
1. Introduction
Managing distributed data typically means adopting either strongly or eventually con-

sistent update policies. In the former approach, replicas of a data item are updated in an
identical order at all servers [8]. When update requests are launched concurrently, users will
see an identical update sequence, irrespective of the actual physical server they use for ac-
cessing the data. However, this single-server abstraction imposes a significant performance
penalty, since update requests need to be ordered (and replicated) prior to being acted upon.
Further, according to the CAP theorem [2], [7], if the network partitions the servers, re-
quest ordering and access to data may be interrupted and the availability of services can be
reduced.

In view of these disadvantages, large distributed data stores such as Google Docs and
Dynamo [5], opt instead for an eventually consistent update policy ([15], [1]), whereby
update requests are processed as soon as they arrive. This enhances system performance and
availability but leaves a time window in which values of a replicated data item at different
servers can be inconsistent. These inconsistencies lead to incorrect data operations (see
Chapter 5 in [10]).

In this paper, we focus on the effects of adopting the eventually consistent policy in
systems where operations that result in state anomalies are not immediately or readily ob-

*Corresponding author
Email : isi.mitrani@newcastle.ac.uk

Modeling the Gradual Degradation of
Eventually-Consistent Distributed Graph Databases

Paul Ezhilchelvan1, Isi Mitrani1,*, and Jim Webber2

1School of Computing, Newcastle University
NE4 5TG, United Kingdom

 2Neo4j UK, Union House, 182-194 Union Street, London
SE1 0LH, United Kingdom

(Received March 2020 ; accepted June 2020)

Abstract: Under the ‘eventual consistency’ approach to updates in a distributed graph
database, it is possible that edge information may be corrupted. Errors may then be
propagated to other parts of the database by subsequent queries. The process by which this
occurs is modeled, with the aim of estimating the time that it takes for a clean database to
become degraded to the point of being unusable. A fluid approximation is developed and two
solution methods are proposed. The accuracy of those solutions is examined thoroughly, for
databases with different sizes, structures and parameter settings, using simulations as a basis
of comparison.

Keywords: Analytical evaluation, distributed edges, graph databases, half-corrupted edges,
networked servers, simulations.

Queueing Models and
Service Management
Vol. 3, No. 2, page 235-253, 2020

QMSM
C PU 2018

235

served, and can lead to large scale propagation of erroneous states. Reconciliation at a later
time can become impossible.

The systems of interest here are Graph Databases [11], which are a rapidly growing
database technology at present. In particular, we examine those databases, such as Janus-
Graph (https://janusgraph.org/), that are built by porting Graph Data on eventually consistent
backend servers running Cassandra or HBase.

A graph database consists of nodes and edges, representing entities and relations be-
tween them, respectively. For example, node A may represent a person of type Author and
B an item of type Book. A and B will have an edge between them if they have a relation,
e.g. A is an author of B. The popularity of the graph database technology owes much to this
simple structure from which sophisticated models can be easily built and efficiently queried.
Examples of operations performed on a graph database are: discovering influential people
in social networks, ranking the most relevant pages in the web, etc.

When nodes are connected by an edge, the distributed graph database stores some re-
ciprocal information. For example, if there is an edge between A and B, then A would have
a field wrote B and B would have a field written by A; similarly, if there is an edge between a
music fan F and a singer S, then they would have the reciprocal fields following S and being
followed by F. Storing this reciprocal information in a distributed database is a non-trivial
problem since the node information stored across different servers must remain mutually
compatible. Any updates in one connected node at one server must also be reflected in the
other node(s) at a different server(s).

It has been observed that, when a large database is partitioned for scalability reasons
across multiple servers, a non-negligible fraction of edges end up being distributed [4], [12],
[13]. In [14], it was noted that this fraction can vary between 0.25 and 0.75 during online
partitioning of large graph databases.

When a query writes a distributed edge, the eventual consistency policy cannot ensure
that the necessary updates are implemented in identically-ordered fashion across the servers
involved. Suppose that two queries operate (nearly) simultaneously on a given distributed
edge, each starting from a different server. Then the two updates can be implemented in a
different order at the two servers, leading to a mutual incompatibility between two nodes
(if servers are replicated for availability, it is conceivable that all replicas of each server
implement the updates in opposite order). While the nodes of a distributed edge are in
mutually incompatible states, there may be a stream of queries reading one node and another
stream reading the other. One of the two streams is obviously reading incorrect information
(from a global point of view).

The above scenario is not hypothetical. The operation manual of JanusGraph (see
[https://docs.janusgraph.org/advanced-topics/eventual-consistency]), cautions the users about
such conflicts occurring in real systems. They recommend two safety mechanisms that can
be employed to eliminate such occurrences. The first method employs traditional locking
and unlocking of database records to enforce concurrency and it is well-known that locking
incurs considerable degradation of performance (this is also stated in the manual). The alter-
native advocated is to simply let the inconsistency arise during updates and use subsequent

C Ezhilchelvan, Mitrani and Webber

236

read operations to detect its existence and somehow perform a reconciliation. The overhead
of such ‘read repairs’ tends to be high since a query that intends to read only one end of a
distributed edge must now read both ends by traversing the network.

