
1. Introduction
1.1. Background

There aremany studies on analysis of transportation systems usingmathematicalmodels.
For example, about carsharing, the research on redistribution of the cars and optimization of
the boarding system were conducted in [7, 6]. For ridesharing, the research on drivers and
riders matching optimization were conducted in [2, 11].

As the latest studies using queueing theory, Shuang et al. [19, 20] considered a bike-
sharing queueingmodel that incorporates the finite capacity at stations [19] and constructed a
stochastic model of bike-sharing system to show that the entropy of the bike-sharing network
is reduced, and riders experience less blocking in the network if the proportion of customers
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that use smartphone app information increases [20].
When introducing new transportations such as carsharing and ridesharing, it is necessary

to discuss the financial aspect because it is meaningless if they would be too expensive
services. For example, Hampshire et al. [9, 10] considered the sustainability of Peer-to-Peer
carsharing, where people execute carsharing using private cars, and discussed the prices and
the profits of this service by simulation experiments. In addition, various research about the
price mechanism of ridesharing have been extensively conducted. For example, Bimpikis
et al. [5] constructed a model where drivers decide whether and where to provide service
to maximize their expected earnings to discuss spatial pricing and Banerjee et al. [4] used a
queueing model to conduct an equilibrium analysis that captures incentives for both drivers
and passengers.

From a more general perspective on transportation, Daganzo et al. [8] constructed a
simple model of demand-responsive transportation services, which includes as special cases
non-shared taxi, dial-a-ride and ridesharing. They also compared the existing urban trans-
portation modes in scenarios involving different city types and levels of demand.

1.2. Outline and previous research of Car/Ride-Share (CRS)

In this paper, we consider Car/Ride-Share (CRS), a new type of shared transportation
(see the detailed explanation in Section 2). CRS may be an alternative mean of efficient
transportation for buses or taxis from the perspective of the price and the waiting time and
so on. In addition, CRS is expected to have many social impacts such as reducing traffic
stress of customers (i.e., reducing the waiting time), improvement of convenience for trans-
portation and revitalization of society (i.e., feasible at a low price), economic revitalization
(i.e., financial benefits for the operators of CRS and the car providers) and reducing the bur-
den on the operators of shared transportation (i.e., solving uneven distribution of cars). We
consider a queueing model of CRS and discuss its effectiveness in this paper.

CRS is defined as a system where people carry out carsharing (i.e., the car rental for
short periods) and ridesharing (e.g., the system where people ride a car together to the des-
tination) simultaneously using private cars. We consider a scenario where a bus company
itself introduces CRS between a train station and its nearest spot (e.g., university, company)
where a bus transportation already exists, and reduces the number of the buses i.e., it en-
ables to secure more rest time for the drivers and may contribute to solve the labor problems
reported in [13]. This CRS system has the following three features [3].

1. Owners of private cars can get financial incentives by sharing their cars.
2. People can carry out carsharing and ridesharing simultaneously so that the disadvan-

tage of conventional carsharing such as uneven distribution of cars does not occur,
i.e., the operator does not have to redistribute the cars.

3. It might be an alternative transportation service with less financial and time burden
for existing transportations (bus in this study) in the case of congestion.

About CRS, Ando et al. [3] conducted simulation experiments and showed the decrease
of the mean waiting time for customers. Besides, Nakamura et al. [15, 17, 16] modeled
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CRS between a university and a station where a bus transportation has been existing already
using queueing theory and discussed the characteristics of the system. Furthermore, [17, 16]
considered various scenarios of price mechanism of CRS, where a third organization or a
bus company introduces this service. However, they put several assumptions, for example,
Poisson arrival of buses, the state of the station side is the number of demands of CRS; the
buses from the station are always full because of the congestion and the customers arrive one
by one to simplify the model. Besides, they did not incorporate the state of the road between
the two points to their model, and did not consider the possibility that the occurrences of
CRS cause the road congestion, which is not a good situation for the customers.

Based on the above, we assume the following conditions in our queueing model of CRS
and execute Monte Carlo simulation aiming at a more realistic discussion in this research.

1. Inter-arrivals of buses are independently and identically distributed (I.I.D) according
to Erlang distribution which can be used to approximate the fixed interval (this enables
us to discuss the influence of the uncertainty of the buses to the system by adjusting
the variance of the distribution).

2. We define the state of the station as the number of waiting customers, and do not
assume that the buses from the station are always full as in [15, 17, 16].

3. The customers at the station side arrive in groups (image that people got off the train
arrive at all once).

The rest of the paper is structured as follows. In Section 2, we state the system of CRS.
In Section 3, we propose the approximate model of CRS system. In Section 4, we discuss
the price mechanism of CRS, and in Section 5, we show some numerical results. Finally, we
present concluding remarks in Section 6.

2. Car/Ride-Share (CRS) System
This section presents the mechanism of CRS. We consider a scenario in which CRS is

introduced by a bus company between a train station and a spot (e.g., university, company
etc.) where a bus transportation has been exiting already (see Fig. 1). We also assume that
there is the parking lot of the bus company for cars to carry out CRS at the spot side. In
our model, we assume that CRS, which is the system where people carry out carsharing and
ridesharing simultaneously by using private cars, occurs according to the following proce-
dure (we summarize the parameters used in our model as in Table 1).

As a premise, people who came to the spot by their private cars provide these cars as
CRS car (car) in the morning (i.e., the car providers carry out Car-sharing with the bus com-
pany). Car providers can obtain financial incentives in return for lending their cars to the
bus company. In this study, we assume that there are enough car providers and do not con-
sider the possibility of the shortage of cars at the spot to carry out CRS. We assume that
the minimum and the maximum numbers of passengers for a car arem and n, respectively.
Customers can make a group and use these cars together to move between the spot and the
station (i.e., Ride-sharing), but these cars must be returned to the spot.
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Figure 1. The schematic illustration of CRS.
At the station, groups (e.g., people who got off a train arrives at all the once) of customers

arrive according to the Poisson process with rate δ and the number of people for a group
follows an arbitrary distribution. We assume that the batch size (i.e., the number of people
in a group) X follows an arbitrary distribution, and write as

xk = P(X = k),

for k ∈ N.
To make it easier to analyze, we assume that it is acceptable to have up to K people at

the station at the same moment, and if there are already K people at the station side, new
visitors are blocked and go to the spot by other means of transportation, such as a taxi (we set
as largeK as possible in numerical experiments). We also assume that if the number of free
capacities is less than the size of the arriving group at the station, the exceeded number of
customers are blocked under the assumption that the probability that each person in the group
is blocked is identical. On the spot side, customers arrive according to the Poisson process
with rate λ, and there is no buffer limit. Here, we further assume that all the customers have a
driving license and do not have any preferences whether they use the bus or CRS to simplify
the discussion.

