
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Introduction and Motivation 

It is well-known that service industries use queueing models to figure out the resource 
allocation as well as to improve their quality of service. Generally speaking, customers 
requiring services need some form of inventory for servicing them or their products. First 
known study wherein the inventory is incorporated into queueing systems is due to Bradley 
[5]. In this context, we also refer to Saffari et al. [30], Schwarz et al. [31], and Schwarz and 
Daduna [32]. In classical inventory systems (Nahmias [23]) the customers’ demands for 
inventory are met instantaneously. That is, the demands for the inventory are met with no 
significant service times. The first paper to introduce a significant service time (also referred 
to as a positive service time) in processing the inventory is that of Berman et al. [3]. Since 
then the literature on queueing-inventory systems has grown significantly and we refer the 
reader to the survey papers (see Choi and Yoon [11], Krishnamoorthy et al. [17]) as well as 
to the papers (see Benny et al. [2], Chakravarthy et al. [10], Krishnamoorthy et al. [18], Yue 
and Qin [39]) and the references therein. 
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While the literature on queueing-inventory systems contains a variety of models 
dealing with positive service times, one common thing with those papers dealing with 
( , )s S -type inventory policy is that there is only one source for replenishment. However, in 
many applications, one deals with multiple vendors. 

The motivation for the study of a multiple-vendor problem arose out of a practical need 
in many areas including production and manufacturing. In industries such as the automotive 
industry a dual or multi-supplier part-sourcing strategy is used by organizations to deal with 
supply chain risks. Supply chain disruptions and risks can be caused by a number of sources 
which may include natural disasters like the Kobe earthquake, SARS, foot and mouth 
disease, birds flu, terrorist attacks such as 9 /11, industrial or direct action such the fuel 
price protest in the UK in September 2000 etc. (Cranfield Management School [13]). The 
primary purpose of this strategy is to make sure that the parts are delivered on time in order 
to minimize production delays due to shortage of parts and minimize revenue loss. By using 
this strategy the risk is spread across multiple vendors hence the probability of on-time 
delivery is significantly increased. 

A great example of the effectiveness of having multi-vendors for replenishing 
inventory is the fire at Toyota’s sole supplier of brake-fluid proportioning valves, Aisin, in 
Reitman [29] that could have caused their production line to shut down for weeks, but their 
operations kept going. 99% of Toyota’s P-valves were made at Aisin with 1% built at 
Nisshin Kogyo Co. It was estimated that each day Toyota production was halted would lead 
to a 0.1% decrease in Japan’s industrial output. Aisin, along with Toyota, set up a crisis 
room to deal with the problem of manufacturing new P-valves. Toyota managed to get many 
of its suppliers to bring in additional engineers, and work overtime shifts, to help build 
machines to produce P-valves, as well as increase production of the components. While 
observers initially predicted that Toyota would have to halt production for weeks, the 
incident ultimately set Toyota’s production back only five days. 

The Taiwan earthquake of September 1999 is a counter example of when a single 
vendor (for replenishment) strategy cost electronics firms billions of dollars because their 
sole suppliers were Taiwanese manufacturers (Sheffi [33]). Another interesting counter 
example is of the March 2000 fire at the Philips microchip plant in Albuquerque, NM when 
a lightning bolt struck a power line causing a fire in a production room at Philips. This 
caused major disruptions for their customers Nokia and Ericsson. Nokia was able to battle 
this disruption using their multi-tiered supplier strategy to source chips from other suppliers. 
However, Ericsson could not avoid a production shut down as they were using a single 
vendor to supply the microchips from the Albuquerque, NM plant causing them to suffer 
$400 million in lost sales and it has also withdrawn completely from the mobile phone 
handset production business (Latour [20]). The case of Ericsson is a more extreme example 
of the effects of supply chain disruptions but by no means is it exaggerated since these 
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phenomena are experienced by businesses the world over. 
The examples above show how a multi-tiered replenishing strategy has benefited 

organizations and saved them millions to billions of dollars in potential lost revenue due to 
unexpected supply breakdown. Scholarly articles supporting this point of view include the 
works of Wong et al. [37], who have found that today’s supply chains are built to be lean 
and efficient, but if they are unable to find alternatives quickly for unexpected disruptions, 
the chains will be susceptible to system shocks and disruptions leading to lost revenue 
opportunity. Further studies by Christopher and Towill [12] and Tang [36] suggest that as 
many firms implement various initiatives such as lean, agile, outsourcing, customized, and 
global networks to gain cost advantage and market share, their supply chains become more 
vulnerable at the same time, because there tends to be very little inventory in the system to 
"buffer" any interruptions in supply. As a result, any disruption can have a dramatic impact 
on the entire chain (Yu et al. [38]). 

There has been scholarly work advocating a dual-sourcing strategy. Prior work in this 
area includes a 2008 publication by Yu et al. where they evaluate the impact of supply 
disruptions risks on the choice between single and dual sourcing methods in a two-stage 
supply chain with a non-stationary and price-sensitive demand. A critical factor included in 
their research was two suppliers located in different countries where supplier 1 is located 
outside the manufacturer’s country, offers competitive price but is more prone to 
breakdowns whereas supplier 2 is local, stable but more expensive (Yu et al. [38]). 

This phenomenon is what the modern supply chains closely resemble as a lot of 
Fortune 500 manufacturers are beginning to source parts from countries with cheaper labor 
costs such as China and Mexico where the probability of delayed deliveries is higher. In 
order to battle that issue, they keep a secondary supplier close to their manufacturing 
facilities either within the same state or a nearby state to reduce the risk of delayed deliveries 
by splitting the sourcing of the parts. 