Furthermore, to the best of our knowledge, no reconciliation mechanism has been pro-
posed for users who seek to store graph data on eventually consistent backends. In fact, it
is not difficult to construct examples where two or more separate conflicts are related, and
repairing any one of them without being aware of all others cannot ensure correct reconcili-
ation.

Given the performance-degrading aspects of known mechanisms for repairing conflicts,
users of graph data on eventually consistent backends tend not to use any repair mechanism.
Instead, they assume that the consequences of conflicting updates can be ignored because
the probability of their occurrence is small. This paper aims to show that such an assumption
is very dangerous.

A query that reads incorrect information about one edge, and then updates another
edge, introduces incorrect information at both nodes of the second edge. Those two nodes
may then be mutually compatible, yet incorrect. Such errors cannot be detected by simple
compatibility tests. Moreover, they are propagated throughout the database by subsequent
queries that carry out updates based on incorrect information. Eventually, the quality of
information held by the database becomes so degraded that the database becomes unusable.

The contribution of this paper is to construct, analyze and solve a model of the above
process of degradation. As far as we know, this has not been done before. The present
work is thus the first in offering an accurate quantitative assessment of the damage that the
eventually consistent update policy can inflict on a distributed graph database.

We provide two easily implementable and efficient solutions that allow us to deter-
mine the time it takes for the database to become significantly corrupted. The first of these
solutions is faster, but its accuracy deteriorates when applied to very large, structureless
databases. The second is slower, but has universal applicability. Both solutions are used in
experiments aimed at examining quantitatively the effect that various parameters have on
the degradation process. At the same time, their accuracy is evaluated by comparisons with
simulations.

The model is described in section 2. Section 3 develops a fluid approximation and
presents the first solution, based on fixed point iterations. That solution is applied and eval-
uated in section 4, where its limitations are also explored. Section 5 presents and evaluates
the second solution, which combines fixed point iterations with a piecewise-linear approxi-
mation.

A shorter version of this paper was presented in [6]. The present extension includes a
significant amount of additional material. In particular, the second solution method is new,
as are the experimental results concerning large uniform and structured databases.

Queueing Models and Service Management

237

2. The Model
A graph database contains, for each node, a list of adjacency relations describing the

incoming and outgoing edges associated with that node. When an edge is updated, the
corresponding entries in both the origin and the destination nodes must be updated. If those
two nodes are stored on the same server, then the edge is said to be ‘local’. A local update
is assumed to be instantaneous. An edge connecting two nodes stored on different servers is
said to be ‘distributed’. A ‘write’ operation for a distributed edge is carried out first on one
of its servers and then, after a small but non-zero delay, on the other. That is, even though
the edge is distributed, it should be considered as a single logical entity with respect to write
operations.

This implementation of distributed writes leaves open the possibility of introducing
faults in edge records. Consider an edge e, spanning two servers, S1 and S2. A query
Q1, containing a write operation for e, arrives in S1 at time t and is performed in S2 at time
t + δ. At some point between t and t + δ, another query, Q2, also writing e, arrives in S2

and is performed in S1 some time later. The result of this occurrence, which will be referred
to as a ‘conflict’, is that the S1 entry for e is written in the order Q1, Q2, while the S2 entry
is written in the order Q2, Q1. Both these entries cannot be considered correct; if one of
them is feasible, then the other is not, and vice-versa. Such distributed edges are said to be
‘half-corrupted’.

The mechanism of possible conflict is illustrated in Figure 1, where time is shown flow-
ing downwards.

�
�
�
�
�
�
�
�
���

�
�

�
�

�
�

�
�

��

��

Q1

Q2
t+ δ

t

S1 S2

Figure 1. Conflict between Q1 and Q2.

A subsequent query which happens to read the correct entry of a half-corrupted edge,
and completes a write operation for it without a conflict, will repair the fault and make the
edge record clean again. However, if it reads the incorrect entry and writes any edge, it
causes the target to become ‘semantically corrupted’, or simply ‘corrupted’. It is assumed
that the correct and incorrect reads of a half-corrupted edge are equally likely, i.e. each of
them occurs with probability 0.5.

Any edge can become corrupted by being written on the basis of reading incorrect in-
formation. Corrupted edges cannot be repaired, since there is no post-facto solution to the

C Ezhilchelvan, Mitrani and Webber

238

graph repair problem in the general case. This is because graphs, as a semi-structured data
model, impose very few constraints on valid states. Thus, most corrupted states would ap-
pear as valid to any subsequent recovery scheme.

Queries that update edges arrive in a Poisson stream, at the rate of λ per second. We
assume that each such query contains a random number of read operations, K, followed by
one write operation. This is a conservative assumption, since more than one writes per query
would increase the rate of corruption. The variable K can have an arbitrary distribution, with
probabilities P (K = k) = rk. Let g(z) be the corresponding generating function:

g(z) =
∞∑
k=0

rkz
k . (1)

A possible assumption for the distribution of K is that it is geometric with parameter r,
and also satisfies K ≥ s for some integer s (in some applications there may be a minimum
number of reads. That is, rk = 0 for k < s; rs = r, rs+1 = (1−r)r, etc. Then the generating
function has the form

g(z) =
zsr

1− z(1− r)
. (2)

The K edges read, and the one written by the query are assumed to be independent of
each other (but note below that they are not equally likely).

