
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Introduction 

Line-cutting occurs naturally in social systems for reasons of carelessness, selfish 
convenience, or even legitimate need. For example, arriving customers may be oblivious to 
the line structure and join at random positions. Or, an arrival may attempt to join the queue 
just behind the position of an acquaintance. Sometimes line cutting may be more acceptable 
or necessary, for instance, when travelers attempt to cut line in order to avoid missing an 
airplane flight. Or, patients waiting in line at a doctor’s office may allow those in more 
urgent need of medical care to move toward the head of the line, or a triage protocol may 
even exist to facilitate this. 

Our paper studies an extension of the / /1M M queue where impatient customers 
jump or cut line upon arrival with the hope of receiving faster service. However, this cutting 
is observed by waiting customers who may become aggravated to the point of reneging. For 
example, consider three highway lanes. Drivers in the right lane jump into the middle traffic 
lane at random positions because the right lane is merging with the middle lane. The 
annoyed middle lane drivers then randomly depart the middle lane for the left lane. 

One can view this model as a kind of priority queueing model where new arrivals are 
assigned uniform random priority ranks with respect to the current queue size. That is, each 
arrival takes position in the queue according to its rank, which is uniformly distributed on 
{0,1, , },queue size as opposed to being ranked according to previously assigned 
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independent and identically distributed (i.i.d.) marks. A new arrival that jumps to the head 
of the line preempts the service in progress. Customers behind the new arrival who have 
been cut become aggravated and leave, independently, with uniform probability ,a  
whereas customers in line ahead of the arrival are unaffected. Aggravated customers who 
leave are assumed to do so instantaneously in batches1. Thus, our model can be viewed as 
an / /1M M queue where customers cut line according to some relative priority assignment, 
and simultaneously trigger random queue-size-dependent reneging in batches. 

Reneging models commonly assume customers join the queue with predetermined, 
i.i.d. maximum waiting times. If the time until service completion exceeds this maximum 
waiting time, the customer abandons the queue. Such models fail to account for specific 
reasons that trigger abandonment. Our line cutting model can be viewed as a combination 
of a kind of priority and reneging, and to our knowledge the study of reneging due to line 
cutting seems unaddressed in the literature. 

The remainder of the paper is organized as follows. Section 2 provides a brief review 
of related literature. Section 3 gives the model framework and necessary and sufficient 
conditions for stability. Section 4 contains the stationarity results for the general and special 
cases. Section 5 includes a brief comparison of the analytical results with simulation output 
conclusions section, and section 6 concludes the paper. 

2. Literature Review 
Models of priority and reneging queues appeared in the 1950s, and have since been 

studied extensively in the literature. Analysis of priority queues seems to have originated 
with Cobham [9], and basic preemptive and nonpreemptive models appear in the popular 
texts by Gross et al. [13] and Baccelli and Bremaud [6]. For more recent priority models, 
we refer the reader to Wang et al. [29] and the references therein. Priority models typically 
assume a finite number of fixed priority classes. Our model differs from this in that the 
effective queue length dependent priorities (the cut positions) are simply the positions in the 
queue, and are reassigned upon each system change. 

Reneging occurs for various reasons, often when customers in the queue become 
impatient and refuse to wait any longer. This phenomenon is prevalent in many situations 
including call centers, perishable goods inventory systems, and doctors’ offices. Queueing 
models with reneging likely originated with Haight [14], and have since been studied 
extensively. The authors in Al-Seedy et al. [2] and Ammar [4, 5] give transient analysis 
results for queues with abandonment. The busy period for the / /1M M with abandonments 
is studied in Ammar et al. [3], and the authors in Dimou et al. [10] study server vacations 

                                                        
1 In reality, departures might occur in sequence over a time interval that is small with respect to the interarrival 
+ service rate. 
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in abandonment queues. Abandonment in the / /1M G queue is studied in Sherzer and 
Kerner [27], and Kapodistria [18] considers batch abandonments in the / /1M M . 
Diffusion approximations for reneging queues are studied in Liu [21] and Huang and Zhang 
[16]. Refer to Hasenbein and Perry [15] for a review of abandonment queue literature. As 
far as we know, none of the existing literature on abandonment queues accounts for reneging 
due to line cutting. 

In Allon and Hanany [1], the authors describe scenarios where a large, finite population 
requires service from time to time (say, at a doctor’s office). A customer waiting in the 
queue may allow future arrivals to cut line with the understanding that next time it could be 
him or her who requires more immediate attention. Their analysis indicates social policy 
deviation from strict FIFO by allowing cuts can mutually benefit customers as well as queue 
managers. 

