180044 0.00179738 0.00227990 0.00179607 0.00083678 0.00851057
7 0.00063215 0.00062554 0.00057660 0.00058502 0.00038982 0.00280914
8 0.00021234 0.00020946 0.00019260 0.00016958 0.00014500 0.00092899
9 0.00007016 0.00006922 0.00006365 0.00005604 0.00004792 0.00030699

10 0.00002319 0.00002288 0.00002104 0.00001852 0.00001584 0.00010148
. . . . . . .

15 0.00000009 0.00000009 0.00000008 0.00000007 0.00000006 0.00000040
. . . . . . .

≥20 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
Total 0.07441425 0.44599065 0.26849220 0.14774181 0.05039641 0.01296467 1.00000000

(pserver0 ) (pserver3 ) (pserver4 ) (pserver5 ) (pserver6 ) (pserver7 )
Performance

Measures Lqueue = 1.6720472, Lserver = 3.543781, W = 2.7867452698, Pims = 0.7762624
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6.3. The Geo/DPHn
(a,Y )/1 system

Example 3: Here we consider discrete PH-type (DPH) service time distribution and
demonstrate some of the numerical results.

Input parameters

• Threshold value: We have taken a = 2 and B = 6.

• Arrival Process: Packets are arriving singly according to Bernoulli arrival process
with the parameter λ = 0.07.

• Service batch− size rule: We have taken arbitrary service batch-size rule with y2 =
0.2, y3 = 0.3, y4 = 0.15, y5 = 0.25, y6 = 0.10.

• Service T ime Distribution: Transmission time follows Discrete Phase type distri-
bution (DPH(τ ,T)). Recall that DPH(τ ,T) considers the absorption time into the
state 0 in the discrete-time Markov Chain with initial probability vector (τ0, τ ) and
the transition probability matrix

P :=

(
1 0
t T

)
,

where Tij ≥ 0 and ti ≥ 0 for 1 ≤ i, j ≤ n and that t + T1 = 1 where 1 is a
column vector of ones with suitable dimension. It is to be noted that, DPH(τ ,T)
distribution includes discrete analogues of exponential, hyper exponential, Erlang,
geometric, mixture of geometric, and negative binomial distributions etc. So, it is
evident from the modeling point of view that discrete PH-type distribution is quite
appealing.

For our example we took matrices Tr (a ≤ r ≤ B) of order 3 as:

Tr =




1− θr θr 0
0 1− θr θr
0 0 1− θr




where θr = 0.2
r+1

and τ = ( 0.2 0.5 0.3 ). The mean service time (sr) of a batch size
r (a ≤ r ≤ B) is obtained by sr = τ (I3 − Tr)

−11, and is given as s2 = 28.5, s3 =
38, s4 = 47.5, s5 = 57, s6 = 66.5.

Output

In Table 5 and 6, we present the distribution of the stationary probabilities at post transmis-
sion and random epochs, respectively. Some important performance measures related to the
model are presented in the last row of Table 6.

Remark 4. Although we have carried out extensive numerical works, due to space con-
straints we have presented few of them.
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Table 5. Stationary distribution of the state probabilities at post transmission-epoch for DPH
service time distribution.

n p+n,2 p+n,3 p+n,4 p+n,5 p+n,6

∑B
r=a p+n,r p+n

0 0.09220916 0.01462051 0.00614407 0.00299845 0.00061876 0.11659096 0.11659096
1 0.08660721 0.01865469 0.00776647 0.00493917 0.00118860 0.11915614 0.11915614
2 0.06759672 0.01958908 0.00824514 0.00626272 0.00163685 0.10333051 0.10333051
3 0.04987541 0.01905077 0.00817818 0.00709047 0.00196335 0.08615819 0.08615819
4 0.03594316 0.01773784 0.00778953 0.00751456 0.00217972 0.07116481 0.07116481
5 0.02583453 0.01609763 0.00723273 0.00762937 0.00230261 0.05909687 0.05909687
6 0.01880259 0.01439513 0.00660746 0.00751936 0.00234985 0.04967439 0.04967439
7 0.01400824 0.01277294 0.00597485 0.00725448 0.00233833 0.04234884 0.04234884
8 0.01075344 0.01129697 0.00536968 0.00688983 0.00228295 0.03659287 0.03659287
9 0.00852434 0.00998826 0.00480959 0.00646703 0.00219628 0.03198550 0.03198550

