
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 
In the works of queueing theory, although several publications discussed the 

unreliable server problem, they usually targeted on customers that have never been lost 
and continued to enter into the system. Only few works considered the case where 
customers are blocked and removed from the system. Such a queueing system is called 
‘queueing system with disasters’. Queueing systems with disasters have been intensively 
studied because of their great applications in complex modern communication systems, 
networks and manufacturing systems. Interested readers can refer to [1–8] and references 
therein.  

Recently, there is a growing interest in the analysis of discrete-time queues with 
disasters because the discrete-time queue is more suitable for describing the 
telecommunication network, digital communication systems and other related areas. For 
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example, Atencia and Moreno [9] investigated a Geo/Geo/1 queue with negative 
customers and disasters. They obtained the explicit expressions for the stationary 
distributions of the queue length and the system size. Yi et al. [10] analyzed a Geo/G/1 
queue with disasters and multiple working vacations. For such a queueing system, they 
studied the queue length and derived the stationary queue length distribution. Park et al. 
[11] considered a Geo/G/1 queue with negative customers and disasters. They obtained the 
probability generating functions (PGFs) of the stationary queue length and the sojourn 
time of a customer. Moreover, Park et al. [12] analyzed a GI/Geo/1 queue with disasters, 
in which the inter-arrival times of customers follow a general distribution. Furthermore, 
Lee et al. [13] discussed a Geo/G/1 queue with disasters and general repair time. They 
derived the PGFs of the queue length distribution and the first-come first-serve sojourn 
time distribution. To analyze the power saving scheme in wireless sensor networks under 
unreliable network connections, Lee and Yang [14] studied a discrete-time Geo/G/1 queue 
with N-policy and disasters. They obtained the PGFs of the queue length, the sojourn time, 
and the regeneration cycles such as the idle period and the busy period. Jeyakumar and 
Gunasekaran [15] investigated a discrete queue with disaster and single vacation. They 
used generating function technique to find the PGFs of the vacation period, the idle period, 
and the busy period. The mean queue length was also obtained. 

However, in practice, except for suffering from a disastrous failure, the server may 
also encounter a non-disastrous failure, which is caused by a normal breakdown at the 
same system. During the repair process of a non-disastrous failure, arriving customers are 
allowed to join the system and in the meanwhile a disastrous failure may also occur. To the 
best of our knowledge, no works consider a Geo/G/1 queueing system, where the server 
may suffer from disastrous and non-disastrous failures at the same system. This motivates 
us to consider a Geo/G/1 queue system with disastrous and non-disastrous failures. 
Besides, the discussed system can be applied to an application in computer network center 
with virus infection. In general, customers arrive at the network center when the 
computers are not affected by virus infection. When the computers are affected by a virus 
(disastrous failures), no customers can be allowed to enter into the network center and all 
the customers in the network center are removed from the system until all the computers 
are recovered from the virus infection. The recovery time of computers can be regarded as 
repair time. Besides, the computers may also suffer from a normal breakdown 
(non-disastrous failure). During the repair process of a non-disastrous failure, arriving 
customers are allowed to join the system and in the meanwhile a disastrous failure may 
also occur. The above process can be modeled as a Geo/G/1 queueing system with 
disastrous and non-disastrous failures. 

The rest of this paper is organized as follows. Section 2 describes the investigated 
model. The analysis of the discussed system is presented in Section 3. Some performance 
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measures are derived in Section 4. Numerical examples are provided in Section 5. Section 
6 concludes the paper.  

2. Model Description 

In discrete-time queueing models, the time axis is divided into fixed-length intervals, 
called slots. It is assumed that customer arrivals and departures take place only at slot 
boundaries. This study deals with a Geo/G/1 queueing system subject to disasters and 
breakdowns. Customer arrivals are according to Bernoulli process. The probability of a 
customer arrival during any slot is  (0< <1). Service times 1{ }n nB 

 are independent 
and identically distributed discrete random variables with probability mass function (PMF) 

{ } ,n iP B i b  ( 1,2,...)i  , probability generating function (PGF) ( ),B x  and the j-th 
factorial moment ( ).jB  The server may suffer from disastrous and non-disastrous failures. 
Once a disastrous failure occurs, the system removes all workloads and the server is sent 
to repair immediately. Note that a disastrous failure cannot occur when the server is idle. 
During the repair period of a disastrous failure, arriving customers are prohibited from 
entering into the system. The server may also encounter a normal breakdown 
(non-disastrous failure) and it is sent to repair immediately. During the repair process of a 
non-disastrous failure, customers can continue to arrive at the system and in the 
meanwhile a disastrous failure may also occur. The server will go to an idle state after the 
repair completion of a disastrous failure. Customer arrivals form a single waiting line 
based on the first-come first-serve (FCFS) discipline. The server can serve only one 
customer at a time. Customer arrivals entering into the service system must wait in the 
queue until their services are completed unless a disastrous failure occurs.  