In order to analyze time-dependent properties for a FIFO queue with service and arrival 
rates that increase and decrease with queue size, respectively, Fralix [12] constructed the 
“knock-out queue”. The knock-out queue is similar to our model in that a waiting customer 
may be removed from the queue upon an arrival. However, only one customer may be 
removed at a time from the knock-out queue, and the new arrival always jumps to the head 
of the line. 

Decisions of whether or not to abandon a queue often seem to coincide with customers 
receiving new information (such as another abandonment, service, or opening or closing of 
a service lane). Empirical studies on emergency room waiting rooms in Batt and Terwiesch 
[7], Bolandifar et al. [8] support this. Call center customers are shown to exhibit the same 
kind of behavior in Zolar et al. [30]. 

Optimal abandonment policies (if and when to renege at all) are studied in 
Mandelbaum and Shimkin [22], where it is shown that the / /M M m queue in which 
customers are unaware of their queue position, that it is optimal for customers to either balk 
(renege immediately upon arrival), or wait until they receive service. However, in reality 
customers typically do not adopt such a policy, and abandonments typically occur after 
customers have waited for some time. 

Customer abandonment is common in ticket queues. In a ticket queue, customers 
receive a number upon arrival, and may become aware of the current ticket number in 
service. However, due to prior abandonments, the difference between a customer’s ticket 
number and current ticket in service may exceed the actual number of customers ahead. In 
Kuzu et al. [20], the authors analyze abandonment effects on ticket queue processes in 
which customers choose to renege or not based on constant updating of queue information 
(such as how many tickets are ahead of theirs, how long they have waited, how many 
customers have left the queue, etc.). They allow the patience levels of the customers in the 
queue to adapt as time passes, based on observations of the ticket counter. An empirical 
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study suggests customers continuously monitor and react to the system state (e.g., choose 
to renege or not), and they construct models based around these assumptions. Note that in 
the ticket queue, a customer waits at most the difference between his/her ticket number and 
the current ticket number in service. However, in our model, a customer may have to wait 
for additional services to transpire, due to those who will cut line. 

Our line-cutting model also differs from many traditional queueing models in the 
following way. In many traditional FIFO models and variations, if customer n arrives to 
the system at time < ,nT t  then whether or not that customer remains in the system at time 
t  is a function of the data (arrival times and service requirements) for customers who 
arrived strictly before time nT . This is not the case in our model. A customer arriving at 
time nT  remains in the system at time > nt T if and only if she/he (i) has not yet been 
served and (ii) survives all arrivals and line-cuts that occur in ( , ]nT t . The papers Durrett 
and Limic [11], Jones and Serfozo [17], and May and Nowak [23] consider models where 
particles (representing customers, or species in an ecosystem) arrive randomly in time to a 
region, and upon arrival are assigned i.i.d. marks. The particles are then removed from the 
system only at times of future arrivals with larger marks with a probability that depends on 
the mark value of particles considered for deletion. Our model differs from this setup mainly 
in that the marks correspond to relative positions in the queue, and will change each time 
there is a service or arrival. Our model also allows for traditional service as in the / /1M M
queue. 

3. General Model 
Customers arrive to a single server service station according to a time-homogeneous 

Poisson process with rate  . Let ( )X t denote the number of customers in the queue at 
time t . A customer arriving at time t  will see ( ) := lim ( )

s t
X t X s


 customers waiting in 

the queue. However, instead of joining the back of the queue as in first-in-first-out 
disciplines, the new arrival joins the queue at one of the 1 ( )X t  positions between 
waiting customers (or at the ends) according to a discrete uniform distribution. Immediately 
proceeding the arrival, each customer who the new arrival jumps or ‘cuts’ becomes irritated 
by the added waiting time, and departs (reneges) independently of everything, with 
probability a . The customers are otherwise served one-at-a-time in order of arrival (FIFO) 
by a single server, and the services attempts occur according to a Poisson process with rate 
 . Let ( )R t denote the number of customers that renege upon an arrival at time t . Then 
the continuous time Markov chain (CTMC) { ( ), 0}X t t  updates according to the 
following dynamics:  
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Define the discrete time Markov chain (DTMC) { , 0}nX n  as follows:   

                (1) 

where = / ( )q    and 1nR  binomial( ,nL a ), with nL discrete (0, )nU X . That is, 

nL  denotes the number of customers the new arrival skips over, or cuts. Because the CTMC
{ ( ), 0}X t t  evolves as the DTMC { , 0}nX n  subordinated to a Poisson process with 
rate   , it suffices to study the embedded DTMC { , 0}nX n  , which we do throughout. 
Note{ , 0}nX n  is irreducible and aperiodic, and so the condition (1) results in no loss of 
generality. 