Their paper concluded that there are two critical values of the disruption probabilities 
which provide a guideline for choosing the most profitable sourcing method for the buying 
firms. They found that either single or dual sourcing can be effective depending on the 
magnitude of the disruption probability. A disruption probability of less than 0.08 would 
lead to a better single sourcing strategy with just the main international supplier. However, 
a disruption probability between 0.08 and 0.25 would lead to dual sourcing as the best 
strategy, and a disruption probability of greater than 0.25 would lead to shifting all parts to 
a local supplier. This model does have certain limitations such as considering a fairly simple 
demand model without time-related factors as well as considering supplier capacity to be 
infinite when in reality the capacity is always finite (Yu et al. [38]). However, a disruption 
probability between 0.08 and 0.25 is not too far from what is observed in the real-world as 
seen from the examples mentioned above. Adding finite capacity would increase the 
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disruption probabilities of the suppliers as well hence the range of 0.08 and 0.25 is a good 
reference point for practical use. 

Therefore, in modern industry a dual or multi-sourcing strategy is widely adopted as 
the advantages outweigh the disadvantages. This is primarily because new technologies and 
products are much more complex than in the past and the cost of switching suppliers is 
relatively low compared to the benefits of reduced probability of supply chain disruptions. 
Furthermore, apart from the fact that a multi-sourcing strategy lowers the risk associated 
with supply chain disruption, it also increases competition amongst suppliers resulting in 
better quality of products with higher reliability. 

In order to set up the needed matrices to form the generator of the Markov process 
describing the model under study, we require the following notation.   

• e  is a column vector (of appropriate dimension) of 1’s. 
• ie  is a unit column vector (of appropriate dimension) with 1 in the thi position 

and 0 elsewhere. 
• I  is an identity matrix (of appropriate dimension). 
• Generally the dimension of the vectors and matrices should be clear in the context 
of usage. However, when more clarity is needed we will include the dimension. 
For example, we will use ( )e mn to show that the column vector is of dimension 
mn . 

• The notation ' stands for the transpose of a matrix or a vector. 
• The symbols,  and  , respectively, will stand for the Kronecker product and 

Kronecker sum of matrices. We refer the reader to Graham [14], Marcus and Minc 
[22], and Steeb [34] for details and properties on Kronecker products. 

The paper is organized as follows. In Section 2, we describe the queueing-inventory 
system under study in this paper and the steady-state analysis of the model is presented in 
Section 3. Illustrative numerical examples are presented in Section 4 and some concluding 
remarks including future research work are presented in Section 5. 

2. Model Assumptions 
In this section, we will describe the model under study. The demands arrive according 

to a point process. Normally the demands arrive from different sources and hence it is 
possible for two successive inter-demand times to be dependent. That is, there is a 
possibility of correlation (positive or negative) present in the inter-demand times. This is 
very common, especially, when the demands occur from different sources and the sources 
are not modeled using Poisson processes. A most widely used and popular point process 
that will suit modeling such inter-demand times is the Markovian arrival process ( )MAP , 
a special case of batch Markovian arrival process ( )BMAP , introduced first by Neuts [25] 
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as a Versatile Markovian Point Process ( )VMPP . The MAP is represented by a pair of 
square matrices, say, 0D and 1D , of order m such that 0 1=D D D is an irreducible 
generator. The entries of 0D govern transitions corresponding to no arrivals of demands 
and the entries of 1D govern transitions governing the arrivals of demands to the system. 
Suppose that  is the steady-state probability vector of the generator D . That is, 
satisfies  

 = 0,  =1.D e    (1) 

The constant 1= D  e , known as the fundamental rate, gives the expected number of 
arrivals per unit of time in the stationary version of .MAP  

An arriving demand finding the inventory level to be zero will be considered lost; 
however, if an arriving demand finds the inventory level to be positive will enter into the 
system. At that time the inventory level will be reduced by one and the admitted demand 
will either enter into service immediately provided the server is idle or wait in the queue of 
infinite size and be served on a first-come-first-served ( )FCFS  basis. 

We assume that the service times are of phase type with representation ( , )T of order 
n . Note that phase type distributions ( PH  distributions), introduced by Neuts [24] and 
studied extensively by Neuts and his colleagues (see e.g. Bladt and Nielsen [4], Buchholz 
et al. [6], Chakravarthy [7, 8, 9], He [15], Lucantoni et al. [21], and Neuts [25, 26, 27, 28]) 
generalize some well-known distributions like exponential, Erlang and hyperexponential 
among many others. 

Suppose that  is the service rate. It can be seen that 1 1= [ ( ) ] .T   e  Let   
denote the stationary probability vector of T  0T . That is,  satisfies  

 ( ) = ,  =1.T  0 0  T e   (2) 

It can readily be seen (see e.g., [Neuts [26]) that  is given explicitly as  

 1= ( ) .T     (3) 

We adapt the classical ( , )s S -policy for replenishment. That is, in the classical setting, 
whenever the inventory level drops at or below s , an order for S s items is placed to 
replenish the inventory so that the at the time of the arrival of the order the inventory level 
can be brought to a level in the interval [ , ]S s S . Also, in the classical setting, it is assumed 
that >S s s to avoid placing an order for replenishment at the time of the delivery of a 
replenishment. 

In this paper, we assume that there are two vendors who will be responsible for 
replenishing the inventory. Vendor 1 is responsible to replenish 1S items when an order is 
placed with them, and Vendor 2 is responsible for 2S items when an order is placed with 
them. Note that 1 2 =S S S s  . Without loss of generality we assume that 1 2S S and 
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further we will assume that >S s s . When the inventory level drops to s or below, one 
of the following events will occur: (a) if no replenishment is pending, orders are placed with 
both the vendors; (b) if replenishment is pending from both the vendors, no further order is 
placed; (c) if only one vendor’s order is pending, order is placed only with the other vendor. 
That is, if Vendor 1 (or Vendor 2) is pending, then an order for 2S (or 1S ) items is placed 
with Vendor 2 (or Vendor 1). Thus, at any given time there can at most be one replenishment 
pending with any vendor. Note that it is possible for both vendors to have exactly one 
pending order. This is similar to the classical inventory system with one vendor doing the 
replenishment and at most one order can be pending at any given time. 

Finally, we assume that the lead times for replenishment for Vendors 1 and 2 are 
exponential with parameter, respectively, with parameters 1 and 2 . 