The edges in the database are divided into T types, numbered 1, 2, . . ., T in reverse
order of popularity. The probability that a read or a write operation accesses an edge of
type i is pi, with p1 > p2 > . . . > pT . The number of edges of type i is Ni, and typically
N1 < N2 < . . . < NT . The total number of edges is N . For every type, a fraction f of the
edges are distributed and the rest are local. The probability of accessing a particular edge of
type i, for either reading or writing, is pi/Ni.

At time 0, all edges are clean (free from corruption). When a certain fraction, γ (e.g.,
γ = 0.1), of all edges become corrupted, the database itself is said to be corrupted for
practical purposes. The object of the analysis is to provide an accurate estimate of the
length of time that it takes for this to happen.

At any moment in time, an edge belongs to one of the following four categories.

Category 0: Local and clean.

Category 1: Distributed and clean.

Category 2: Half-corrupted.

Category 3: Corrupted.

Only distributed edges can be in category 2, but any edge, including local ones, can be in
category 3.

Denote by ni,j(t) the number of type i edges that are in category j at time t. The
vector ni(t) = [ni,0(t), ni,1(t), ni,2(t), ni,3(t)], defines the state of the type i edges at time

Queueing Models and Service Management

239

t (i = 1, 2, . . . , T). The state of the entire database is defined by the vector n(t) = [n1(t),
n2(t), . . ., nT (t)].

At all times, the elements of vector ni add up to Ni. Any state n(t) such that

T∑
i=1

ni,3(t) ≥ γN , (3)

will be referred to as an ‘absorbing state’. The absorbing states correspond to a corrupted
database.

The value of interest is U , the average first passage time from the initial state where
ni(0) = [(1− f)Ni, fNi, 0, 0] (i.e., a clean database), to an absorbing state.

The above assumptions and definitions imply that a read operation performed at time t
would return a correct answer with probability α(t), given by

α(t) =
T∑
i=1

pi
Ni

[ni,0(t) + ni,1(t) +
1

2
ni,2(t)] . (4)

The probability, β(t), that all the read operations in a query arriving at time t return
correct answers, is equal to

β(t) =
∞∑
k=0

rkα
k(t) = g[α(t)] . (5)

To simplify the notation, we have written α(t) and β(t) as functions of t. However, it is
important to remember that they are really functions of the current system state, n(t).

Consider now the probability, qi, that a query of type i arriving at time t and taking a
time δ to complete a write operation, will be involved in a conflict. That is the probability
that another query of type i arrives between t and t+δ and writes the same edge, but starting
at its other end. This can be expressed as

qi = 1− e−
1
2
λpiδ/Ni ; i = 1, 2, . . . , T . (6)

It should be pointed out that in practice δ is dominated by network delays. The actual
processing time associated with a write operation is negligible.

If the time to complete a distributed write is not constant, but is distributed exponentially
with mean δ, then the expected conflict probability would be

qi =
λpiδ

2Ni + λpiδ
; i = 1, 2, . . . , T . (7)

When δ is small, there is very little difference between these two expressions.
An incoming query that is involved in a conflict would change the category of a dis-

tributed edge from 1 to 2, provided that all read operations of both queries return correct

C Ezhilchelvan, Mitrani and Webber

240

results. Hence, the instantaneous transition rate, ai,1,2, from state [ni,0,ni,1,ni,2,ni,3] to state
[ni,0,ni,1 − 1,ni,2 + 1,ni,3], can be written as

ai,1,2 =
λpini,1

Ni

qiβ
2 , (8)

where β is given by (4) and (5).
Conversely, an incoming query writing a category 2 edge can change it to a category 1

edge, provided that all its read operations return correct results and it is not involved in a
conflict. Hence, the instantaneous transition rate, ai,2,1, from state [ni,0,ni,1,ni,2,ni,3] to state
[ni,0,ni,1 + 1,ni,2 − 1,ni,3], is given by

ai,2,1 =
λpini,2

Ni

(1− qi)β . (9)

The other possible transitions convert an edge of category 0, 1 or 2 into an edge of
category 3. This happens when a query writes after receiving an incorrect answer to at
least one of its reads. Denoting the corresponding instantaneous transition rates by ai,j,3, for
j = 0, 1, 2, we have

ai,j,3 =
λpini,j

Ni

(1− β) . (10)

Using these transition rates, one can simulate the process of corrupting the database
and obtain both point estimates and confidence intervals for the average time to corruption,
U . However, the systems of practical interest tend to be large, and such simulations take a
very long time to run. It is therefore desirable to develop an analytical solution that is both
efficient to implement and provides accurate estimates for U . That is our next task.