10 0.00696679 0.00884369 0.00430154 0.00601653 0.00208856 0.02821711 0.02821711
20 0.00201114 0.00296910 0.00147110 0.00239910 0.00093273 0.00978317 0.00978317
40 0.00027354 0.00040317 0.00019897 0.00032892 0.00013116 0.00133576 0.00133576
60 0.00003746 0.00005521 0.00002724 0.00004504 0.00001797 0.00018291 0.00018291
80 0.00000513 0.00000756 0.00000373 0.00000617 0.00000246 0.00002505 0.00002505

100 0.00000070 0.00000104 0.00000051 0.00000084 0.00000034 0.00000343 0.00000343
. . . . . . . .

150 0.00000000 0.00000001 0.00000000 0.00000001 0.00000000 0.00000002 0.00000002
. . . . . . . .

170 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
Total 0.47126209 0.24135581 0.11112231 0.13180953 0.04445025 1.00000000 1.00000000

Table 6. Stationary distribution of the state probabilities at random-epoch for DPH service
time distribution.

Idle Busy
n pn,0 pn,2 pn,3 pn,4 pn,5 pn,6 pqueuen

0 0.03839232 0.08129149 0.01788248 0.00969377 0.00582366 0.00143198 0.15451570
1 0.07762934 0.05844676 0.01876983 0.01005535 0.00828656 0.00243509 0.17562294
2 0.04087457 0.01815734 0.00979390 0.00971058 0.00310106 0.08163745
3 0.02834307 0.01679130 0.00919266 0.01038817 0.00350780 0.06822300
4 0.01977878 0.01513391 0.00843510 0.01054683 0.00371921 0.05761383
5 0.01406073 0.01344802 0.00763331 0.01035746 0.00378648 0.04928599
6 0.01027915 0.01186760 0.00685127 0.00994515 0.00374995 0.04269312
7 0.00777287 0.01044908 0.00612206 0.00939946 0.00364093 0.03738440
8 0.00609019 0.00920558 0.00545976 0.00878313 0.00348339 0.03302206
9 0.00493420 0.00812831 0.00486746 0.00813914 0.00329544 0.02936456

10 0.00411461 0.00719909 0.00434233 0.00749611 0.00309054 0.02624268
20 0.00126170 0.00244911 0.00149393 0.00289451 0.00130311 0.00940235
40 0.00017187 0.00033324 0.00020269 0.00039622 0.00018153 0.00128556
60 0.00002354 0.00004563 0.00002776 0.00005425 0.00002486 0.00017604
80 0.00000322 0.00000625 0.00000380 0.00000743 0.00000340 0.00002411

100 0.00000044 0.00000086 0.00000052 0.00000102 0.00000047 0.00000330
.

150 0.00000000 0.00000001 0.00000000 0.00000001 0.00000000 0.00000002
.

170 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
Total 0.11602166 0.30958857 0.21140678 0.12166690 0.17318059 0.06813550 1.00000000

(pserver0 ) (pserver2 ) (pserver3 ) (pserver4 ) (pserver5 ) (pserver6 )
Performance

Measures Lqueue = 7.3430458367, Lserver = 3.0147810191, W = 104.8507725325, Pims = 0.3694247678
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7. Optimality Analysis
Our objective in this section is to provide a decision rule for the system designer or

vendor, about how to minimize the system cost by controlling the system parameters a and
B or the service batch-size rule Y .

A1. Here first we fix the range of the server (i.e., highest capacity of the server (B)-lowest
capacity of the server (a)) and investigate the effect of the lower threshold value i.e.,‘a’
on the total system cost S(a,B, Y ) for different service batch-size rule (Y ) (see be-
low).

a. Increasing batch-size distribution (IBSD):

Here we take yi :=

{ 2i
(B+a)(B−a+1)

, i = a..B;
0, elsewhere.

b. Decreasing batch-size distribution (DBSD):

Here we take yi :=

{
2(B+a−i)

(B+a)(B−a+1)
, i = a..B;

0, elsewhere.

c. Uniform batch-size distribution (UBSD):

Here we take yi :=

{ 1
(B−a+1)

, i = a..B;
0, elsewhere.

d. Truncated Geometric batch-size distribution (TGBSD):

Here yi :=

{
τ(1−τ)i−a

1−(1−τ)B−a+1 , i = a..B;
0, elsewhere.