Buses depart from the spot (the station) to the station (the spot) at intervals following
Erlang distribution with rate r1(2) and shape q1(2) (this means the sum of q1(2) exponentially
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distributed random variables of parameter r1(2)). We assume that the capacity of a bus is l
(note that we assume l > n) and the spot and the station are the first bus stops, i.e., a bus is
empty upon arrival. People lined up at the spot continuously get on a bus on a first-come,
first-served basis within the limit of the capacity of the bus.

CRS occurs from the spot at intervals following the exponential distribution with a pa-
rameter σ when both the spot and the station are congested above a certain level when there
are at leastm people on both sides. Here,m is the minimum number of passengers for a car,
as mentioned above. That means CRS occurs only when there are more than a certain num-
ber of passengers at both spots, i.e., CRS occurs depending on the states of the number of
passengers at both the station and the spot. The time for the occurrence of a CRS is a random
variable mainly due to the assumption that the operator of CRS controls the occurrences of
CRS one by one through a system, including a web application on a smartphone of users.
Hence, we assume that the CRS service is modeled as to a single server because the operator
controls the matching of CRS one by one in such a manner that the matched customers at
the spot still have an option to take a bus during the matching time. In addition, the matched
customers at both places leave the queue for buses and move to the free space for CRS upon
the completion of the matching and prepare to drive the car by one of these customers. As
a reason to assume the exponential distribution of the parameter σ, it is also considered that
the time it takes for a group of passengers at the spot to arrive at the parking lot of cars from
the free space of CRS and start driving changes depending on the situation, i.e., the location
of cars in the parking lot at the spot and the characteristics of customers. In the same way as
buses, people get on a car on a first-come, first-served basis within the limit of the capacity.
A car departing at the spot goes to the station, and after arriving at the station, those in the
car get off. Then, people waiting at the station take over the car and drive the CRS to the
spot. After the car reaches at the spot, people who ride on at the station get off and the car is
returned to its original position.

The movement on the road between two points is modeled as shown in Fig. 2 following
Vandaele et al. [21]. In this method, a part of the road between two points is considered a
service station (i.e., a single-server queue), and the service interval follows an exponential
distribution of the parameter β. The parameter β of this exponential distribution is derived
as β (number of vehicles / unit time) = SN (km / unit time) M (number of vehicles / km).
In reality, the service time distribution can be different from the exponential distribution,
but we adopt this assumption validated in [21] for the simplicity. We also assume that other
vehicles (defined as general vehicles) except for the buses and CRS cars arrive at the service
station according to a Poisson process with parameter ϵus(su).

Using the mean sojourn time in the system, the maximum traffic density of the roadM
(the inverse ofM is considered to be the size of the service station), and the distance of the
road between the two points d, we can derive the relative speed of the vehicle on the road
sus(su) (see [21] for details). Then, we can determine the travel time required for the vehicles
on the road using sus(su).

To summarize, the car providers share their car with other people (i.e., carsharing), and
the customers ride on the cars together (i.e., ridesharing). In other words, CRS is considered
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Figure 2. The schematic illustration of the modelling of the road.

as a hybrid system of carsharing and ridesharing. In this CRS system, the demands for people
who want to go to the station from the spot and the opposite one are satisfied simultaneously
under the condition that the car is returned to the spot within a certain time, i.e., uneven
distribution of cars does not occur. This CRS system may be an alternative transportation
andmay reduce the waiting time of customers under a situation (e.g., commuting hours in the
morning) where there are not enough buses for arriving customers (we show some numerical
results about this in Section 5). Also, the owners of the cars can make money by lending
their cars to cover the cost of gasoline. It is possible to set the fee lower compared to taxi
from the customer’s perspective (we consider the price mechanism in Section 4).

3. Modelling of Car/Ride-Share (CRS)
This section presents the queueing model of CRS and its analysis. The CRS system ex-

plained in the previous section is a system on a network. Furthermore, although we consider
modelling only between two points in this paper, the actual system of a multi-point model
may become even more complicated. Concretely, the difficulty of our model is how to accu-
rately grasp the arrival processes at the service stations. That is because there are three types
of vehicles (i.e., buses, CRS cars, general cars). Therefore, it becomes a high-dimensional
queueing model. Besides, the arrival process of the service station at the road from the sta-
tion to the spot depends on the traveling time it takes for CRS cars to move from the spot to
the station (Note that people always have to take over the cars at the station side and those
cars should be returned at the parking lot at the spot side). Therefore, we have to keep track
of the traveling time of each CRS in the model. However, the traveling time is a constant
value determined from the effective speed and the distance between the spot and the station.
As a result, it is not easy to model the entire system as aMarkovian queueing network model.
Besides, the simulation of the model takes a long time.

Based on the above, we present an approximate method. We break down the system
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Table 1. The parameters used in the CRS system.
Parameters Definitions
λ (people/h)  Arrival rate of customers at the spot.  
σ (veh/h) Occurrence rate of CRS. 
δ (group/h) Arrival rate of a group of customers at the station. 
q1(2), r1(2) Shape and rate parameters of Erlang distribution for

the departure interval of buses from the spot (station).
l (people) Capacity of buses.
m (people) Minimum number of passengers of cars. 
n (people) Maximum number of passengers of cars. 
K (people) Maximum number of customers that can exist at the station.