3. Fluid Approximation
Instead of describing the system state by integer-valued functions specifying numbers

of edges of various types and categories, it is convenient to use continuous fluids of those
types and categories. So now ni,j(t) is a real-valued function indicating the amount of fluid
present at time t in a ‘bucket’ of type i and category j (i = 1, 2, . . . , T ; j = 0, 1, 2, 3). The
total amounts of different types, and the initial states, are the same as before.

Fluids flow out of, and into buckets, at rates consistent with the transition rates described
in the previous section. Thus, the bucket labeled (i, 0) (local of type i and clean) has an
outflow at the rate given by (10), and no inflow. This can be expressed by writing

n′
i,0(t) = −λpi[1− β(t)]

Ni

ni,0(t) , (11)

where β(t) is given by (4) and (5).

Queueing Models and Service Management

241

The bucket labeled (i, 1) (distributed of type i and clean) has two outflows, at rates given
by (8) and (10) respectively, and an inflow at rate given by (9). The corresponding equation
is,

n′
i,1(t) = −λpi[qiβ

2(t) + 1− β(t)]

Ni

ni,1(t) +
λpi(1− qi)β(t)

Ni

ni,2(t) . (12)

Similarly, bucket (i, 2) (half-corrupted of type i) has two outflows, at rates given by (9)
and (10) respectively, and an inflow at rate given by (8). This implies

n′
i,2(t) = −λpi[1− qiβ(t)]

Ni

ni,2(t) +
λpiqiβ

2(t)

Ni

ni,1(t) . (13)

Finally, bucket (i, 3) (corrupted of type i) has three inflows, at rates given by (10), and
no outflows. Hence,

n′
i,3(t) =

λpi[1− β(t)]

Ni

[ni,0(t) + ni,1(t) + ni,2(t)] . (14)

The object is to determine the value U such that

T∑
i=1

ni,3(U) = γN . (15)

Unfortunately, the above differential equations are coupled in a complicated way. Not
only do the unknown functions appear in each others equations, but they also depend on
β(t), which in turn depends on α(t), which depends on all the unknown functions. More-
over, that dependency is non-linear. Consequently, an exact solution for this set of equations
does not appear to be feasible. We need another level of approximation.

Denote by n̄i,j the average value of the function ni,j(t) over the interval (0, U):

n̄i,j =
1

U

∫ U

0

ni,j(t)dt . (16)

Replacing, in the right-hand side of (4), all functions by their average values, allows us
to treat the probability α(t) as a constant, ᾱ:

ᾱ =
T∑
i=1

pi
Ni

[n̄i,0 + n̄i,1 +
1

2
n̄i,2] . (17)

Then the probability β(t) will also be a constant, β̄, defined by (5). Also, where one un-
known function appears in the differential equation of another, replace the former by its
average value. The resulting differential equations are linear, with constant coefficients, and
are easily solvable. The solution of (11), which involves only ni,0(t), becomes

ni,0(t) = (1− f)Nie
−ai,0t , (18)

C Ezhilchelvan, Mitrani and Webber

242

where ai,0 = λpi(1− β̄)/Ni.
In equation (12), ni,2(t) is replaced by n̄i,2. The solution is then

ni,1(t) =
bi,1n̄i,2

ai,1
[1− e−ai,1t] + fNie

−ai,1t , (19)

where ai,1 = λpi(qiβ̄
2 + 1− β̄)/Ni and bi,1 = λpi(1− qi)β̄/Ni.

Similarly, in equation (13), ni,1(t) is replaced by n̄i,1. This yields

ni,2(t) =
bi,2n̄i,1

ai,2
[1− e−ai,2t] , (20)

where ai,2 = λpi[1− qiβ̄]/Ni and bi,2 = λpiqiβ̄
2/Ni.

Replacing ni,j(t) by n̄i,j in equation (14) (j = 0, 1, 2), makes the right-hand side con-
stant and therefore

ni,3(t) = t
λpi(1− β̄)

Ni

(n̄i,0 + n̄i,1 + n̄i,2) . (21)

Hence, according to (15), the time to corruption U can be estimated as

U = γN

[
T∑
i=1

λpi(1− β̄)

Ni

(n̄i,0 + n̄i,1 + n̄i,2)

]−1

. (22)

Integrating (18), (19) and (20) over the interval (0, U) and dividing by U , we obtain the
following expressions:

n̄i,0 =
(1− f)Ni

ai,0U
[1− e−ai,0U] ; (23)

n̄i,1 =
bi,1n̄i,2

ai,1
+ (fNi −

bi,1n̄i,2

ai,1
)

1

ai,1U
[1− e−ai,1U] ; (24)

n̄i,2 =
bi,2n̄i,1

ai,2
[1− 1

ai,2U
(1− e−ai,2U)] . (25)

This is a set of non-linear simultaneous equations for the averages n̄i,0, n̄i,1 and n̄i,2.
They can be solved by consecutive iterations.

Start with some initial estimates for n̄i,j; call them n̄
(0)
i,j . Using (17), get an initial esti-

mate for ᾱ and hence for β̄; call those ᾱ(0) and β̄(0). Then (22) provides an initial estimate
for U , called U (0).