, where τ (0 ≤ 1) is the parameter of

the TGBSD.

In Fig 4, we observe the effect of ‘a’ on S(a,B, Y ). For this, we consider the deter-
ministic service-time distribution with sr = r + 2, (a ≤ r ≤ B) and fix the range of
the server’s capacity B = 7 and λ = 0.4. Also for this example we took Cw = 15
per unit message, Cidle = 20 per unit time, Closs = .01 per unit time to form the cost
function S(a,B, Y ) for our system.

It is observed from the Fig 4 that, the cost function grows almost linearly with the
increasing value of the parameter ‘a’. Also we see the significant impact of the service
batch-size rule Y for lower values of ‘a’. On the basis of the above figure one may
be able to suggest that as ‘a’ reaches to ’B’, the effect of service batch-size rule does
not play a major role. Here, for a = 1 IBSD gives minimum system cost. It may
be hereby admitted that, however here we have considered a moderate value for the
different costs and may vary from system to system, the lower threshold value may
play significant role for different service batch-size rule Y .

A2. Now, we fix the lower threshold value ‘a’ and change the upper threshold value ‘B’
and look for the optimal ‘B’ for different service batch-size rule Y . After executing
a number of examples it is found that, for a fixed lower threshold value ‘a’, the larger
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Figure 4. Effect of ‘a’ on S(a,B, Y ).

‘B’ gives more efficient system performance, irrespective of different batch-size rule
Y . Based on our computational experience, it may be suggested that one should
try to increase the range of the server’s capacity as much as possible to get a better
performance of the system.

A3. The purpose of the example is to compare the batch size independent service (NBSD)
with batch size dependent service (BSD) on the basis of its cost effectiveness. Since
the cost function consists of some key performance measures, so overall performance
of these two service assumptions will be reflected therein. Now, for this purpose, we
consider the Geo/Geo

(a,Y )
n /1 queue, with λ = 0.45, minimum threshold value a = 2

and service batch-size rule as UBSD, with

yi :=

{ 1
(B−a+1)

, i = a..B;
0, elsewhere.

Cost components are assumed to be the same as in example A1. Now we consider the
following two cases,

Case 1. For BSD we assume that µr = 1.5
r+1

, (2 ≤ r ≤ B), see column-2 of Ta-
ble 7.

Case 2. For NBSD, the same service rates for all the batches are the weighted av-
erage of the service rates of case 1. The weighted average is calculated by the formula∑B

r=a rµr∑B
r=a r

and is given in column-3 of Table 7.

The total system cost for various values of B is given in columns 4 and 5 of Table 7.
For a better representation, we have displayed these cost in Fig 5 with varying B from 4 to
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Table 7. Service rates and total system cost for Case-1 and Case-2 for different B.
Service rates Total system cost

B For Case-1
For Case-2
(a ≤ r ≤ B)

For Case-1 For Case-2

3 µ2 = 0.5000, µ3 = 0.3750 µr = 0.4250 11.0541 11.9826
4 µ2 = 0.5000, µ3 = 0.3750, µ4 = 0.3000 µr = 0.3694 10.8230 13.8701

5
µ2 = 0.5000, µ3 = 0.3750, µ4 = 0.3000,
µ5 = 0.2500

µr = 0.3268 10.6400 15.2635

6
µ2 = 0.5000, µ3 = 0.3750, µ4 = 0.3000,
µ5 = 0.2500, µ6 = 0.2143

µr = 0.2930 10.5004 17.0004

7
µ2 = 0.5000, µ3 = 0.3750, µ4 = 0.3000,
µ5 = 0.2500, µ6 = 0.2143, µ7 = 0.1875

µr = 0.2657 10.3687 19.6653

8
µ2 = 0.5000, µ3 = 0.3750, µ4 = 0.3000,
µ5 = 0.2500, µ6 = 0.2143, µ7 = 0.1875,
µ8 = 0.1667

µr = 0.2430 10.2462 21.9449

9
µ2 = 0.5000, µ3 = 0.3750, µ4 = 0.3000,
µ5 = 0.2500, µ6 = 0.2143, µ7 = 0.1875,
µ8 = 0.1667, µ9 = 0.1500