M (veh/km)  Maximum traffic density.
ϵus(su) (veh/h) Arrival rate of general cars at the service station from the spot

to the station (from the station to the spot). 
αus(su) (veh/h) Total arrival rate at the service station on the road from the

spot to the station (from the station to the spot). → in Section 3.2
β (veh/h) Service rate at the service stations.  
SN (km/h) Nominal speed of cars. 
d (km) Distance between the spot and the station. 

sus (km/h) Effective speed of cars on the road from the spot to the station.
ssu (km/h) Effective speed of cars on the road from the station to the spot.

into two parts, CRS model and Road model. We then use the outputs of the CRS model to
approximate the arrival processes to the Road model. These two models are explained as
follows:

3.1. CRS model

CRSmodel expresses the number ofwaiting customers at queues for buses at both places.
It should be noted that the number of occurrences of CRS does not depend on the state of the
road. CRS occurs depending on the number of waiting customers (CRS can occur if there
are m or more customers at both places). Besides, once the matching of customers at both
places for CRS is completed, the customers leave the queue and move to the free space for
CRS even before the actual departure. Therefore, if we want to only know the number of
the occurrences of CRS per unit time and the throughput of customers, it is possible obtain
from only the CRS model without the road condition. Fig. 2 shows the flow of CRS model.

The CRS system can be modelled using a GI/M/1-type Markov chain where the number
of customers on the spot side is the level and other elements (i.e., phase of Erlang distri-
butions and the number of customers at the station) are included as the phase. That is be-
cause customers arrive at the spot one by one, but they are served in batch (i.e., by buses
or CRS). We show the analysis on the model following a matrix geometric approach. Let
Z+, I, R1, R2, andS denoteZ+ = {0, 1, 2, . . . }, I = {0, 1, 2, . . . , K},R1 = {0, 1, 2, . . . , r1−
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1}, R2 = {0, 1, 2, . . . , r2 − 1} and S = Z+ × I ×R1 ×R2, respectively. Therefore, we can
rewrite S as follows.

S = {(j, ξ, ψ, ω)|j ∈ Z+, ξ ∈ I, ψ ∈ R1, ω ∈ R2}

Then let N(t), I(t), R1(t), and R2(t) express the number of the waiting people at the
spot, the number of the waiting people at the station, the progress of the Erlang distribution
for the buses from the spot and that for the buses from the station at time t, respectively. It
is easy to see that {N(t), I(t), R1(t), R2(t)); t ≥ 0} forms a Markov chain in the state space
S. Our Markov chain is of GI/M/1-type, where N(t) is the level and {(I(t), R1(t), R2(t))}
is the phase. Besides, we define Lk(k = 0, 1, 2 . . .) as follows.

Lk = {(j, ξ, ψ, ω)|j = k, ξ ∈ I, ψ ∈ R1, ω ∈ R2}.

Lk stands for a set of all states when the level is k.
The infinitesimal generatorQ of our Markov chain is given as follows.

Q =




L0 L1 L3 . . . Lm−1 Lm Lm+1 . . . Ln Ln+1 Ln+2 . . . Ll−n Ll−n+1 . . . Ll Ll+1 Ll+2 . . .

L0 B0,0 A0 O . . . O O O . . . O O O . . . O O . . . O O O . . .

L1 C̃ B̃ A0
. . . O O O . . . O O O . . . O O . . . O O O . . .

L2 C̃ O B̃
. . . O O O . . . O O O . . . O O . . . O O O . . .

... ... ... . . . . . . . . . . . . . . . . . . ... ... ... ... . . . ... . . . ... ... ... . . .

Lm−1 C̃ O O
. . . B̃ A0 O . . . O O O . . . O O . . . O O O . . .

Lm B O O . . . O C0 A0
. . . O O O . . . O O . . . O O O . . .

Lm+1 B O O . . . O O C0
. . . O O O . . . O O . . . O O O . . .

... ... ... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ln B O O . . . O O O
. . . C0 A0 O . . . O O . . . O O O . . .

Ln+1 C̃ C O . . . O O O . . . O C0 A0
. . . O O . . . O O O . . .

Ln+2 C̃ O C
. . . O O O . . . O O C0

. . . O O
. . . O O O . . .

... ... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ll−n C̃ O O . . .
. . . . . . . . . . . .

. . . . . . . . . . . . C0 A0 . . . O O O . . .

Ll−n+1 C̃ O O
. . . . . . . . . . . . . . .

. . . . . . . . . . . . O C0
. . . O O O . . .

... ... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ll C̃ O O . . . O O O . . . O O O
. . . C O

. . . C0 A0 O . . .

Ll+1 O C̃ O . . . O O O . . . O O O . . . O C
. . . O C0 A0

. . .
Ll+2 O O C̃ . . . O O O . . . O O O . . . O O . . . O O C0

. . .
... ... ... ... . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . .




.

The block matrices stored inQ are (K + 1)r1r2 order square matrices, and O is a zero
matrix. Let us denote the contents of block matrices where each element ofA0 is written as

A0 =




A0,(0,0,0),(0,0,0) A0,(0,0,0),(0,0,1) A0,(0,0,0),(0,0,2)
. . . A0,(0,0,0),(K,r1−1,r2−1)

A0,(0,0,1),(0,0,0) A0,(0,0,1),(0,0,1) A0,(0,0,1),(0,0,2)
. . . A0,(0,0,1),(K,r1−1,r2−1)

A0,(0,0,2),(0,0,0) A0,(0,0,2),(0,0,1) A0,(0,0,2),(0,0,2)
. . . A0,(0,0,2),(K,r1−1,r2−1)

... . . . . . . . . . ...
A0,(K,r1−1,r2−1),(0,0,0) A0,(K,r1−1,r2−1),(0,0,1) A0,(K,r1−1,r2−1),(0,0,2)

. . . A0,(K,r1−1,r2−1),(K,r1−1,r2−1)



,

and the same is true for other matrices.
A0 is the matrix that summarizes all the rates that the number of people waiting at the

spot increases by one, thus the contents can be defined as follows.

A0,(ξ,ψ,ω),(ξ,ψ,ω) = λ.

Here, the elements that are not specifically defined are 0 (the same applies thereafter).
C̃ is the matrix that summarizes all the rates that people waiting at the spot are served

by the bus when 1 ≦ j ≦ m− 1, n+ 1 ≦ j, thus the contents can be defined as follows.

C̃(ξ,r1−1,ω),(ξ,0,ω) = q1.
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Figure 3. The flow of the CRS model.