3. Steady-State Analysis 
In this section we will discuss the steady-state analysis of the model described in 2. 

Towards this end, we split this section into several subsections to lay the ground work. 

3.1. The QBD process 
The model described in Section 2 can be studied as a QBD process. To describe the 

state space of the process, we first define 1( )N t to be the number of customers in the system; 
2( )N t to be the level of the inventory; 1( )J t to be the status of the replenishment; 2( )J t  

to be the phase of the service time; and 3( )J t to be the phase of the arrival process at time 
t . Note that the when the server is idle, 2( )J t will be undefined. 1( )J t is defined as follows. 

 1

0, ,
1, 1,

( ) =
2, 2,
3, .

when no replenishment is pending
when replenishment is pending only from Vendor

J t
when replenishment is pending only from Vendor
when replenishment is pending from both Vendors








  (4) 

First observe that whenever the inventory level is in the set {0,1, , },s orders for 
replenishment will be pending from both vendors. This could happen in one of three ways. 
As soon as the inventory level hits s (i) orders are placed with both the vendors since no 
order is pending from either of the vendors; (ii) an order for 1S items is placed with Vendor 
1 since Vendor 2 order is still pending; and (iii) an order for 2S items is placed with Vendor 
2 since Vendor 1 order is still pending. Secondly, at the time when the inventory is 
replenished from Vendor 1 while Vendor 2 order is still pending, the inventory level will 
belong to the set 1 1{ , , }S s S . However, during the time when an order is pending from 
Vendor 2, the inventory level go down from 1s S to 1s  . In a similar manner, the 
possible inventory levels when an order is pending only from Vendor 1 are 

2{ 1, , }s s S  . These observations will help us to define the state space of the system. 
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It is easy to verify that 1 2 1 2 3{( ( ), ( ), ( ), ( ), ( )) : 0}N t N t J t J t J t t  is a quasi-birth-and-
death process ( )QBD with state space given by  

 

3 3

3 3

3 2 3

3 1 3

2 3 2 3

2 3 2

= {(0, ,3, ) : 0 , 1 }
{(0, ,0, ) : 1 , 1 }

{(0, ,1, ) : 1 , 1 }
{(0, , 2, ) : 1 , 1 }

{( , ,3, , ) : 1,0 , 1 ,1 }
{( , ,0, , ) : 1, 1 , 1 ,1

j k j s k m
j k s j S k m

j k s j s S k m
j k s j s S k m

i j k k i j s k n k m
i j k k i s j S k n

    
    

     
     

      
       3

2 3 2 2 3

2 3 1 2 3

}
{( , ,1, , ) : 1, 1 , 1 ,1 }
{( , , 2, , ) : 1, 1 , 1 ,1 }.

k m
i j k k i s j s S k n k m
i j k k i s j s S k n k m


        
        

 

Let 3 3 3 3={(0, ,3, ), 0 , 1 } {(0, ,0, ), 1 , 1 }j k j s k m j k s j S k m        0 {(0, ,1,j

3 2 3 3 1 3 3) : 1 , 1 } {(0, ,2, ) : 1 , 1 }, 1k s j s S k m j k s j s S k m k m             
denote the set of states corresponding to the system wherein the server is idle; let = {( ,ii

2 3 2 3 2 3 3,3, , ), 0 , 1 , 1 } {( , ,0, , ), 1 , j k k j s k n k m i j k k s j S k          21 , 1k n  

2 3 2 2 3 2 3 1} {( , ,1, , ) : 1 , 1 , 1 } {(0, ,2, , ) : 1 , m i j k k s j s S k n k m j k k s j s S           

2 31 , 1 },k n k m     denote the set of states wherein exactly i customers are in the 
system with the inventory level (not including the one the customers already possess and 
waiting for service), the phases of the service and arrivals in their respective phases. 

The generator, Q , of the QBD process under consideration is of the form 

 

1 0

2 1 0

2 1 0

2 1 0

,

B B
B A A

A A A
Q

A A A

 
 
 
 

  
 
 
 
  

  (5) 

where the (block) matrices appearing in Q are as follows. In the following we denote 

1 2=    and a diagonal (block) matrix with elements 1, , rC C by 1( , , )rC C .  

(1) (1) (1)
11 12 13

2 1 1 1(1) (1) (1) (1)
1 21 22 12 13

(1) (1)
31 33

0 0
= 0 , = ,   = ,

0 0 0 0
0

s s

B B B
I I

B B B B B
B B

  

 
    
    
     

 

 (1) (1)
11 0 0 0 0 21 1 2

= ( , , , , , , ), = 0 ,SB D I D I D I D D B I            (6) 
(1) (1) (1)
22 0 1 31 2 33 0 22 1 1

= ( ),  = 0  ,  = ( ),S S SB I D I B I B I D I         
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(0)
11
(0) (0) (0)

2 0 21 22 11
1(0) (0)

31 33

0 0
0 0

= ( ),  = 0 ,   = ,
0

0 S

B
B I I B B B B

I D
B B

 
           

0


T  

 (0) (0)
21 1 1 2 1 22

1 12

0 0
= ( 1) ( ) , = ,0s

S
B S S D B I D



 
        

 e e   (7) 

(0) (0)
31 1 1 1 1 33

1 11

0 0
= ( 1) ( ) , = ,0s

S
B S S D B I D



 
        

 e e  

(0)
11
(0) (0) (0)

0 21 22 11
1(0) (0)

31 33

0 0
0 0

= 0 ,  = ,
0

0 Sn

A
A A A A

I D
A A

 
  
      

 

 (0) (0)
21 1 1 2 1 22

( 1) 12

0 0
= ( 1) ( ) , = ,0s

S n
A S S I D A I D



 
       

e e   (8) 

(0) (0)
31 1 1 1 1 33

( 1) 11

0 0
= ( 1) ( ) , = ,0s

S n
A S S I D A I D



 
       

e e  

(1) (1) (1)
11 12 13

2 1 1 1(1) (1) (1) (1)
1 21 22 12 13

(1) (1)
31 33

0 0
= 0 ,  = ,   = ,

0 0 0 0
0

s s

A A A
I I

A A A A A
A A

  

 
    
    
     

 

 

(1)
11 0 0 0 0

(1) (1) (1)
21 1 22 0 1 31 22 2 1

(1)
33 0 2 2 2 11

= ( , , , , , , ),

      = 0 , = ( ),  = 0  ,

               = ( ),  = .