Substituting the initial estimates into the right-hand sides of (23), (24) and (25), yields
new values for the averages n̄i,j; call them n̄

(1)
i,j . They in turn provide new values, ᾱ(1) and

β̄(1), and a new estimate, U (1).
In step s of this procedure, the values n̄(s−1)

i,j , β̄(s−1) and U (s−1) are used to compute ᾱ(s),
β̄(s), n̄(s)

i,j and U (m). The process terminates when the results of two consecutive iterations
are sufficiently close to each other.

Queueing Models and Service Management

243

The above solution can be described more concisely by treating the right-hand sides of
equations (22) – (25), together with (17) and (5), as a mapping, f , from one triple (n̄, β̄, U) to
another. Then those equations can be re-written in the form of a single fixed-point equation:

(n̄, β̄, U) = f(n̄, β̄, U) . (26)

A fixed point with respect to n̄ exists by Brouwer’s theorem [3], because the numbers of
edges of all types and categories are bounded and the mapping f is continuous. Moreover,
since β̄ and U are determined by n̄, a fixed point exists for them too.

The iterative solution is of the form

(n̄(s), β̄(s), U (s)) = f(n̄(s−1), β̄(s−1), U (s−1)) .

This solution will be referred to as the ‘Fixed-Point approximation’, or the ‘F-P approx-
imation’.

In the following section, the Fixed-Point approximation is applied to the study of rea-
sonably realistic sample databases. The quality of the approximation is evaluated by com-
parisons with simulations. We shall see that, although on the whole the approximation is
very accurate, there are limits to its applicability. To overcome those limitations, a more
elaborate approximation will be developed in section 5.

4. Numerical and Simulation Results
Consider an example database containing five types of edges. Their numbers are: N1 =

104, N2 = 105, N3 = 106, N4 = 107 and N5 = 108. The corresponding probabilities
of access are p1 = 0.5, p2 = 0.26, p3 = 0.13, p4 = 0.07 and p5 = 0.04. The number
of read operations per query is distributed geometrically, starting at 2: rk = (1 − r)k−2r
(k = 2, 3, . . .), with r = 0.07. Thus, on the average, there are about 15 reads per query. For
a given probability, α, that a read operation returns a correct result, the probability that all
reads are correct is given by

β =
α2r

1− α(1− r)
. (27)

The time to complete a distributed write operation is assumed constant, equal to 0.005
seconds.

In all types, a fraction 0.3 of the edges are distributed and the rest are local (for an
argument in support of this fraction, see [Huang and Abadi 2016]). The database starts
clean at time 0 and is considered to be corrupted when a fraction γ = 0.1 of all edges are
corrupted.

In Figure 2, the average period until corruption is plotted against the arrival rate of
queries, λ. The latter is varied in the range (100,5000) queries per second. The time U is
measured in hours.

We observe that U decreases with λ. This was of course to be expected, since a higher
arrival rate leads both to higher probability of conflicts, and faster spread of incorrect in-
formation. In this database, type 1 forms a relatively small nucleus of edges that are quite
likely to be accessed; once they become involved in conflicts, corruption spreads rapidly.

C Ezhilchelvan, Mitrani and Webber

244

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

U

λ

F-P approximation+

+

+
+
++++++

+ + + +

+
Simulation×

×

×
××××××× × × × ×

×

Figure 2. Corruption time in hours vs. arrival rate/sec.

The figure also aims to compare the Fixed-Point approximation results with those ob-
tained by simulation. That is, the transition steps governed by the rates (8), (9) and (10)
were simulated until an absorption state was reached.

The two plots are practically indistinguishable; the relative differences that exist are
smaller than 1%. On the other hand, the Fixed-Point approximation plot took a fraction of
a second to compute (each point required fewer than 10 iterations), whereas the simulated
one took more than half an hour.

The next experiment examines the effect of the average number of read operations per
query, E(K), on the time to corruption. The arrival rate is fixed at λ = 500 queries per
second. The other parameters are as in Figure 2. In this example, the random variable K
has the standard geometric distribution with parameter r: rk = (1− r)k−1r.

In Figure 3, r decreases from 0.99 to 0.02, which means that E(K) = 1/r increases
from 1.01 to 50. The time to corruption, U , is again measured in hours.

As expected, the more edges are read by queries, the higher is the probability of reading
a corrupted edge, and hence the shorter is the corruption time. Less obvious, however, is the
observation that the resulting decrease in U is highly non-linear. Indeed, increasing E(K)
beyond 10 almost ceases to make a difference. We see roughly the same U , whether there
are 10 or 50 reads per query.

The accuracy of the Fixed-Point approximation is again very good over the entire range
of E(K).

It may also be of interest to examine the effect of the fraction of distributed edges, f , on
the interval U . In Figure 4, that fraction is varied between f = 0.1 and f = 1. The arrival
rate is fixed at λ = 100 (in order to prolong the time to corruption), and the number of reads
per query is distributed geometrically starting with 2, with parameter r = 0.07 and mean
just over 15.