C is the matrix that summarizes all the rates that people waiting at the spot are served
by CRS when n+ 1 ≦ j, thus the contents can be defined as follows.

C(ξ,ψ,ω),(ξ−n,ψ,ω) = σ, n ≦ ξ,

C(ξ,ψ,ω),(0,ψ,ω) = σ, m ≦ ξ ≦ n− 1.

B is the matrix that summarizes all the rates that people waiting at the spot are served
by the bus and CRS whenm ≦ j ≦ n, thus the contents can be defined as follows.

B(ξ,ψ−1,ω),(ξ,0,ω) = q1,

B(ξ,ψ,ω),(ξ−n,ψ,ω) = σ, n ≦ ξ,

B(ξ,ψ,ω),(0,ψ,ω) = σ, m ≦ ξ ≦ n− 1.

B(0,0) is the matrix that summarizes the rates for the progress of two Erlang distributions,
the rates for the arrival of the buses at both sides, and the rates for the batch arrival of people
at the station. Also, we define the diagonal elements properly so that the row sum of the
infinitesimal generatorQ equals to 0 (to be the same afterward). Thus, each element can be
written as follows.

B(0,0),(ξ,ψ,ω),(ξ,ψ+1,ω) = q1, 0 ≦ ψ ≦ r1 − 2,

B(0,0),(ξ,ψ,ω),(ξ,ψ,ω+1) = q2, 0 ≦ ω ≦ r2 − 2,

B(0,0),(ξ,r1−1,ω),(ξ,0,ω) = q1,

B(0,0),(ξ,ψ,r2−1),(ξ−l,ψ,0) = q2, l ≦ ξ,
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B(0,0),(ξ,ψ,r2−1),(0,ψ,0) = q2(1− δξ,0), ξ ≦ − 1,

B(0,0),(ξ,ψ,ω),(ξ′,ψ,ω) = δxξ′−ξ, ξ + 1 ≦ ξ′ ≦ K − 1,

B(0,0),(ξ,ψ,ω),(K,ψ,ω) = δ
∞∑

k=K−ξ

xk, 0 ≦ ξ ≦ K − 1,

B(0,0),(ξ,ψ,ω),(ξ,ψ,ω) = −(
∑

(ξ′,ψ′,ω′)∈I×R1×R2

(ξ′,ψ′,ω′)̸=(ξ,ψ,ω)

B(0,0),(ξ,ψ,ω),(ξ′,ψ′,ω′) + λ).

B(k,k) and C0 are the matrices that summarize the rates for the progress of two Erlang
distributions, the rates for the bus arrival at the station and the rate for the batch arrival of
people at the station. Thus, each element can be written as follows.

B(k,k),(ξ,ψ,ω),(ξ,ψ+1,ω) = q1, 0 ≦ ψ ≦ r1 − 2,

B(k,k),(ξ,ψ,ω),(ξ,ψ,ω+1) = q2, 0 ≦ ω ≦ r2 − 2,

B(k,k),(ξ,ψ,r2−1),(ξ−l,ψ,0) = q2, l ≦ ξ,

B(k,k),(ξ,ψ,r2−1),(0,ψ,0) = q2(1− δξ,0), ξ ≦ l − 1,

B(k,k),(ξ,ψ,ω),(ξ′,ψ,ω) = δxξ′−ξ, ξ + 1 ≦ ξ′ ≦ K − 1,

B(k,k),(ξ,ψ,ω),(K,ψ,ω) = δ
∞∑

k=K−ξ

xk, 0 ≦ ξ ≦ K − 1,

B(k,k),(ξ,ψ,ω),(ξ,ψ,ω) = −(
∑

(ξ′,ψ′,ω′)∈I×R1×R2

(ξ′,ψ′,ω′)̸=(ξ,ψ,ω)

B(k,k),(ξ,ψ,ω),(ξ′,ψ′,ω′)

+
∑

(ξ′,ψ′,ω′)∈I×R1×R2

C−l,(ξ,ψ,ω),(ξ′,ψ′,ω′) + λ),

C0,(ξ,ψ,ω),(ξ,ψ+1,ω) = q1, 0 ≦ ψ ≦ r1 − 2,

C0,(ξ,ψ,ω),(ξ,ψ,ω+1) = q2, 0 ≦ ω ≦ r2 − 2,

C0,(ξ,ψ,r2−1),(ξ−l,ψ,0) = q2, l ≦ ξ,

C0,(ξ,ψ,r2−1),(0,ψ,0) = q2(1− δξ,0), ξ ≦ l − 1,

C0,(ξ,ψ,ω),(ξ′,ψ,ω) = δxξ′−ξ, ξ + 1 ≦ ξ′ ≦ K − 1,

C0,(ξ,ψ,ω),(K,ψ,ω) = δ
∞∑

k=K−ξ

xk, 0 ≦ ξ ≦ K − 1,
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C0,(ξ,ψ,ω),(ξ,ψ,ω) = −(
∑

(ξ′,ψ′,ω′)∈I×R1×R2

(ξ′,ψ′,ω′)̸=(ξ,ψ,ω)

C0,(ξ,ψ,ω),(ξ′,ψ′,ω′)

+
∑

(ξ′,ψ′,ω′)∈I×R1×R2

B(k,0),(ξ,ψ,ω),(ξ′,ψ′,ω′) + λ).

Then, we derive the stability condition for the existence of the steady state probability. In
our model, this condition is considered the condition that the number of customers waiting
at the spot does not diverge. We define the infinitesimal generatorA of the phase as follows.

A = A0 +C0 +C + C̃.

Assuming that the steady state probability of the phase (the number of demands at the station
and the phase of Erlang distributions) is η = (η(0,0,1), η(0,0,2), . . . , η(K,r1−1,r2−1)), we have

ηA = 0, (1)
ηe = 1, (2)

where 0 is a vector of zeros and e is a vertical vector of ones with an appropriate size,
respectively.