S S S

S S s

A T D I T D I T D I T D T D

A I A I T D I A I

A I T D I A I I

  

  

  

        

        
    0T

  (9) 

The transition diagram at a somewhat macro level is displayed in Figure 1 below. Note that 
in the diagram the set of states, the following notations are used.   

    • 3 3={( , , , ), 0 , 1 }i j r k j s k m   (0,3)  

    • 3 3={(0, ,0, ), 1 , 1 }j k s j S k m    (0,0)  

    • 3 2 3= {(0, ,1, ) : 1 , 1 }j k s j s S k m     (0,1)  

    • 3 1 3= {(0, ,2, ) : 1 , 1 }j k s j s S k m     (0,2)  

    • 2 3 2 3, ={( , ,3, , ), 0 , 1 , 1 }, 1i j k k j s k n k m i      ( 3)i  

    • 2 3 2 3, ={( , ,0, , ), 1 , 1 , 1 }, 1i j k k s j S k n k m i       ( 0)i  

    • 2 3 2 2 3, ={( , ,1, , ) : 1 , 1 , 1 }, 1i j k k s j s S k n k m i        ( 1)i  
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    • 2 3 1 2 3, ={(0, ,2, , ) : 1 , 1 , 1 }, 1.j k k s j s S k n k m i        ( 2)i  

 
Figure 1. Transition diagram at semi-macro level. 

Suppose that 0 2= ( , , )S s   denotes the steady-state probability vector of 
0 1 2=A A A A  . That is,  

 = ,  =1.A 0 e   (10) 

The following theorem gives the stability condition of the queueing-inventory model under 
study.   

 

Theorem 1. The queueing-inventory model under study with the generator given in (5) is 
stable if and only if  

 0 1[ ( )] < .D   e e   (11) 

Proof. The proof follows immediately on applying the stability condition for the QBD
process, which is 0 2<A A e e  (see, e.g., [Neuts [26]).   

Note: The stability condition will become obvious once we show that 0 1[ ( )]D  e e  
is the effective arrival rate as the quantity 0 1( ) /D e e gives the probability that an 
arrival will be lost due to zero inventory.   

In the sequel, we define the traffic intensity,  , of the model under study as  

 0 1( )= .D 


 e e   (12) 

The following lemma is intuitively obvious and also serves as internal accuracy in numerical 
computation.   
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Lemma 1. We have  

 
2

1

=0

[ (2 1) ] = = ( ) .
S s

mn j
j

S s I T 


      e   (13) 

Proof. First verify that by definition the vector  satisfies the following equations:  

 0 1 1[( ) ] ( ) = 0,T D I I D      0T   (14) 

 0 1 1[( ) ] ( ) = 0, 1 1,j jT D I I D j s          0T   (15) 

 0 1 1 1 12
[( ) ] ( )( ) = 0,s s S S ST D I I D             0T   (16) 

 0 1 1 1[( ) ] ( ) = 0, 1 ,j jT D I D s j S S         0T   (17) 

 0 1 1 2 1 21 2
[( ) ] ( ) = 0, 1 ,j j j S ST D I D S S j S S              0T   (18) 

 0 1 1 2 1 21 2 2
[( ) ] ( ) =0, 1 1,j j j S S j ST D I D S S j S                  0T   (19) 

 0 2 11 2 2
[( ) ] = 0,S S S S S ST D         0T   (20) 

 0 1 1 1 2[( ) ] ( ) = 0, 1 1,j jT D I I D S j S S s             0T   (21) 

0 1 1 1 2 2 22
[( ) ] ( ) =0, 1,j j j S S sT D I I D S S s j S S                  0T  (22) 

 0 1 22
[( ) ] = 0,S S sT D I       0T   (23) 

 0 2 1 1 2 1 2[( ) ] ( ) = 0, 1 1,j jT D I I D S S j S S S s               0T   (24) 

0 2 1 1 1 1 21 2
[( ) ] ( ) =0, 2 1,j j j S S S sT D I I D S S S s j S s                    0T   (25) 

 2 0 2 1[( ) ] = 0,S s sT D I       0T   (26) 

and the normalizing equation is  

 
2

=0

= 1.
S s

j
j




 e   (27) 

Now adding the equations (14-26) and after some simplifications we get 

 
2

=0

[( ) ] = 0,
S s

j
j

T D


  0T   (28) 

from which the stated result follows immediately. 
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3.2. Steady-state analysis 

Here, we will perform the steady-state analysis of the model under study. Let x be the 
steady-state probability vector of Q . That is, x satisfies  

 = 0,  =1.Qx xe   (29) 

We partition this vector as:  

0 1 2= ( , , , )x x x x  

where 0x is of dimension (2 1)S s m  giving the steady-state probability vector that the 
server is idle with inventory at various levels and the arrival process in one of m phases, 
and , 1i i x is of dimension (2 1)S s mn  giving the steady-state probability vector that 
the server is busy with inventory at various levels, the arrival process in one of m phases 
and the service is in one of n  phases. 

Under the stability condition given in (11) the steady state probability vector x is 
obtained (see, e.g., Neuts [26]) as follows:  

 

0 1 1 2

0 0 1 2 2
1

1
1

0 1

     = 0,
[ ] = 0,

     = , 1,

 ( ) = 1.

i
i

B B
B B RA

R i
I R






 



 

x x
x x

x x
x e x e

  (30) 

where the matrix R is the minimal nonnegative solution to the matrix quadratic equation: 

 2
2 1 0 = 0.R A RA A    (31) 

After we discuss the computation of R we will revisit the computation and results related 
to the steady-state vector .x  

3.3. Computation of R  

When the dimension of R is of reasonable size, one can use a number of well-known 
methods such as logarithmic reduction (Latouche and Ramaswami [19]) to compute it. 
However, when the dimension is prohibitively large, one should employ (block) Gauss-
Siedel iteration by exploiting the special structure of the coefficient matrices 0A , 1A , and 

2A . We will illustrate this below.  