Queueing Models and Service Management

245

60

62

64

66

68

70

72

74

0 5 10 15 20 25 30 35 40 45 50

U

E(K)

F-P approximation

+

+
+

+
+

+ + +

+
Simulation

×

×
×
××

× × ×

×

Figure 3. Corruption time in hours vs. average number of reads.

260

280

300

320

340

360

380

400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U

f

F-P approximation

+ + + + + + + + + +

+
Simulation

× × × × × × × × × ×

×

Figure 4. Varying fraction of distributed edges.

The Fixed-Point approximation plot is flat. This is not entirely surprising, since the
expression for the probability α involves only the sums n̄i,0 + n̄i,1, and not the individual
averages. Moreover, both local and distributed edges are corrupted by being updated as a
result of an incorrect read.

The simulation agrees with the approximation for most of the range, but begins to di-
verge from it when f = 0.1. It seems that when the fraction of distributed edges is very
small, the accuracy of the Fixed-Point approximation diminishes slightly.

C Ezhilchelvan, Mitrani and Webber

246

In the next experiment, the parameter that is varied is the fraction, γ, of edges that
should become corrupted before the database is considered to be corrupted. The arrival rate
is fixed at λ = 500, and all other parameters are as in Figure 2.

0

500

1000

1500

2000

2500

3000

3500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

U

γ

F-P approximation

+ +
+

+
+

+

+

+

+
+

Simulation

× ×
×

×
×

×
×

×

××

Figure 5. Varying fraction of corrupted edges.

Figure 5 shows how the time to corruption grows when the definition of corruption
becomes more demanding. The plot is a convex curve, which is slightly counter-intuitive.
One might guess that the more edges are corrupted, the faster even more edges would be
corrupted. That would produce a concave curve. In fact the opposite is observed. The likely
explanation is that the fewer the remaining clean edges, the longer it takes for a random
access to hit one and corrupt it. This is particularly true when most of the edges – in this
example the ones of type 5 – are accessed with a low probability.

The approximate estimates are almost indistinguishable from the simulation ones, while
being several orders of magnitude faster to compute.

In order to explore the limits of applicability of the Fixed-Point approximation, we
scaled up the size of the database by a factor of about 100, and also removed the smaller
subsets of more popular edges. The resulting example is a database containing N = 1010

edges, with T = 1 and p1 = 1 (i.e., each edge is equally likely to be accessed). The fraction
of distributed edges is still f = 0.3. This example will be referred to as the ‘Large Uniform
Database’.

The results are now considerably less accurate. For example, when the arrival rate is
λ = 1000 and the average number of read operations per query is 2.5, the time to corruption
predicted by the Fixed-Point approximation is roughly U = 103 days. On the other hand,
a simulation run (lasting several hours) indicated a time to corruption in the region of 880
days.

Queueing Models and Service Management

247

The problem here appears to be the time-varying rate at which corruption spreads, deter-
mined by the time-varying probability 1−β(t). When the interval U becomes very large, an
approximation that replaces β(t) by a constant over the entire period ceases to be adequate.

The solution we propose is to break up the observation period into a number of relatively
small intervals. The approximate solutions for those intervals would then be pieced together
to model the evolution of the database over a long period of time.

5. Piecewise-Linear Fixed-Point Approximation
In order to simplify the presentation, it is convenient to rewrite the differential equations

(11), (12) and (13), for i = 1, 2, . . . , T , as a single equation in terms of the system state
vector n(t):

n′(t) = f [n(t), β(t)] . (28)

Here f(·, ·) represents all the right-hand sides of the equations, making explicit the depen-
dance on β(t). In fact, we know that at any moment t, β(t) is determined by n(t) through
(4) and (5). This can be expressed by writing β(t) as a function of the current system state:
β(t) = β[n(t)].

Let h be some (relatively small) time increment. Consider the sequence of instants t0,
t1, . . ., where t0 = 0 and tm = tm−1 + h (m = 1, 2, . . .). Assume that n(t) varies linearly
on each of the intervals (tm−1, tm). Moreover, assume that on (tm−1, tm), β(t) is a constant,
denoted by β̄m. Then, applying (28) to the interval (tm−1, tm), we can write

n(tm)− n(tm−1)

h
= f [n(tm−1), β̄m] . (29)

Thus, if we know the value of β̄m and the state vector at the beginning of the interval,
n(tm−1), we can find the state vector at the end of the interval:

n(tm) = n(tm−1) + hf [n(tm−1), β̄m] . (30)

The linearity of n(t) on (tm−1, tm) implies that its average value on that interval is
n̄m = [n(tm−1) + n(tm)]/2. Now, β(t) is not necessarily linear on (tm−1, tm), but we can
approximate its average value by computing β̄m = β(n̄m). We thus have the elements of a
new fixed-point solution of the differential equations on the interval (tm−1, tm).

Start with an initial estimate for β̄m, call it β̄(0)
m . A good choice for that estimate is

the value determined by the initial state vector: β̄
(0)
m = β[n(tm−1)]. Use (30) to compute

a first approximation for the end state, n(1)(tm) and hence a first approximation for the
average, n̄(1)

m . This provides the next estimate, β̄(1)
m = β(n̄

(1)
m). That, in turn, yields second

approximations of the end state, n(2)(tm), average state, n̄(2)
m , and average β, β̄(2)

m = β(n̄
(2)
m).