Using the probability η, we can consider that the rates at which the level (the number of
customers at the spot) decreasing by n and l are ηCe and ηC̃e, respectively. Furthermore,
the rate increase the level by 1 is ηA0e (see e.g., [1, 12]). Therefore, the stability condition
is expressed as follows:

ηA0e < lηC̃e+ nηCe

⇐⇒ λ < lq1
∑
ξ∈I
ω∈R2

η(ξ,r1−1,ω) + nσ
K∑

ξ=m

∑
ψ∈R1

∑
ω∈R2

η(ξ,ψ,ω). (3)

Under the stability condition, we define the steady state probabilities as follows.

π(j,ξ,ψ,ω) = lim
t→∞

P(N(t) = j, I(t) = ξ, R1(t) = ψ,R2(t) = ω),

where j ∈ Z+, ξ ∈ I , ψ ∈ R1, ω ∈ R2.
Next, we derive the steady state probability under the stability condition (3). It should

be noted that the right-hand side of (3) does not depend on λ and express the maximal
throughput for people from the spot. Definingπj = (π(j,0,0,0), π(j,0,0,1), · · · , π(j,K,r1−1,r2−1)),
π = (π0,π1,π2, · · · ), we have the equilibrium equations as follows.

πQ = 0. (4)

Also, from the probability normalization, we have,

πe = 1. (5)
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Because our Markov chain is homogeneous in level (level-independent) from level m, the
steady state vectors πj (j ≥ m− 1) are written in matrix-geometric form;

πk+1 = πkR, k ≧ m− 1,

and thus,

πj = πm−1R
j−m+1, j ≧ m− 1,

whereR is minimal non-negative solution of (6).

A0 +RC0 +Rn+1C +Rl+1C̃ = 0. (6)

We can obtain R numerically using (7) started with R0 = O. R is determined recursively
by repeatedly using (7) until the difference of Rn and Rn+1 is e−10 or less (see Adan [1]
pp.158-159).

Rn+1 = −(A0 +Rn+1
n C +Rl+1

n C̃)C−1
0 , n = 0, 1, 2, . . . . (7)

Then, by rewriting (4), the unknown quantities π0, . . . ,πm−1 are determined by the follow-
ing set of equations.

π0B0,0 + π1C̃ + π2C̃ + . . .+ πm−1C̃ + πm−1RB(k,0)

+πm−1R
2B(k,0) + . . .+ πm−1R

n−m+1B(k,0) + πm−1R
n−m+2C̃

+πm−1R
n−m+3C̃ + . . .+ πm−1R

l−m+1C̃ = 0,

(8)

πkA0 + πk+1B(k,k) + πm−1R
k+n−m+2C

+πm−1R
k+l−m+2C̃ = 0, 0 ≦ k ≦ m− 2.

(9)

Also, we have (10) by rewriting (5) usingR.
m−1∑
k=1

πk−1e+ πm−1(I −R)−1e = 1. (10)

By solving the system of equations (8)-(10), we can determine the values ofπ0,π1, . . . ,πm−1.
Thus, the steady state probability can be determined.

Based on the steady state probability derived above, we define some performance mea-
sures. We summarize the performance measures in Table 2.

The mean number of the waiting people at the spot (E[Lu]) is written as

E[Lu] =
∞∑
j=0

jπje

=
m−2∑
j=0

jπje+ πm−1(I −R)−1
{
(m− 1)I + (I −R)−1R

}
e,
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Table 2. Performance measures.
Parameters Definitions
E[Lu]  The mean number of the waiting people at the spot.
E[Wu]  The mean waiting time for customers at the spot.
E[Ls] The mean number of the waiting people at the station.
E[Ws] The mean waiting time for customers at the station.
E[C] The number of occurrences of CRS per unit time.

Ttotal(u) The total throughput from the spot.
Tbus(u) The throughput by the bus from the spot.
TCRS(u) The throughput by CRS from the spot. 
Ttotal(s) The total throughput from the station.
Tbus(s) The throughput by the bus from the station.   
TCRS(s) The throughput by CRS from the station. 

where e = (1, 1, . . . , 1)⊤.
The spot side has an infinite buffer, thus the blocking of customers does not occur. There-

fore, applying Little’s law for the system consisting only the queue for bus at the spot, the
mean waiting time for customers at the spot (E[Wu]) is derived as follows.

E[Wu] =
E[Lu]

λ
.

The mean number of the waiting people at the station (E[Ls]) is written as

E[Ls] =
m−2∑
j=0

πjeLs + πm−1(I −R)−1eLs ,

where eLs = (e0, e1, . . . , eK−1, eK)
⊤. The vectors in eLs are r1r2 dimensional vectors, and

ei = (i, i, . . . , i) for i ∈ I .
The number of occurrences of CRS (E[C]) is given by

E[C] = σπm−1(I −R)−1eC − σπm−1eC ,

where eC is a (K + 1)r1r2 dimensional vector and eC (ξr1r2+ψr2+ω) = 1 for (ξ, ψ, ω) ∈
{m,m + 1, . . . , K} × R1 × R2. Here, the elements not specifically mentioned are 0 (same
as below).

The total throughput from the spot (Ttotal(u)) is written as follows by the definition (in
this research, throughput is counted by the number of people served per a unit time).

Ttotal(u) = λ.

The throughput by the bus from the spot (Tbus(u)) is written as follows.

Tbus(u) =
∞∑
j=0

min(l, j)q1πjeTbus(u)
,
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where eTbus(u)
is a (K + 1)r1r2 dimensional vector and eTbus(u) (ξr1r2+(r1−1)r2+ω)

= 1 for
(ξ, ω) ∈ I ×R2. After some manipulation, this equation can be simplified to,

Tbus(u) =
m−2∑
j=0

jq1πjeTbus(u)
+ q1πm−1(I −R)−2ReTbus(u)

−q1πm−1R
l−m+1(I −R)−2ReTbus(u)

.

Then, the throughput by CRS from the spot (TCRS(u)) can be written as

TCRS(u) = λ− Tbus(u).

The throughput by the bus from the station (Tbus(s)) is written as

Tbus(s) =
m−2∑
j=0

q2πjeTbus(s)
+ q2πm−1(I −R)−1eTbus(s)

,

where eTbus(s)
is an (K+1)r1r2 dimensional vector and eTbus(s) (ξr1r2+ψr2+(r2−1))

= min(ξ, l)
for (ξ, ψ) ∈ I ×R1.