The distributions of disastrous and non-disastrous failures are geometrically 
distributed with parameters  (0<  <1) and  (0< <1), respectively. The repair times 
of a disastrous failure 1{ }n nD 

 are generally distributed with PMF { }n iP D i d   
( 1,2,...),i   PGF ( ),D x  and the j-th factorial moment ( ).jD  The repair times of a 
non-disastrous failure 1{ }n nR 

 are independent and identically distributed discrete random 
variables with PMF { }n iP R i r  ( 1,2,...),i  PGF ( ),R x and the j-th factorial 
moment ( ).jR  In discrete-time queueing models, different assumptions can be made on 
the order of arrivals and departures simultaneously taking place at a slot boundary: either 
arrivals may have precedence over departures or vice versa. The former case is referred to 
as the Late Arrival System (LAS) and the latter as the Early Arrival System (EAS). There 
are two variants of LAS, LAS with immediate access and LAS with delayed access. The 
difference between them is when a customer arrives late in the nth slot while the system is 
empty, the service is started in the nth slot (LAS with immediate access) or the service is 
started in the (n+1)-th slot (LAS with delayed access). We adopt the LAS policy with 
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delayed access in the presented model. According to LAS policy, customer arrivals and 
departures occur within _( , )t t and ( , ),t t＋  respectively. We assume that the events of a 
disastrous failure, a non-disastrous failure, and a customer arrival occur within ),( tt . 
The order of them is that a disastrous failure takes place just prior to a non-disastrous 
failure, and a non- non-disastrous failure takes place just prior to a customer arrival. A 
disastrous failure and a repair completion do not occur at the same slot boundary.  

3. Mathematical Model 

In the investigated system, let ( )n indicate the state of the system at 
time n and ( )nL denote the systems size, where 

( )

0, if the server is idle;
1, if the server is busy;
2, if the server is under repair times of a disastrous failure;
3, if the server is under repair times of a non-disastrous failure.

n



  



 

When ( ) 1n  , ( )n represents the remaining service time of a customer being served. If 
( ) 2n  , ( )n represents the remaining repair time of a disastrous failure. If 
( ) 3n  , ( )n represents remaining service time of a customer being served just before a 

non-disastrous failure occurring and ( )n  corresponds to the remaining repair time of a 
non-disastrous failure. The sequence of Y  ( ) ( ) ( ) ( ){( , , , ); 0,1,2, }  n n n nL n  is a 
Markov chain whose state space is  

{(0,0)} {(1, , ) : 1, 1} {(2,0, ) : 1} {(3, , , ) : 1,  1, 1}.k i k i i i k i j k i j        

Next, we define the following steady state probabilities: 
( ) ( )

0,0 lim Pr[ 0, 0]n n

n
p L


    ,   

( ) ( ) ( )
1, , limPr[ 1, , ],n n n

k i n
p L k i


      1, 1k i  , 

( ) ( ) ( )
2, limPr[ 2, 0, ],n n n

i n
p L i


     1i , 

( ) ( ) ( ) ( )
3, , , limPr[ 2, , , ],n n n n

k i j n
p L k i j 


       1, 1, 1.k i j    

The Kolmogorov equations for the stationary distribution are given by 

0,0 0,0 1,1,1 2,1p p p p    ,  (1) 

 1,1, 0,0 1,1,1 1,1, 1 1,2,1 3,1, ,1 , 1i i i i i ip p b p b p p b p i          , (2) 
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 1, , 1, 1, 1 1, ,1 1, 1,1 1, , 1

3, 1, ,1 3, , ,1 , 2, 1;
k i k i k i k i k i

k i k i

p p p b p b p

p p k i

   

 
   



   

   
  (3) 

 2, 2, 1 1, , 3, , ,
1 1 1 1 1

,i i m i m n i
m m n

p p p d p d 
    


    

      (4) 

 3,1, , 0,0 1,1,1 1,1, 1 1,2,1

3,1, ,1 3,1, , 1 , 1, 1,
i j i j i j i j i j

i j i j

p p b r p b r p r p b r

p r p i j

   

 




   

   
  (5) 