Our first result shows that any reneging in our model (i.e., whenever > 0a ) stabilizes 
the queue, regardless of the value of /  (contrary to the / /1M M queue). 

Proposition 1. The { ( ), 0}X t t  process is positive recurrent iff > 0a or <  .   

The proof uses the following special case of Foster’s Criterion called Pake’s Lemma, which 
is Theorem 4.12 of Kulkarni [19]: 

Theorem 2. Pake’s Lemma. Let { , 0}nX n  be an irreducible DTMC on = {0,1, }S . 
Define the drift function d to be   

 1( ) := [ | = ], .n n nd i E X X X i i S    (2) 

Then the DTMC is positive recurrent if both of the following hold:    

  (i) ( ) <d i   for all i S ; 
(ii) ( ) < 0.lim supi S d i    

Proof of Proposition 1. It suffices to prove stability for the DTMC { , 0}nX n  . Fix > 0a
and set = 0 . The drift function ( )d i from (3) is   

 1( ) = [ | = ]n n nd i E X X X i   

 =1 [      1| = ]nE number of departures at time n X i   

 
=1

=1 =1 ,
1 2

i

k

a k a i
i
 

 
  (3) 

and conditions (i) and (ii) of Pake’s lemma are easily satisfied. Positive recurrence for the 
case when > 0 follows by observing the drift function for the more general case is 
bounded above by ( )d  . In the case that = 0a , the model reduces to the / /1M M queue, 
which requires <  for positive recurrence. 

We note in passing that when = 0 ,  
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> 2 / ( ) 0;
= 2 / ( ) = 0;
< 2 / ( ) 0,

i a d i
i a d i
i a d i

 

 

 

and the process is symmetrically mean-reverting in the sense that 
(2 / ) = (2 / )d a k d a k    whenever 2 / .a k     

We have the following. 

Theorem 3. The limiting distribution for { ( ), 0}X t t  exists and equals the unique 
stationary distribution. Furthermore, if X has this stationary distribution, then = 0  
implies ( ) = 2 /EX t EX a .  

The proof uses the following dominated convergence theorem for convergence in 
distribution (see Serfozo [26]). 

Theorem 4. Suppose
d

nX X in and there exists a random variable Y with | |<EY   
so that Y stochastically dominates | |nX for each n :   

 (| | ) ( ), 0.nP X x P Y x x     (4) 

Then | |E X exists and lim = .nn
EX EX


   

Proof of Theorem 3. As usual, it suffices to prove the discrete-time analogs of these 
statements. The first statement (convergence in distribution) follows from standard Markov 
chain theory (see [19], [26]) because { , 0}nX n  is irreducible, aperiodic and positive 
recurrent whenever > 0.a  Next, let X be a random variable with this stationary 
distribution. By the Markov property and (3),   

 1[ | = ] = [ [ | ] | = ]n k n n k n k nE X X i E E X X X i     

 1 1= [1 | = ]
2 n k n k n
aE X X X i      

 1=1 (1 / 2) [ | = ]n k na E X X i    

 
1

=0
= (1 / 2) (1 / 2)

k
j k

j
a i a



    

 2 / a  
as k  , independent of i . 

It remains to show = 2 /EX a , which we do using Theorem 4. Let =Y k with 
probability (1 ) ,k  [0,1),  {0,1, }.k The variable Y has the stationary 
distribution of the / /1M M queue with = /   , and = / (1 )EY   . Then   

 ( ) = .kP Y k   (5) 
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Let  
1

, 1 1
1 (1 ):= ( = 1| = ) = .

( 1)

i

i i n n
ap P X i X i

a i



 

 



 

Note for k n that nX k implies at least one transition from i to 1i  for each 
{0, , 1}i k   in the first n  transitions because 0 = 0X . Then   

 
1

, 1
=1

( ) .
k

n i i
i

P X k p


   (6) 

Then for fixed a , choosing 1,2[ ,1)p  for (5) satisfies (4) for { , 0}nX n  and Y  
because , 1i ip  decreases in .i  When > ,k n ( ) = 0nP X k since 0 = 0X with probability 
1. 