The throughput by CRS from the station (TCRS(s)) is written as

TCRS(s) = σπm−1(I −R)−1eTCRS(s)
− σπm−1eTCRS(s)

,

where eTCRS(s)
is an (K + 1)r1r2 dimensional vector and eTCRS(s) (ξr1r2+ψr2+ω)

= min(ξ, n)
for (ξ, ψ, ω) ∈ {m,m+ 1, . . . , K} ×R1 ×R2.

Thus, the total throughput from the station (Ttotal(s)) can be written as

Ttotal(s) = Tbus(s) + TCRS(s).

Finally, the mean waiting time for customers at the station (E[Ws]) is derived as

E[Ws] =
E[Ls]

Ttotal(s)

.

Here, note that this waiting time is when a customer arrives at the station to when a bus from
the station comes or the car of CRS that the customer plans to departs from the spot (c.f., cars
are located at the spot). We consider the time it takes for a car to be delivered to a customer
at the station using the Road model in Section 4.

3.2. Road model

It is enough to analyze CRS model only to obtain the number of occurrences of CRS per
unit time and the throughput of customers. However, our goal is also to determine the time it
takes for customers to travel on the road when CRS is introduced. To this end, we analyze the
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Roadmodel which expresses the road condition to obtain this information. Note that the road
condition depends on CRS model, but CRS model does not depend on the road condition.
As described in the previous section, it is difficult to grasp the exact arrival processes at the
service stations because it becomes a high-dimensional model. To overcome this difficulty,
we simply use the performance measures obtained from the CRS model as the input value
for the Road model. Concretely, we put an approximation that the arrival processes of the
service stations follow Poisson processes with rates

αus =
q1
r1

+ E[C] + ϵus, αsu =
q2
r2

+ E[C] + ϵsu.

Since it is estimated that the ratio of buses and CRS to general vehicles which arrive ac-
cording to Poisson process is not so large in reality, we adopt this approximation. By using
approximation, we can regard the service station as a simpleM/M/1 queue [21] and themodel
becomes easier to analyze. We also validate this approximation by simulation experiment
later.

According to queueing theory, we can derive the mean sojourn time Wus and Wsu in
each service station as

Wus =
1

β − αus

, Wsu =
1

β − αsu

.

Then, we derive the bidirectional effective speeds sus and ssu (i.e., the mean speed of cars
on the road) as follows.

sus =
1

Wus ×M
, ssu =

1

Wus ×M
.

From the above results, the mean of the times for a vehicle to travel from the spot to the
station and vice versa E[Rus] and E[Rsu] can be derived as

E[Rus] =
d

sus
, E[Rsu] =

d

ssu
.

Besides, we can calculate the mean of the total required time for customers from the spot to
the station (i.e., the mean time from when a customer arrives at the spot to when he arrives
at the station) and also vice versa E[Aus] and E[Asu] as follows.

E[Aus] = E[Wu] + E[Rus], E[Asu] = E[Ws] + E[Rsu] + PCRSE[Rus],

where PCRS is the rate of customers from the station to the spot who use CRS as

PCRS =
TCRS(s)

Ttotal(s)

.

Here, note that the cars of CRS are located at the spot. As a result, only customers who use
CRS from the station have the waiting time for the car to come before they ride on it from
the spot to the station. The analysis of the distribution of waiting time and required time is
referred to [18].
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4. Price Mechanism
In this section, we discuss a price mechanism of CRS, which gives a positive solution for

all the bus company, the customers, and the car providers. We discuss the feasibility of CRS
only using CRS model in this paper for simplicity. It is also important to discuss the price
mechanism considering the road congestion expressed by Roadmodel and the accompanying
strategic behavior of customers, which we leave for future work.

Table 3. Parameters and Performance measures used in the discussion of the price
mechanism.

Symbols Definitions
Mbus Bus company’s income per unit time before the introduction

of CRS.
M ′

bus Bus company’s income per unit time after the introduction
of CRS.

Ttotal(s) The total throughput at the station before the introduction
of CRS.

T ′
total(s) The total throughput at the station after the introduction

of CRS.
q1, r1 The parameters of the Erlang distribution for the depart interval

of buses from the spot before the introduction of CRS.
q2, r2 The parameters of the Erlang distribution for the depart interval

of buses from the station before the introduction of CRS.
q′1, r

′
1 The parameters of the Erlang distribution for the depart interval

of buses from the spot after the introduction of CRS.
q′2, r

′
2 The parameters of the Erlang distribution for the depart interval

of buses from the station after the introduction of CRS.
F Fee after the introduction of CRS (CRS and bus).
c Bus fee before the introduction of CRS.
V Profit that car providers get per unit time.
gbus Gasoline cost for a bus running one way.
gCRS Gasoline cost for one CRS.

We consider the scenario where a bus company itself introduces CRS; that is, the bus
company reduces the number of buses instead of the introduction of CRS. In this scenario,
the bus company may earn more than before the introduction of CRS. Besides, it also helps
secure the rest time for the drivers and may contribute to solving labor problems.

We assume that c is the bus fee before introducing CRS; F is the fee (for both the bus
and CRS) after introducing CRS, respectively. We summarize all the parameters and per-
formance measures used in the price mechanism in Table 3. To simplify the discussion,
we do not consider the shortage of CRS cars in this study. The schematic flow of money
distribution when CRS is introduced is as Fig. 4.

To derive the range of the executable fee, we need to solve the following two constraints.
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(i) Before the introduction of CRS.

(ii) After the introduction of CRS.

Figure 4. The money distribution diagram.
First, F needs to be cheaper than c to prevent loss to the customers by introducing CRS
(condition 1). Second, the profit of the bus company increases by the introduction of CRS
while the car providers can receive the gasoline costs and the profits (condition 2). Condition
2 is needed to guarantee that CRS causes no loss for both the bus company and the car
providers. From condition 1, (11) is derived.

F < c. (11)

Also, we obtain (12) from condition 2.

M ′
bus > Mbus

⇔ {(λ+ T ′
total(s))F + gbus(

q1
r1

− q′1
r′1

+
q2
r2

− q′2
r′2
)} − (gCRSE[C] + V )

> {min(λ, l q1
r1
) +min(Ttotal(s), l

q2
r2
)}c

Queueing Models and Service Management

17



⇔ Z

λ+ T ′
total(s)

< F, (12)

where

Z = gCRSE[C] + V − gbus(
q1
r1

− q′1
r′1

+
q2
r2

− q′2
r′2
) + {min(λ, l q1

r1
)

+min(Ttotal(s), l
q2
r2
)}c.