3.3.1. Logarithmic reduction algorithm for R  

First, we briefly look at the key steps in the logarithmic reduction method [19].   

Step 0:  1
1 0( )H A A  , 1

1 2( )L A A  , =G L , = .T H  
Step 1:  2 1 2= ;   = ;   ( ) ;   ;U HL LH M H H I U M M L     
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1( ) ;   ;   .L I U M G G TL T TH      
Continue Step 1 until || || <e Ge  .   

Step 2: 1
0 1 0= ( )R A A A G   . 

3.3.2. (Block) Gauss-Seidel method for R  

When the dimension of R is prohibitively large, one should exploit the special 
structure of the coefficient matrices, 0 1, ,A A  and 2A . A good procedure to exploit the 
special structure is Gauss-Seidel method (Stewart [35]). Here we will outline that 
exploitation. First note that (due to the fact that 2 0 1 1= = ( )( ),RA A D e e e e e e  the first 
block row of R is zero. That is, 0 = 0, = 0, ,2jR j S s . 

Suppose that 2= ( ) =ijV V R . Note that 2
2 = ( ( ))ijR A V I0T . Now the equation (31) 

can be written in terms of matrices of dimension mn . In the following, 1 2i S s   and 
the notation  stands for Kronecker delta. That is, , =1i j for =i j , and , = 0i j for 
i j . 

 1
0 0 1 1= [ ( ) ( )][ ( )] ,i i iR V I I D I T D      0T   (32) 

 1
1, 1 0= [ ( ) ( )][ ( )] , 1 ,ij ij i jR V I I D I T D j s  
      0T   (33) 

 1
1, 1 0 2= [ ( ) ( )][ ( )] , 1 ,ij ij i jR V I I D T D s j S s 
        0T   (34) 

 1
1, 1 2 , 0 2 11 2

=[ ( ) ( ) ][ ( )] , 1ij ij i j i j S SR V I I D R T D S s j S s  
            0T   (35) 

 
1

1, 1 1 , 2 , 02 1 2

1

= [ ( ) ( ) ][ ( )] ],

                                                                            1 1,
ij ij i j i j S i j S SR V I I D R R T D

S s j S

   
         

    

0T
  (36) 

 1
1 , 2 ,2 02

= [ ( ) ][ ( )] ],iS iS i S S i S sR V I R R T D  
     0T   (37) 

 1
1, 1 1 0 2= [ ( ) ( )][ ( )] ], 1 1,ij ij i jR V I I D I T D S j S S s  
          0T   (38) 

 0 1 1, 1 2 , 2

2 2

( ) ( ) ( ) = 0, 

                                                                   ,
ij ij i j i j S S sV I R T D I I D R

S S s j S S

           

    

0T
  (39) 

 0 2 1, 1

2 1 2

( ) ( ) ( ) = 0,

                             1 1,
ij ij i jV I R T D I I D

S S j S S S s
       

       

0T
  (40) 

 0 2 1, 1 1 , 1 2

1 2

( ) ( ) ( ) = 0,

                                                                2 .
ij ij i j i j S S S sV I R T D I I D R

S S S s j S s

            

     

0T
  (41) 

 
 

C  Chakravarthy, Hayat

12



3.4. Computation of the steady-state vector 

Once the matrix R is computed, we can evaluate the steady-state probability vector 
x . Once again, depending on the dimension of the problem under study, we can exploit the 
structure of the coefficient matrices appearing in (30). We further partition , 0,i i x  as 
follows.  

 ,0 ,2= ( , , ), 0.i i i S s i x x x  
Note that, for 0 2j S s   , 0, jx is of dimension m whereas ,i jx is of dimension mn . 

First, we establish a few lemmas which will be useful as internal accuracy check in 
numerical computation.   

Lemma 2. We have  

 
2

0, ,
=0 =1

[ ( )] = ,
S s

j i j
j i

I
 

   x x e   (42) 

where  is as given in (1).  

Proof. Suppose we write the steady-state equations =Q 0x as 

 
0 1 1 2

0 0 1 1 2 2

1 0 1 1 2

           = ,
       = ,

= ,  2.i i i

B B
B A A

A A A i 


 

  

0
0

0

x x
x x x

x x x
  (43) 

Now post-multiplying the first equation in (43) by ( (2 1) )mS s I  e and the rest of the 
equations in (43) by ( (2 1) ( ) )mS s n I   e e and adding the resulting equations, we get  

 
2

0, ,
=0 =1

[ ( )] = ,
S s

j i j
j i

I D
 

   0x x e   (44) 

from which the stated results when using the normalizing condition as well as the steady-
state vector of D .   

Note. The result in Lemma 2 confirms that in steady-state the phase of the arrival process 
obtained in a round-about way should be equal to the one obtained directly.   

Lemma 3. We have  

 
2

1
, 0

=1 =0

( ) = (1 ) ( ) .
S s

i j
i j

I T
 

   x e x e   (45) 

Proof. Now post-multiplying the all but the first equation in (43) by 
( (2 1) ( ))nS s I m   e e  and adding the resulting equations, we get  
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2

,
=1 =0

( )( ) = 0,
S s

i j
i j

I T
 

  0x e T   (46) 

from which the stated result follows upon using the definition of the steady-state vector of 
( )T  0T , its uniqueness, and the normalizing condition of .x  

Suppose that ,z a vector of dimension (2 1)S s m  partitioned into vectors of 
dimension m as 0 1 2= ( , , , )S sz z z z . Note that the thk component of the vector jz , for 
0 2 ,1j S s k m     , gives the steady-state probability that the inventory level is j  
and the arrival process is in phase k . The following lemma gives an interesting and 
intuitively clear expression for z in terms of  and thus showing that the probability mass 
function of the inventory level as well as certain probabilities and mean cycle times 
associated with the vendors are independent of the service time distributions.   