Continue these iterations until two consecutive estimates of β̄m are sufficiently close to
each other. Substituting the last value of β̄m into (30) gives the state vector at the end of the
interval, n(tm), and hence the value of β at the end of the interval, β(tm) = β[n(tm)].

C Ezhilchelvan, Mitrani and Webber

248

The Piecewise-Linear fixed-point approximation, or the ‘P-L approximation’, consists
in carrying out the above procedure for each of the consecutive intervals (0, h), (h, 2h),
(2h, 3h), The end values in interval m, n(tm) and β(tm), are the initial conditions for
interval m + 1. For the first interval, the initial state is the clean database and the initial
value of β is 1. The computation stops at the first m such that n(tm) is an absorbing state;
the returned value of the time to absorption is U = tm.

The Piecewise-Linear fixed-point approximation was applied to the Large Uniform
Database introduced at the end of the last section. A time increment of one hour was used:
h = 3600 seconds. In Figure 6, the time to corruption, measured in days, is plotted against
the arrival rate, which increases from λ = 1000 to λ = 10000 queries per second. The re-
sults are compared with those obtained by simulation, and also with the estimates provided
by the earlier F-P approximation which computes a single fixed point over the entire period.

0

200

400

600

800

1000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

U

λ

P-L approximation

+

+

+
+

+ + + + + +

+
F-P approximation

×
× × × × × × × × ×

×
Simulation

∗

∗

∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

Figure 6. Large Uniform Database: time to corruption in days vs. arrival rate.

We observe a good agreement between the simulation and the Piecewise-Linear approx-
imation. Each simulated point was the result of a single simulation run, terminated when the
fraction of corrupted edges reached γ. The ten points in the graph took more than 20 hours
of computer time to produce. Since we are dealing with transient, rather than steady-state
behaviour, the only way to obtain samples of observations and hence confidence intervals,
would be to repeat the runs multiple times. That effort was not thought to be justified.

The run time of the Piecewise-Linear approximation depends on the value of h. It tends
to be larger than that of the single step solution, but not excessively so. In the above example,
even if h is set to 1 minute, the difference between the P-L run time and the F-P run time is
about one order of magnitude (seconds for P-L, as opposed to fractions of a second for F-P).
That is a small price to pay for the much higher accuracy achieved.

Which approximation should be used if a large database has structure, rather than being

Queueing Models and Service Management

249

uniform? To address that question, we have increased the size of the database in figures
2 – 5 by about a factor of 100, while maintaining and extending the structure. The new
database has 7 edge types, with sizes 104, 105, 106, 107, 108, 109 and 1010, respectively. The
corresponding access probabilities are p = (0.5, 0.25, 0.12, 0.06, 0.04, 0.02, 0.01). This will
be referred to as the ‘Large Structured Database’.

In an experiment similar to the one in Figure 3, the value of U for the Large Structured
Database is plotted against the average number of reads. The arrival rate is fixed at λ =
1000. Each point is evaluated by the F-P approximation, the P-L approximation with an
increment of h = 1 hour, and by simulation. The results are shown in Figure 7.

490

495

500

505

510

515

520

0 5 10 15 20 25 30 35 40 45 50

U

E(K)

F-P approximation

+

+
+

+
+

+ + +

+
P-L approximation

×

××
×× × × ×

×
Simulation

∗

∗∗
∗ ∗ ∗ ∗ ∗

∗

Figure 7. Large Structured Database: corruption time in days vs. average number of reads.

As expected, this large database takes much longer to corrupt: more than 500 days,
compared to less than 72 hours. Moreover, it takes much longer to simulate: the total run
time for the eight simulated points was about 18 hours. The two approximated plots took
less that 10 minutes to compute. On the other hand, all three evaluation methods produced
almost identical results.

It was slightly surprising to see that, for this system, the accuracy of the F-P approxima-
tion is as good as that of the P-L approximation. The likely explanation is in the structure of
the database. The presence of a small and popular class of nodes is key to the propagation
process. Once that class becomes corrupted, which happens relatively quickly, corruption
is spread to other classes by incorrect reads, while the probabilities α and β do not change
very quickly.

This observation is confirmed by the last experiment, illustrated in Figure 8, where the
corruption time for the Large Structured Database is plotted against the fraction γ of edges
to be corrupted. The number of reads per query is assumed to be geometrically distributed
with parameter r = 0.07. Again, Each point is evaluated by the F-P approximation, the P-L

C Ezhilchelvan, Mitrani and Webber

250

approximation with an increment of h = 1 hour, and by simulation.

0

5000

10000

15000

20000

25000

30000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

U

γ

F-P approximation

+ +
+

+
+

+

+

+

+

+
P-L approximation

× ×
×

×
×

×
×

×

××
Simulation

∗ ∗
∗

∗
∗

∗
∗

∗

∗∗

Figure 8. Large structured database: corruption time in days vs. fraction of corrupted edges.