The following executable fee range is obtained by summarizing the two conditions.

Z

λ+ T ′
total(s)

< F < c.

5. Numerical Examples
We show the results of some numerical experiments for the stability region, the through-

put, the mean total required time for customers, and the executable fee. In addition to the
theoretical analysis, we also perform the Monte Carlo simulation to confirm the validity of
the analysis results and verify the details that cannot express in the analytical model. Note
that we assume that the arrival rates of buses do not change before and after the introduction
of CRS in Sections 5.1, 5.2 and 5.3, i.e., q1(2) = q′1(2), r1(2) = r′1(2).

5.1. The stability region

We show the numerical results of the stability region boundary in Fig. 5 (note that the
stability region is below the curves for each parameter). We fix the parameters as q1 =
10, r1 = 2, q2 = 10, r2 = 2, l = 30,m = 2, n = 4 and K = 30 and after that, unless
otherwise specified, we assume that the size distribution for the batch of customers arrives
at the station side follows a uniform distribution with an average of 2.5. We can confirm
that the stability region expands as the rate for occurrences of CRS σ increases. This result
implies that the introduction of CRS allows more people to arrive at the spot i.e., higher the
maximal arrival rate of customers at the spot λ. Therefore, CRS can be considered to be a
helpful service from the perspective of the stability region. Besides, we plot the boundary
while changing the values of the customer arrival rate at the station side δ. The results show
that the stability region expands as δ increases. It is because CRS becomes likely to occur
as the number of people at the station increases.

5.2. The throughput

We discuss the throughput, in other words, the average number of people served per unit
time. Fig. 6 shows the increase of the total throughput at the station by the introduction of
CRS (i.e., the difference of Ttotal(s) before and after introducing CRS), where the horizontal
axis is the arrival rate of customers at the station δ, and we change the rate for the occurrence
of CRS σ. The other parameters are fixed as λ = 30, q1 = 10, r1 = 2, q2 = 10, r2 = 2, l =
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Figure 5. The boundary of the stability region.

30,m = 2, n = 4 and K = 30. We can confirm that the increase of the total throughput
by CRS takes a larger value as σ becomes larger. This means that CRS is effective from the
perspective of the throughput, especially when δ is large, i.e., there are many people arriving
at the station. Besides, it is confirmed that the theoretical analysis results and the Monte
Carlo simulation in the same case (sim) as we can see in Fig. 6 are consistent.
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Figure 6. The increase of the total throughput at the station by the introduction of CRS
against δ for various σ.

Fig. 7 also shows the increase of the total throughput by CRS in the case λ = 30, σ =
50, q1 = 10, r1 = 2, l = 30,m = 2, n = 4 and K = 30. This time, we change the value
of the variance of the distribution and fix the mean for the intervals of the buses from the
station, i.e., adjusting q2 and r2. Usually, it is expected that the buses arrive at almost fixed
intervals, i.e., the variance=0. However, it is often observed that the arrival of the buses
becomes irregular due to some accidents or troubles, i.e., the variance becomes more than
0. In Fig. 7, we plot the results of the theoretical analysis and the Monte Carlo simulation
(sim) of the same situation (it is confirmed that both results match), and also show the result
of the simulation in the case that the interarrivals of buses are constant (simfixed). We can
confirm that the increase of the total throughput by the introduction of CRS increases as the
variance becomes larger because more people who could not ride the bus due to missing the
timing can use CRS as alternatives. Briefly, it is implied that CRS becomes more effective
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as the uncertainty of the buses increases.
Next, we consider the throughput when we change the value of the interarrival of cus-

tomers and the distribution for the batch of the customers at the station in various ways.
Here, in our numerical experiment, we assume that customers on the train arrive at the sta-
tion simultaneously, i.e., δ is the arrival rate of the train. Under this assumption, it can be
considered that the variance of the interarrival of customers expresses the delay of the train
itself that directly connects to the station (i.e., primary impact), and the distribution for the
batch of the customers expresses the fluctuations in the number of passengers on the train
due to the disturbance of transportation (e.g., other trains, buses, etc.) connected to the train
(i.e., secondary impact).
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Figure 7. The increase of the total throughput at the station by the introduction of CRS
against δ for various q2 and r2 (variance).

Fig. 8 and Fig. 9 show the throughput by CRS from the station TCRS(s) and the blocked
people per a unit time at the station (δE[X] − Ttotal(s)), respectively, for various combina-
tions of the interarrival (poisson, fixed) and the batch distribution (fixed, uniform, poisson).
Here, we set the mean of these distributions 6 and as the results, the variances of the fixed,
poisson, and uniform distributions become 0, 6, 10, respectively. In addition, we set the
other parameters as λ = 30, σ = 50, δ = 50,m = 2, n = 4, l = 30, K = 50, q1 = 10 and
r1 = 2 unless otherwise specified, and the horizontal axis σ. Besides, we make the graphs
for each variance of the departure interval of the bus from the station.

In both Fig. 8 and Fig. 9, the changes in the batch distribution have less effect compared
to the variance of the interarrivals of the train i.e., the secondary impact has more negligible
effect compared to the primary impact, that is an intuitive result. Regarding the interarrivals,
the throughput by CRS becomes smaller and the number of blocked people becomes larger
in the case of Poisson arrival, compared to the case that the interarrival is fixed. This is
because that the greater the variance of the interarrival, the more difficult it is to meet the
conditions to occur CRS, resulting in the fact that the number of people who cannot be served
increases. About the distribution for the batch of the customers, the throughput by CRS
becomes smaller, and the number of blocked people becomes a larger when the distribution
has larger variance as well, although the value of the difference is so tiny.
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Figure 8. The throughput by CRS from the station for various combinations of the
interarrival of customers and the distribution for the batch of the customers.
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Figure 9. The number of blocked people at the station for various combinations of the
interarrival of customers and the distribution for the batch of the customers.
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5.3. The mean total required time for customers

This subsection shows the results of some numerical experiments of the mean total re-
quired time derived in Section 4.