Lemma 4. We have  

 = ( ), 0 2 .j j I j S s   z e   (47) 

Proof. First verify that  

 1 0 2 0 1 0 1 2( ) = ( )( ) = ( )( ).B B I B A A I A A A I       e e e   (48) 

By definition of z , it is easy to see that  

 0, ,
=1

= ( ), 0 2 .j j i j
i

I j S s


    z x x e   (49) 

Now post-multiplying the second and third equations in (43) by ( )Ie and adding the 
resulting equations with the first equation in (43), and with the help of (48) and the definition 
of z,  we get the following equations.  

 0 1 1( ) = ,D I D  0z z   (50) 

 0 1 1( ) = 0, 1 1,j jD I D j s     z z   (51) 

 0 1 1 1 12
( ) ( ) = 0,s s S S SD I D       z z z z   (52) 

 0 1 1 1= 0, 1 ,j jD D s j S S    z z   (53) 

 0 1 1 2 1 21 2
= 0, 1 ,j j j S SD D S S j S S        z z z   (54) 

 0 1 1 2 1 21 2 2
= 0, 1 1,j j j S S j SD D S S j S           z z z z   (55) 

 0 2 11 2 2
= 0,S S S S S SD     z z z   (56) 

 0 1 1 1 2( ) = 0, 1 1,j jD I D S j S S s        z z   (57) 
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 0 1 1 1 2 2 22
( ) = 0, 1,j j j S S sD I D S S s j S S            z z z   (58) 

 0 1 22
( ) = 0,S S sD I   z z   (59) 

 0 2 1 1 2 1 2( ) = 0, 1 1,j jD I D S S j S S S s          z z   (60) 

 0 2 1 1 1 1 21 2
( ) = 0, 2 1,j j j S S S sD I D S S S s j S s              z z z   (61) 

 2 0 2 1( ) = 0.S s sD I   z z   (62) 

The above equations have identical structure to those listed in (14-26) in that we get (50-
62), respectively, by post-multiplying each one of (14-26) by Ie . This fact along with 
the uniqueness of  and =1ze yield the stated result.   

Lemma 5. The probability, lossP , that an arriving customer is lost due to zero inventory is 
given by  

 0 1
1= ( ).lossP D


 e e   (63) 

Proof. Note that an arriving customer is lost if and only at that time the inventory level is 
zero. Thus, by definition, we have  

 0,0 1 ,0 1
=1

1= [ ( )],loss i
i

P D D




 x e x e e   (64) 

from which, after applying Lemma 4 (by taking = 0j ), the stated result follows 
immediately.   

Note. The effective arrival rate is thus given by 0 1( )D   e e . Hence, the stability 
condition given in (11) is intuitively clear. 

3.5. System performance measures 

In this section we list a number of key system performance measures along with their 
expressions to bring out the qualitative aspects of the model under study. In the sequel, we 
define the probability vector, 0 2= ( , , )S s   of dimension 2 1S s  as  

 1
0 1= ( ( )) ( ) ( ( )) = ( ( )).I m I R I mn I m     x e x e z e  

Thus,  gives the probability mass function of the inventory level.  

1. Probability that the system is idle. The probability, idleP , that the system is idle (i.e. 
there are no customers in the system) at an arbitrary time is given by  

 0= =1 .idleP x e  
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Note that the last equality follows from Lemma 3 and the fact that in steady-state the 
input and output rates should be equal.   

2. Probability that the server is busy. The probability ,busyP that the server is busy is 
given by  
 0=1 = .busyP  x e  

3. Mean number of customers in the system. The mean, NS , number of customers in 
the system is given by  

 2
1

=1

= = ( ) .NS i
i

i I R


 x e x e  

4. Mean inventory level. The mean, IL , number of inventory in the system is given 
by  

 
2 1

2
=1 = 1 = 1

= .
s S s SS

IL i S s i S S s i
i i s i s

i i i   
 

    
 

     

5. The probability, lossP , that an arriving customer is lost due to zero inventory is as 
given in (47).   

6. The quantities, (12) (1) (2), ,pending pending pendingf f f , respectively, representing the fraction of 
time both vendors, Vendor 1, and Vendor 2, have pending replenishment at an 
arbitrary time are computed as follows.  

 

(12)

=0

2
(1)

=0 = 1

1
(2)

2
=0 = 1

= ,

= ,

= .

s

pending i
i

s Ss

pending i S s i
i i s

s Ss

pending i S S s i
i i s

f

f

f



 

 



 




  








 

 

 

7. Mean cycle time. The mean cycle time, ( ) ,i
CT  of Vendor , =1,2i i , defined as the 

mean time between two successive replenishment by Vendor i , is obtained as  

 ( ) ( ) 1= [ ] ,  =1,2.i i
CT i pendingf i    

4. Illustrative Numerical Examples 
In this section we will discuss a few representative examples to bring out the qualitative 

nature of the model under study. Towards this end, we consider several MAPs covering 
renewal and correlated inter-demand times, and three PH  distributions for services. 
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Arrival processes: For arrival process we consider several MAPs as listed below.   

1. Erlang (ERA):  

0 1

2 2 0 0
= , = .

0 2 2 0
D D

   
      

 

2. Exponential (EXP):  

0 1= [ 1], = [1].D D  

3. Hyperexponential (HEA):  

0 1

8.2 0 0 5.74 2.05 0.41
= 0 0.82 0 , = 0.574 0.205 0.041 .

0 0 0.082 0.0574 0.0205 0.0041
D D

   
      

      

 

4. Negatively Correlated 1 ( 1NC ):  

0 1

1.25 1.25 0 0 0 0
= 0 1.25 0 , = 0.0125 0 1.2375 .

0 0 2.5 2.475 0 0.025
D D

   
      

      

 

5. Poisitively Correlated 1 ( 1PC ):  

0 1

1.25 1.25 0 0 0 0
= 0 1.25 0 , = 1.2375 0 0.0125 .