 3, , , 1, 1, 1 1, ,1 1, , 1 1, 1,1 3, 1, ,1

3, 1, , 1 3, , ,1 3, , , 1 , 1, 1, 1,
k i j k i j k i j k i j k i j k i j

k i j k i j k i j

p p r p b r p r p b r p r

p p r p k i j

    

  
    

  

    

     
  (6) 

where 1 ,  1 ,  1 .            
We define 

1, ,
1 1

( , ) k i
B k i

k i
G x z z x p

 

 

  , 1, ,1
1

( ) k
B k

k
z z p





 , 2,
1

( ) i
D i

i
G x x p





  , 

3, , ,
1 1 1

( , , ) k i j
R k i j

k i j
G x y z z x y p

  

  

  , 3, , ,1
1 1

( , ) k i
R k i

k i
x z z x p

 

 

  . 

Multiplying (2) and (3) by x and ,ix  respectively, summing over i, then multiplying 
by z and ,kz  respectively, and then summing over k, it yields 

    0,0 1,1,1

( )
( , ) ( ) ( , ) ( ) ,B B R

B x zx G x z z x z B x zp p
x z

     


     (7) 

where z    . 
Similarly, multiplying (4) by ix and summing over i, it yields 

 2,1 , , ,
1 1 1 1 1

1 ( ) ( ) .D m m n
m m n

x G x p D x
x

  
    

    

  
    

 
    (8) 

Finally, multiplying (5) and (6) by y and ,jy  respectively, summing over ,j  multiply 
by x and ix , respectively, summing over ,j  multiplying by z  and ,kz  respectively, 
and then summing over k, it yields 

 
 

   0,0 1,1,1

( ) ( )( )( , , ) ( , ) ( )

( ) 1 ( , ) ( ) ( ) .

R B B

R

B x z R yy R yG x y z G x z z
y x z

R y x z B x R y zp p

  

     


 

   

  (9) 

We set y  and substitute it into (9), it yields 
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 

   0,0 1,1,1

( ) ( )( )( , , ) ( , ) ( )

( ) 1 ( , ) ( ) ( ) .

R B B

R

B x z RRG x z G x z z
x z

R x z B x R z p p

     


       


 

   

 

Hence, we can get ( , )R x z as following 

  
   0,0 1,1,1

( )( ) ( , ) ( )( , ) ( ) .
1 ( )

B
R B

B x zR G x z B xx z z z p p
x zR

    
 

 
      

 (10) 

Substituting (10) into (7), we obtain 

  
 

 

   0,0 1,1,1

( )
1 ( , ) ( )

1 ( ) 1 ( )

( )                                                   .
1 ( )

B B

B x z
G x z z

x R z R

B x z p p
R

 
   

  
 

  
  
   

 


. (11) 

We set    
( )

1 1 ( )
zx

R R z
   
     


  

  
 and substitute it into (11), it yields 

 
 

     

 
     

0,0 1,1,1

0,0 1,1,1

( ) ( )1 ( , ) ( )
1 ( ) 1 ( ) 1 ( )

( ) ( )0 ( ) .
1 ( ) 1 ( )

B B

B

B z BG z z z p p
R z R R

B z Bz z p p
z R R

      
      

     
   

  
     

    


  
 

 

Then we can obtain 

 
   0,0 1,1,1

( )( )
( )B

zBz z p p
z B
  

 
 


.  (12) 

Substituting ( )B z into (11), it yields 

 
 

     

   

0,0 1,1,1

0,0 1,1,1

( ) ( )1 ( , )
( )1 ( ) 1 ( )

( ) .
1 ( )

B

B x z zBG x z z p p
z Bx R z R

B x z p p
R

   
    

  
 

   
     

      

 


 

Then we can obtain 

  
     0,0 1,1,1

( ) ( )
( , )

( ) 1 ( )B

xz B x B
G x z z p p

z B x R
 

 
   


 

    
. (13) 

Finally, we replace the term ( , )R x z of (9) by (10), it yields 
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 

   0,0 1,1,1

( )( , )( ) ( )( , ) ( ) ,
1 ( )

B
R B

B x zG x zR B xx z z z p p
x zR

    
 

 
    

  
 

 

   
   

 

0,0 1,1,1

0,0 1,1,1

( ) ( )( )( , , ) ( , ) ( )

( )( , )( ) ( )( ) 1 ( )
1 ( )

( ) ( ) ,

R B B

B
B

B x z R yy R yG x y z G x z z
y x z

B x zG x zR B xR y z z p p
x zR

B x R y z p p

  

     
 

  


 

         
    

 

 

 
 

   0,0 1,1,1

( ) ( )
( , , )

1 ( )

( )( , ) ( ) ( ) .