µr = 0.2240 10.1295 24.6258

10
µ2 = 0.5000, µ3 = 0.3750, µ4 = 0.3000,
µ5 = 0.2500, µ6 = 0.2143, µ7 = 0.1875,
µ8 = 0.1667, µ9 = 0.1500, µ10 = 0.1364

µr = 0.2078 10.0166 26.8252

10. One can observe from Fig 5 that for a fixed value of B, total system cost is always lower
in case 1 as compared to the case 2. It may also be noted here that increase of B produces
steady decrease of total system cost for case 1 whereas steady increase of total system cost
for case 2. These outcomes suggest that BSD produces better performance of the system as
compared to NBSD.
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Figure 5. Effect of ‘B’ on S(a,B, Y ) for dependent (Case-1) and independent (Case-2) batch size
distribution.
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8. Conclusion
So far, in this paper we have considered an infinite buffer information transmission

channel with Bernoulli input, arbitrarily distributed service time with load dependent ver-
satile service policy and obtained stationary probabilities for both the queue content and
server content (busy states of the server) at both random and post transmission epochs. The
state probabilities are presented in a tractable and simplified manner, which greatly helps
to understand the busy states in details and it is hoped that this would be quite beneficial to
the vendors. Further we have also obtained important performance characteristics related to
the present model and developed a cost model to provide the essence of the usefulness of
the present system to the vendors. Also we have shown the importance of inclusion of load
sensitive service rates in real system to enhance its efficiency and cost effectiveness. How-
ever, it may be concluded here that, the present analysis can be further applied to analyze
more complex systems such as queues with correlated arrival processes that is considering
the arrival process as discrete-time Markovian arrival process (D-MAP).
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Appendix
Theorem 3. Show that K ′(1) < B ⇔ ρ < 1.

Proof. We have K(x) =
∑B

j=a yjs
∗
j(λ+ λx)xB−j . Now differentiating K(x) wrt x, we get

K ′(x) =
B∑

j=a

yj

(
λs

∗(1)
j (λ+ λx)xB−j + s∗j(λ+ λx)(B − j)xB−j−1

)
. (47)

Now setting x = 1 in (47), we get

K ′(1) =
B∑

j=a

yj

(
λs

∗(1)
j (1) + s∗j(1)(B − j)

)
,

K ′(1) =
B∑

j=a

yj (λsj + B − j) , using sj = s
∗(1)
j (1) and s∗j(1) = 1,

K ′(1) = λ
B∑

j=a

yjsj + B − y. (48)

Now from Abolnikov and Dukhovny [1], we have

K ′(1) < B ⇔ λ
B∑

j=a

yjsj + B − y < B, using (48)

⇔ λ

B∑
j=a

yjsj < y,

⇔ λ

∑B
j=a yjsj

y
< 1.

⇔ ρ < 1.
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Theorem 4. For a small ε > 0, χ(z) admits exactly B number of zeroes inside the open disc
|z| < 1 + ε.

Proof. |z| = 1+ε is a simple and closed contour. Let f(z) = zB and g(z) = −
B∑
i=a

yjΓ̂
(j)(z)zB−j .

Clearly f(z) and g(z) are both holomorphic inside and on |z| = 1 + ε. Now we can write,

|g(z)| = |
B∑
i=a

yiz
B−iΓ̂(i)(z)|

=
B∑
i=a

yi|z|B−iΓ̂(i)(|z|)

=
B∑
i=a

yi(1 + ε)B−iΓ̂(i)(1 + ε)

=
B∑
i=a

yi{1 + (B − i)ε+ o(ε)}{1 + Γ(i)(1)(1) + o(ε)}

=
B∑
i=a

yi{1 + (B − i)ε+ ε
λ

µi

+ o(ε)}

= 1 + εB + ελ
B∑
i=a

yi
µi

− εy + o(ε).

= 1 + εB + εy(ρ− 1) + o(ε)

≤ 1 + εB (since under stability condition ρ < 1)
≤ (1 + ε)B

= |z|B = |f(z)|.

Thus by Rouché’s theorem, the functions f(z) and f(z) + g(z) admits same number of
zeros inside the circle |z| < 1 + ε, where ε is arbitrarily small. Since f(z) = |z|B has
B number of zeros inside the the unit disk |z| = 1 i.e. in |z| ≤ 1 (assuming ε → 0),
hencef(z) + g(z) = χ(z) has B number of zeros in |z| ≤ 1.
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