The values of U now vary from about 500 days to more than 25000 days. The three plots
are almost indistinguishable over the entire range. The nine simulated points took more than
95 hours of computer time.

The last three experiments suggest that structure helps the F-P approximation, regardless
of the size of the database. The most difficult databases to model are the large and struc-
tureless ones. In those cases, the F-P approximation may fail, while the P-L approximation
works well.

One might be tempted to dispense with the fixed-point iterations in each interval (tm−1, tm).
Instead of determining β̄m for that interval, it would be possible to use just the initial values
n(tm−1) and β(tm−1) to compute

n(tm) = n(tm−1) + hf [n(tm−1), β(tm−1)] , (31)

which would determine β(tm) However, that shortcut would ignore the fact that, as cor-
ruption spreads during the interval (tm−1, tm), β(t) decreases. Consequently, the rate of
spreading would be under-estimated, and hence the period U would be over-estimated. For
the example in Figure 6, we found that the relative error of the shortcut, compared to the
P-L approximation, was about 20%.

6. Conclusions
The problem that we have addressed – to construct and solve a quantitative model of

database deterioration – is of considerable practical importance. The fluid approximation
that has been developed is fast and provides accurate estimates of the time to corruption.

Queueing Models and Service Management

251

Two solution methods were developed: the Fixed-Point approximation which handles the
entire period to corruption in a single step, and the Piecewise-Linear approximation which
divides that period into a number of smaller intervals. The former is faster and is recom-
mended for databases that are not too large, or have hierarchical structure. The latter is
slower, but can be applied to any database, including large and structureless ones.

The model examined here may be extended in several directions. For example, it may
be possible to assume that corrupted edges can be repaired by overwriting them with clean
information. That would necessitate distinguishing between corrupted local edges and cor-
rupted distributed edges. The time to absorption would be replaced by a first passage time
to a certain subset of states. Also, one could assume that an edge that is the subject of a
conflict does not immediately become half-corrupted, but remains in a special ‘conflicted’
state until it is next read. Only at that point does a conflicted edge become half-corrupted.

Both the above modifications can be handled quite easily by the methods presented here.
Indeed, we have run some experiments which suggest that they do not materially affect the
lifetime of the database.

A more substantial generalization would be to introduce a process of creation of new
edges, and possibly of removal of existing ones. A fluid approximation of such a database
should be possible, and would be a suitable topic for future research.

References
[1] Bailis, P., & Ghodsi, A. (2013). Eventual Consistency Today: Limitations, Extensions,

and Beyond. Acmqueue, 11(3), 20–32.

[2] Brewer, E.A. (2000). Towards robust distributed systems. Procs. 19th Annual ACM
Symposium on Principles of Distributed Computing, Portland, 16—19.

[3] Brouwer, L.E.J. (1911). Uber Abbildungen von Mannigfaltigkeiten. Mathematische
Annalen, 71, 97–115.

[4] Buluc, A., Meyerhenke, H., Safro, I., Sanders, P. & Schulz, C. (2016). Recent Ad-
vances in Graph Partitioning. Algorithm Engineering, LNCS, 9220, 117–158.

[5] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., & Vogels, W. (2007). Dynamo: Amazon’s Highly
Available Key-value Store. SIGOPS Operating Systems Review, 41(6), 205–220.

[6] Ezhilchelvan, P., Mitrani, I., & Webber, J. (2018). On the degradation of distributed
graph databases with eventual consistency. 15th European Performance Engineering
Workshop (EPEW 2018), Paris.

[7] Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant Web services. ACM SIGACT News, 33(2), 51–59.

C Ezhilchelvan, Mitrani and Webber

252

[8] Herlihi, M.P., & Wing, J.M. (1990). Linearizability: A Correctness Condition for Con-
current Objects. ACM TOPLAS, 12(3), 463–492.

[9] Huang, J. & Abadi, D.J. (2016). Leopard: lightweight edge-oriented partitioning and
replication for dynamic graphs. Proceedings VLDB Endowment, 9(7), 540–551.

[10] Kleppmann, M. (2017). Designing Data-Intensive Applications. O’Reilly media, ISBN
978-1-449-37332-0.

[11] Robinson, I., Webber, J., & Eifrem, E. (2015). Graph Databases, New Opportunities
for Connected Data. O’Reilly Media, ISBN 978-1491930892.

[12] Schloegel, K., Karypis, G., & Kumar, V. (2003). Graph partitioning for high-
performance scientific simulations. Sourcebook of parallel computing, 491–541.

[13] Shang, Z., & Yu, J.X. (2013). Catch the Wind: Graph workload balancing on cloud.
Proceedings of the 29th IEEE International Conference on Data Engineering (ICDE),
553–564.

[14] Stanton, I., & Kliot, G. (2012). Streaming Graph Partitioning for Large Distributed
Graphs. Proceedings of the 18th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 1222–1230.

[15] Vogels, W. (2009). Eventually Consistent. Communications of the ACM, 52(1), 40–44.

Queueing Models and Service Management

253

C Ezhilchelvan, Mitrani and Webber

254