R

B
B

R y Ry G x y z
y R

B x zG x z z z p p B x
x z


 

    






 
   

 

 

The terms ( , )BG x z and ( )B z of above equations can be replaced by (13) and (12), 
respectively. It yields 

 
 
 

     

 
     

0,0 1,1,1

0,0 1,1,1 0,0 1,1,1

( ) ( )
( , , )

1 ( )

( ) ( )
( ) 1 ( )

.
( ) ( ) ( )

( )


 

 
  

   

      
 






 
      

 
 

           

R

R y Ry G x y z
y R

xz B x B
z p p

z B x R

x
B x z zB z p p z p p B x
z z B

 
Then we have the following equations:  

 
  

     0,0 1,1,1

( ) ( ) ( ) ( )
( , , )

( ) ( )R

xyz B x B R y R
G x y z z p p

y z B x x R
  

 
    

 
 

   
. (14) 

In (12), 0,0p and 1,1,1p are unknown. Using Rouche’s theorem, the 
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4. System Performance Measures 
In this section, we derive the system performance measures such as the busy cycle, 

the idle period, the generalized busy period, and the disastrous period. The system size and 
the sojourn time are also derived.  

4.1. Busy cycle, idle period, generalized busy period, and disastrous period 

The periods of the server states are divided into the idle period (IP), the generalized 
busy period (GBP), and the disastrous period (DP). An IP begins at the server becoming 
free and terminates at a costumer arrival. A GBP (which consists of a busy period and a 
possible non-disastrous period) starts at the beginning of a generalized service and ends at 
that the generalized service has been completed and simultaneously the system is empty, 
or a disastrous failure occurs. The generalized service begins at a customer starting its 
service and terminates at the service being completed. The generalized service time 
includes the repair time of a non-disastrous failure. A DP starts at a disastrous failure 
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In this section, we derive the system performance measures such as the busy cycle, 

the idle period, the generalized busy period, and the disastrous period. The system size and 
the sojourn time are also derived.  

4.1. Busy cycle, idle period, generalized busy period, and disastrous period 

The periods of the server states are divided into the idle period (IP), the generalized 
busy period (GBP), and the disastrous period (DP). An IP begins at the server becoming 
free and terminates at a costumer arrival. A GBP (which consists of a busy period and a 
possible non-disastrous period) starts at the beginning of a generalized service and ends at 
that the generalized service has been completed and simultaneously the system is empty, 
or a disastrous failure occurs. The generalized service begins at a customer starting its 
service and terminates at the service being completed. The generalized service time 
includes the repair time of a non-disastrous failure. A DP starts at a disastrous failure 
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The results are the same as Corollary 2.  

4.2. System size  

Let )(zS  denote the PGF of the system size. We have  

occurring and ends at its repair being completed. A regeneration busy cycle is the interval 
which consists of an IP, a GBP and a DP. Let  be the generalized busy period and the 
PGF of  is given by  
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There are two types of sub-cycle depending on a GBP terminated by a generalized 
service completion (type-1 sub-cycle) or a disastrous failure occurring (type-2 sub-cycle). 
A type-1 sub-cycle consists of GBP and IP. A type-2 sub-cycle consists of GBP, IP, and DP. 
Let 1 and 2 denote the probabilities of type-1 sub-cycle and type 2 sub-cycle, 
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and 2 11   , where  is a random variable geometrically distributed with parameter 
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Hence, we obtain the unconditional generating functions of the GBP, the IP, the DP, and 
the busy cycle as follows: 
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respectively. Then we have the following generation functions: 

)()()( 11 zIzzC  , 
)()()()( 22 zDzIzzC  , 

where 
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



  . 

Hence, we obtain the unconditional generating functions of the GBP, the IP, the DP, and 
the busy cycle as follows: 

   1 1 2 2( ) ,z z z         
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which leads to the expected system size and is given by 
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That is,    
 

0,0 1 1
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  

  
      

. 

4.3. Sojourn time 

In this section, we derive the PGF of the expected sojourn time in the system. A 
customer’s sojourn time in the system is the time from entering the system to leaving the 
system (i.e. the sum of waiting time in the queue plus his service time). Firstly, setting 
0 in ( , )BG x z of Theorem 1, it yields the joint PGF of the system size of server busy 
state and the remaining service time excluding non-disastrous failures as follows.  