Fig. 10 shows the results of the mean of the total required time for customers from
the spot to the station E[Aus] where we set the horizontal axis σ and change the value of
the arrival rate of customers at the spot λ and the arrival rate of general cars at the service
station from the spot to the station ϵus i.e., this expresses how busy the road is. We set the
other parameters as δ = 300,m = 2, n = 4, l = 30, K = 30, q1 = 10, r1 = 1, q2 = 10, r2 =
1, SN = 60,M = 200 and d = 3. Note that the input of the simulation for the service
station on the road is the actual arrival of cars (we simply assume M/M/1 in the theoretical
analysis) and both results match well.

The mean total required time becomes smaller as σ becomes larger due to the occurrence
of CRS when ϵus is not too high ((i), (ii) and (iii) in Fig. 10) and increases as λ increases
i.e., the number of people at the spot increases. These are natural results. Here, interestingly,
only when ϵus takes an extremely high value ((iv) in Fig. 10) within the stable conditions of
the Road model (i.e., αus < β), the graph behaves differently. The curve becomes convex
and has the optimal value of σ when both λ and ϵus take high value; that is, it is not desirable
to generate too much CRS when the road is congested. Besides, when λ is small and ϵus
is large, the total required time becomes larger as σ becomes larger i.e., it is better not to
generate CRS in this situation.

(i) ϵus=5500.
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(ii) ϵus=7500.
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Figure 10. The mean of the total required time for customers from the spot to the station
E[Aus].
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(i) The area of the executable fee.
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(ii) The results for various δ.

Figure 11. The executable range of the fee F .

5.4. The range of the executable fee

In this subsection, we show the results of the numerical experiments of both the theoret-
ical analysis and the simulation for the price mechanism of CRS where we set σ = 30, q1 =
10, q′1 = 9, r1 = r′1 = 2, q2,= q′2 = 10, r2,= r′2 = 2, l = 30,m = 2, n = 4 and K = 30 i.e.,
we assume that the bus company decreases the number of buses from the spot to the station
by the introduction of CRS. When we set the parameters, we referred to some existing data
of gasoline costs [13].
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(i) The waiting times of customers at the spot
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Figure 12. The waiting times of customers at both sides.

We show the area of executable fees F (between Upper and Lower) in Fig. 11 (i), where
the horizontal axis is the arrival rate of customers at the spot λ. The result tends to be so
interesting and worth discussing. When λ is too small, it is difficult to meet the condition to
carry out CRS (there arem or more people at the spot). As a result, CRS becomes infeasible.
When λ gets higher, the executable range of F expands with the occurrences of CRS. How-
ever, since the arrival rate of customers at the station δ is fixed, the number of occurrences
of CRS does not change much even if only λ becomes too large. On the other hand, the bus
company’s income per unit time before the introduction of CRS (min(λ, lq1/r1)c) increases
in proportionally to λ. Therefore, when λ exceeds about 75, min(λ, lq1/r1)c increases more
rapidly than the amount obtained by the occurrences of CRS, and the range of executable F
is getting narrower. Here, we can consider the upper limit of the arrival rate of customers
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at the spot λ that can be serviced by bus as 150 (= lq1/r1). Thus, min(λ, lq1/r1)c becomes
constant, and the total number of customers for the bus company increases compared to that
before the introduction of CRS when λ is more than 150. As a result, the range of executable
F expands monotonically.

Furthermore, we plot while changing the value of the arrival rate of customers at the
station side δ in Fig. 11 (ii). It is interesting to see that there is no feasible range (i.e., CRS
cannot be executed) if both δ and λ take small values. This result implies that the operator
should take in CRS only when there are more than a certain number of people at the station
and the spot (i.e., only the bus is enough when there are few people) considering the cost of
the operation.

Finally, we show the results of thewaiting times of customers at both sides corresponding
to Fig. 11 (ii) in Fig. 12. It is interesting to see that the waiting time at the spot when λ is too
small takes high value because it is difficult to carry out CRS (see (i)) and that the waiting
time at the station has a maximum value (the point where λ is about 10). One possible reason
for the behavior of (ii) is that when λ becomes large enough to satisfy the condition for the
occurrences of CRS, the blocked person when λ is small may have to wait for the bus because
the buffer size of the station is finite. These results imply that it is meaningless to introduce
CRS when the arrival rate of the spot is so low (i.e., λ is under 10) from the perspective of
the waiting time at both sides. Also, we can confirm that CRS is a system where the fee and
the waiting times are related e.g., when CRS is feasible at low price (e.g., when δ =80), the
waiting time at the spot side is short, while the waiting time at the station becomes long. As
a future development, we are planning to consider the scenario where the operator of CRS
controls the waiting time of customers by adjusting the fee dynamically.

6. Conclusion
In this paper, we have considered a new transportation service Car/Ride-Share (CRS),

which may be alternative transportation for buses in the case of congestion. CRS has sev-
eral features such that people can carry out carsharing and ridesharing simultaneously while
the uneven distribution of cars does not occur, and owners of private cars can get financial
incentives by sharing them.

We have considered the scenario where CRS is introduced between a station and a spot
(e.g., university, company, etc.) and present the approximate model, which consists of two
queuing models, the CRS model and the Road model. By some numerical experiments of
the theoretical analysis and the simulation, it has turned out both results (theoretical and
simulation) match well and that the approximate model shows highly accurate results in a
short computation time. Also, some beneficial results have been suggested; CRS is effective
from the perspective of the throughput. However, CRS becomes ineffective when the road
is highly congested, etc. Besides, we also have discussed the price mechanism of CRS and
have shown that CRS is a beneficial system for all the three perspectives; passengers, the
bus company, and the car providers when the number of users exceeds a certain level.

As future work, it is clear that the details (e.g., the preferences of CRS of customers, the
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limitation of the number for the CRS cars) should be further studied. Especially, we have
discussed the price mechanism of CRS using only the CRS model. We also need to have
a more precise financial discussion considering Road model in the future. In addition, we
plan to incorporate game theory into our model to consider the possibility that customers
take strategic actions to increase each personal gain, and compare different policies for the
CRS pricing.
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