0 0 2.5 0.025 0 2.475
D D

   
      

      

 

6. Negatively Correlated 2 ( 2NC ):  

0 1

1.75 1.75 0 0 0 0 0 0
0 1.75 1.75 0 0 0 0 0

= , = .
0 0 1.75 0 0.0175 0 0 1.7325
0 0 0 3.5 3.465 0 0 0.035

D D

   
      

   
      

 

7. Positively Correlated 2 ( 2PC ):  

0 1

1.75 1.75 0 0 0 0 0 0
0 1.75 1.75 0 0 0 0 0

= , = .
0 0 1.75 0 1.7325 0 0 0.0175
0 0 0 3.5 0.035 0 0 3.465

D D

   
      

   
      
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8. Negatively Correlated 3 ( 3NC ):  

0 1

2.25 2.25 0 0 0 0 0 0 0 0
0 2.25 2.25 0 0 0 0 0 0 0

= 0 0 2.25 2.25 0 , = 0 0 0 0 0 .
0 0 0 2.25 0 0.0225 0 0 0 2.2275
0 0 0 0 4.5 4.455 0 0 0 0.045

D D

   
      

   
      
      

 

9. Positively Correlated 3 ( 3PC ):  

0 1

2.25 2.25 0 0 0 0 0 0 0 0
0 2.25 2.25 0 0 0 0 0 0 0

= 0 0 2.25 2.25 0 , = 0 0 0 0 0 .
0 0 0 2.25 0 2.2275 0 0 0 0.0225
0 0 0 0 4.5 0.045 0 0 0 4.455

D D

   
      

   
      
      

 

The above arrival processes will be normalized in order to have the value for  . Note that 
these are qualitatively different. The following table gives the ratio of the standard 
deviations (to Erlang ( ERA )) and the 1-lag correlation coefficients (1-lag-cc) of the inter-
arrival times.  

Table 1: Arrival processes statistics 

  
Service times: We look at the following three service times. Again, these distributions will 
be normalized to a desired value for  , and also these are qualitatively different.  

1. Erlang (ERS): 

 
2 2

= (1,0),   = .
0 2

S
 
  

 

2. Exponential (EXS): 
= [1],   = [ 1].S   

3. Hyperexponential (HES):  

 
10 0

= [0.9, 0.1],   = .
0 1

S
 
  

 

 

TaP   ERA  EXA  HEA  1NC  1PC  2NC  2PC  3NC  3PC  
 Ratio SD   1 1.414 3.175 1.470 1.470 1.443 1.443 1.432 1.432 

1 lag cc    0 0 0  0.327 0.327  0.480 0.480  0.580 0.579 
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Example 1. In this example, we will explore the behavior of some key measures related to 
inventory level, replenishment, and cycle times, as we vary s and 1S by fixing 

1 2= 200, =1, = = 0.1S     and considering the nine MAPs listed earlier. Note that for 
this example the service time does not play any role. In Figures 2-9, we display the measures, 

(12) (1) (2) (1)

1
= (1 ( )), ( ), , , , ,e pending pending pending CTP loss P loss f f f    and (2)

2CT . From these figures, 
we notice the following observations.   

•  The measure, e , the effective arrival rate, approaches = 1 as s is increased 
for all but positively correlated arrival processes. For positively correlated 
arrival processes it appears that one needs a larger values for s and S .  

•  Keeping the value of the service rate constant, it can be observed that at low 
values of ,s  varying the value of 1S (the amount of ordered sent to Vendor 1) 
can cause the probability of lost demand to increase by almost 10%. However at 
higher values of ,s  this change is non-existent. Not only that but the higher the 
value of ,s  the lower the probability of lost demand which makes sense 
intuitively as larger minimum inventory threshold would mean that the 
likelihood an order can be fulfilled is high. However for reducing the inventory 
storage costs, a lower s level is ideal. In this case an s value of 25 would be 
most suitable as that keeps the probability of a lost demand below 0.05 for all 
values of 1S . 

•  The mean level of inventory in the system linearly increases as s is increased. As 
1S  is increased keeping s constant, the mean level of inventory increases at low 

values of s but is much more stable at high levels of s . Again a value of s  
close to 25 in this case would be the most suitable value to keep inventory costs 
low while meeting demand with high probability. 

•  The mean cycle time for Vendor 1 is significantly impacted by s but also affected 
by 1S as a low s and high 1S indicates a very high cycle time. A high s with 
any value of 1S has a lower cycle time primarily because the net order size is 
reduced hence the cycle time to fulfill the order goes down. 

•  This effect is even more pronounced using data for Vendor 2 who has a very high 
cycle time of 1S . This is primarily because we are taking a much larger set of 
values for Vendor 2 compared to Vendor 1 as Vendor 2 delivers the leftover 
quantity after the main order is placed with Vendor 1. The proportion of orders 
placed between two vendors can have an impact up to 50 units on the cycle time 
which could cause delayed deliveries. In an ideal situation, the proportion should 
be kept close to the 50/50 mark; however, there are various reasons this is not 
possible including vendor capacity, location and price points.  
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Figure 2. Effective arrival rate under different scenarios. 
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Figure 3. P(loss) under different scenarios. 
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Figure 4. Fraction of time both vendors have pending replenishment under different 
scenarios. 
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Figure 5. Fraction of time only Vendor 1 has pending replenishment under different 
scenarios. 
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Figure 6. Fraction of time only Vendor 2 has pending replenishment under different 
scenarios. 
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Figure 7. Mean inventory level under different scenarios. 
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Figure 8. Mean cycle time of Vendor 1 under different scenarios. 
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Figure 9. Mean cycle time of Vendor 2 under different scenarios. 