 
  
   0,0

( ) ( )
( , )

( )BO

xz B x B z z
G x z p

z B x
 

 

 


 
. (26) 

Replacing the service time B by the generalized service time H in (26), it yields  

 
  
   0,0

( ) ( )
( , )

( )GB

xz H x H z z
G x z p

z H x
 

 

 


 
. (27) 

To investigate the expected sojourn time of a customer, we consider the status of 
customer arrivals and the status of customers already in the system. We assume a tagged 
customer arrives at slot n and a disastrous failure does not occur during their generalized 
service time for customers already in the system. At slot n, a disastrous failure does not 
occur as the server is idle. Hence the spending time of an arriving customer in the system 
is its generalized service time. When a disastrous failure occurs (with probability ) or the 
server is under repair due to a disastrous failure, the arrival customer’s sojourn time is zero. 
If a disastrous failure does not occur (with probability ), the server is during generalized 
busy, and k customers in the queue stay in the system, this customer’s sojourn time 
consists of his generalized service time, the remaining generalized service time of the 
customer being served, and the generalized service time of the preceding k-1 customers in 

C  Wang, Liu, Chang

213



the queue. 
Let ( )U z denote the PGF of the unfinished work at the arrival slot of a tagged 

customer for the present model. By Bernoulli arrivals see time averages and (27), ( )U z is 
given by  

 
0,0 0,0
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Let W be the sojourn time of the tagged customer. We can get the PMF and the PGF 
of the tagged customer’s sojourn time as follows: 
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Corollary 3. The expected sojourn time is given by  
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Remark: From Corollary 3 and (25), the Little’s formula ( ) ( )effE S E W can be 
confirmed, where  0,0eff GBp P    . 

5. Numerical Examples 
In this section, we perform several numerical examples to study the influences of 

parameters on the expected sojourn time ( )E W . In each example, service time, the repair 
time of a disastrous failure, and the repair time of a non-disastrous failure are investigated. 
In each experiment, three different distributions, geometric distribution (Geo), binomial 
distribution (B), and negative binomial distribution (NB) are performed. In first example, 
we study the effect of the non-disastrous failure rate α on ( ).E W  We also set λ= 0.4 
and β = 0.05. The numerical results are shown in Figures 1-3. From the figures we can see 
that the ( )E W increases as α increases, for service time, the repair time of a disastrous 
failure and the repair time of a non-disastrous failure. It is reasonable because the average 
sojourn time of a customer in the computer network center increases as the breakdown rate 
of computers increases. Besides, the numerical results revealed that different distributions 
do not affect the effect of the non-disastrous failure rate α on ( ).E W  
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Figure 1. Effect of the service time distributions and α on ( )E W . 

 
Figure 2. Effect of the repair time distributions of a disastrous failure and α on ( )E W . 
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   Figure 3. Effect of the repair time distributions of a non-disastrous failure and  on  

( )E W . 

In second example, we study the impact of the disastrous failure rate  on ( )E W . We 
also set  λ= 0.4 and  = 0.03. The numerical results are shown in Figures 4-6. The 
numerical results revealed that ( )E W decreases as  increases. This is because once the 
computer network center is affected by the virus, the computer network center removes all 
workloads and the customers are not allowed to enter into the system. In addition, the 
numerical results showed that different distributions do not affect the impact of the 
disastrous failure rate  on ( ).E W  

In third example, we study the effect of the arrival rate  on ( )E W . We also set β = 
0.05 and   α = 0.03. The numerical results are shown in Figures 7-9. From the figures we 
can see that ( )E W  increases as  increases. It is reasonable because the average sojourn 
time of a customer in the computer network center increases as the arrival rate of customer 
increases. The numerical results also revealed that different distributions do not affect the 
effect of the arrival rate  on ( ).E W  
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Figure 4. Effect of the service time distributions and β on ( )E W . 

 
Figure 5. Effect of the repair time distributions of a disastrous failure and β on ( )E W . 
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 Figure 6. Effect of the repair time distributions of a non-disastrous failure and β on 

( )E W . 

 
Figure 7. Effect of the service time distributions and  on ( )E W . 
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6. Conclusions 
This paper discussed a Geo/G/1 queue system with disastrous and non-disastrous 

failures. Different with other approaches, the investigated system may also suffer from a 
non-disastrous failure, which is caused by normal breakdown. During the repair process of 
a non-disastrous failure, arriving customers are allowed to join the system and in the 
meanwhile a disastrous failure may also occur. We have derived the stationary system size 
and the sojourn time distributions by using supplementary variable technique. We also 
derived some system characteristics such as the idle period and the busy cycle. Finally, we 
provided some numerical examples and numerical results to demonstrate the parameter 
effects on the expected sojourn time.  
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