 
 
 

Queueing Models and Service Management

27



Example 2. In this example, we compare one vendor and two-vendor cases. Towards this 
end, we will vary 1S by fixing 1 2= 50, = 5, =1, = = 0.1, = 0.95S s      and consider the 
nine MAPs listed earlier for the arrivals of the demands and the three PH  distributions 
for the services. We vary 1S and also observe that  will vary as we fix the traffic intensity. 
Note that one vendor case ( 2 = 0S ) is studied extensively in the literature. In order to do a 
proper comparison of these models, we will look at the measures common to one vendor 
model, say, Model 1, and two-vendor model, say, Model 2. We look at the ratios computed 
as the measure of model 2 over the corresponding measure of model 1. For example, the 
ratio for lossP , is obtained as  2  1/ .Model Model

loss lossP P  In Figure 10, we display the ratios 
corresponding to the service rate and the measures, (1), , ,loss pending ILP f   and (1)

1
,CT  and the 

measure NS is displayed in Figure 11 under different scenarios. From these figures, we 
note the following.   

1.  Under all scenarios we notice that the ratio for lossP is significantly less than 1 
indicating that Model 2 has a much smaller loss probability as compared to that of 
Model 1. This shows that the two-vendor model outperforms that of one vendor 
case. This is a very notable observation since in a practical supply chain model, the 
goal is to minimize the probability that an incoming demand is lost as that leads to 
lost revenue from current customers. 

2.  Again with respect to the ratio for the lossP , we see that a higher variability in the 
arrival process (see, e.g., HEA arrivals) yields a higher ratio. Also, we notice that 
while the level of negative  correlation appears to not have an impact on this ratio, 
we see a different trend in the case of positively correlated arrivals. As the (positive) 
correlation increases, the ratio also increases. This is the case for all 1S . This is a 
very notable and significant observation since in practice the inter-arrival times of 
successive demands are correlated and hence one cannot ignore this, especially, 
when the correlation is positive. 

3.  The ratio for the measure, (1)
pendingf , decreases as 1S is increased. Also, this ratio is 

greater than 1 and decreases to 1 as 1S increases. This is the case for all scenarios 
indicating that Model 2 has a higher probability of Vendor 1 has a replenishment 
pending. This can be intuitively explained as follows. The size of replenishment 
for Vendor 1 in the two-vendor model is 1S which is less than S s . This creates 
a larger rate of replenishment for the two-vendor case as compared to one vendor 
case. This can also be seen in the figure for the ratio for the mean cycle time for 
Vendor 1. Since the mean cycle time and the rate of replenishment are inverse to 
each other, Model 1 having a larger mean cycle time indicates that Model 2 will 
have a higher rate of replenishment compared to Model 1. Also we notice this ratio 
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to be somewhat insensitive to the type of arrival process.  

4.  We see that the mean inventory level for Model 2 is less than that of Model 1. 
Again, this is an interesting and significant observation as the holding cost for the 
two-vendor case will be less compared to the corresponding one vendor model. 

5.  With respect to the ratio for the IL , we see that a higher variability in the arrival 
process (see, e.g., HEA arrivals) yields a higher ratio. Also, we notice that while 
the level of negative correlation appears to not have an impact on this ratio, we see 
a different trend in the case of positively correlated arrivals. As the (positive) 
correlation increases, the ratio also increases. This is the case for all 1S . Once again 
this is a very notable and significant observation since in practice the inter-arrival 
times of successive demands are correlated and hence one cannot ignore this, 
especially, when the correlation is positive. 

6.  Now looking at the ratio for the mean number in system, NS , we notice a very 
interesting trend. While for the renewal and negatively correlated arrivals, the ratio 
is less than 1, implying that one vendor model has a larger mean in the system 
compared to that of the two-vendor case, we see exactly the opposite trend for the 
positively correlated arrivals.  

As Example 2 points out a two-vendor model has the advantage over the corresponding 
one vendor model in that probability of loss of demands is reduced while at the same time 
the inventory holding cost will also be smaller. Further, from a practical point of view, 
having two vendors to replenish inventory will help the management to have a back-up type 
replenishment process in case of unforeseen circumstances due to nature or otherwise. 
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 Figure 10. Various ratios of selected measures under different scenarios. 
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  Figure 11. Ratios of the mean number in the system under different scenarios. 
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5. Concluding Remarks 
In this paper we introduced a two-vendor queueing-inventory systems such that 

replenishment occurs using two vendors as opposed to the classical approach of using only 
one vendor. Through a versatile arrival process to model the demands, we illustrated the 
impact of correlation, especially positively correlated ones, in some system performance 
measures. We also showed the significant advantage of using a two-vendor system as 
compared to the corresponding one vendor one. The model studied in this paper can be 
extended in a number of ways. Some of these are: (a) one can look at more than two vendors 
for replenishment; (b) the assumption of exponential lead times can be relaxed to use phase 
type distribution. In this case the analysis will be similar except that the dimension of the 
problem increases significantly; (c) One of the key assumptions in our model is that an 
incoming demand is lost if the inventory level is zero; however it would be worthwhile to 
have a buffer (of finite capacity) where an incoming demand that is not immediately met is 
stored for a finite amount of time before it is considered lost. From a practical point of view 
this is feasible as there are certain critical items where the orders are fulfilled in such a way. 
This would introduce further complexity to the model but would help mimic the real-world 
supply chains further; (d) while we studied our model in steady-state, it would be of interest 
to study the transient analysis so as to model the seasonal fluctuations (holiday seasons such 
as Christmas and thanksgiving in the United States when the demand suddenly spikes and 
a larger number of orders are expected to be fulfilled in a shorter amount of time), which 
are seen in some real-life applications and which can have a significant impact in meeting 
the incoming demands. Further research needs to be conducted on the best approaches to 
incorporate the time element and measure its impact on the model; (e) considering the fact 
that the incoming material has to go through manufacturing processes that have their own 
cycle times, it would be a good approach to assess the impact of the single vendor and multi-
vendor case on manufacturing cycle times to gain a deeper understanding of the benefit of 
a multi-vendor strategy for manufacturing operational efficiency and scheduling. As before, 
this sort of an analysis is extremely complex and further research needs to be conducted in 
this area; and finally (f) we can allow the customer’s demands to be random with a finite 
support. These extensions are under investigation and the results will be reported elsewhere.   
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