4. The Stationary Distribution 
4.1. Probability generating function 

We now study the stationary distribution for { , 0}nX n  . Let =nC c or s if the 
change at time n is triggered by a customer arrival or service attempt, respectively. Let nX  
denote the state of the system after all events occur at time n . For instance, if 1 =nC s , 
then , If 1 =nC c , then 1 1= 1n n nX X R   , where as 
before, 1nR  binomial ( , )nL a and nL discrete (0, ).nU X  Define := / ( )q    . For 
the remainder of this section we assume the process is stationary: 
{ , , }={ , , }

d

n n k m m kX X X X   for all , ,m n k . Let G denote the probability generating 
function for 0X . 

Proposition 5. The probability generating function G satisfies   

 2 (0)( 1) = ( 1)( ) ( )aqG t at t t q G t    
 2 3[ ( ) ( 2 )] ( )t a t q t at a G t      (7) 
 3(1 )(1 ) ( (1 ) ).a q t G a a t                              

Proof. We begin by obtaining an expression for the probability generating function |1 0X XG  
of the process at time 1 given the process has the stationary distribution at time 0, by 
conditioning on the type of change triggered 1C . 

    | | , = | , =1 0 1 0 1 1 0 1
( ) = ( ) (1 ) ( ) .X X X X C s X X C cG t qE G t q E G t         (8) 

The first expectation on the right-hand-side of (8) is 

           (9) 
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Next let (0,1)U U and  where 
customer i is the customer who currently sees 1i  customers ahead in line. The 
expectation in the second term on the right-hand-side of (8) is 

 1
| , = 0 11 0 1

( ) = [ | , = ]X
X X C cG t E t X C c  

 

0
(1 )

=1
0 1= | , =

X

Vi
iE t X C c


 
 
 
 
 
 


 

 

( 1)0

=1=

U X

Vi
itE E t

   
 
 
 
 
 


0

( 1)0
0 1 0 1| , , = | , =

X

Vi
U Xt U X C c X C c  



 

 


 

 
( 1)0

0 1
=1

= [ | , , = ]
U X

Vi

i

tE E t U X C c
   

 
  
  

 
0

0 1 0 1
( 1)0

[ | , , = ] | , = ,
X

Vi

U X

E t U X C c X C c
  

 
 

    
  

where a product of the form
= 1

n
nk n

K
 is taken to be 1. Simplifying and letting Y be a 

discrete uniform random variable on 0{0,1, , }X ,   

( 1)0 0

| , = 0 11 0 1
=1 = ( 1)0

( ) = ( (1 )) | , =
U X X

X X C c
i i U X

G t tE a t a t X C c
  

  

   
    
      
   

   ( 1) ( ( 1) )0 0 0
0 1= (1 ) | , =U X X U XtE a t a t X C c       

 
 

   ( )0
0 1= (1 ) | , =Y X YtE a t a t X C c     

  1 0
0 1= (1 ) | , = .

Y XtE at a t X C c    
 

Then   
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 ( 1) 10
| , = 01 0 1

( ) = (1 ) |
YX

X X C cEG t E t E at a X        
 

  
( 1)0 0

1

=00

= (1 )
1

X X
k

k

tE at a
X




 
  

  
  

 
  101( 1)0

1
0

1 (1 )
= .

1 (1 )

XX at atE
X a t





   
 
  
 

 (10) 

Using (9) and (10) in (8), setting 
1 0

= =X XG G G , and noting 0(0) = ( = 0)G P X gives   

 1 1( ) = ( ) (1 ) (0)G t qt G t q t G    (11) 

 
  101( 1)0

1
0

1 (1 )
(1 ) .

1 (1 )

XX at atq E
X a t





   
   
  
 

 (12) 

Multiplying through (12) by 1(1 )a t , differentiating with respect to t , and then 
multiplying through by 3t gives (7).  

We solve some special cases before considering the solution for the general model. 

4.2. Model with no service 

The case when = 0 approximates the situation when   , for instance, when a 
line for ticket sales grows extremely long before the service window opens. 

Proposition 6. When = 0, the stationary distribution is given by
( )

0
(0)( = ) = ,
!

nGP X n
n

 

where 
=0

( ) = ( 1)n
nn

G t b t
  and   

 1
=1

1 (1 )= ( 1)
(1 )( 1) (1 )

kn

n k
k

ab n
k a k a 

 


      (13) 

  1

=1

1= ln[ (1 )( 1) (1 ) ] .
!

n
k

k

d k a k a
n da

      (14) 

Proof. In this case (7) becomes  

 2 20 = ( 1) ( ) ( ) ( ) (1 ) ( (1 ) ),at t G t a t G t a t G a a t        (15) 

with (1) =1G and (0,1]a . 
First, note when =1a , this reduces to  

 1( ) = ( ), (1) =1,tG t G t G
t
  

which is satisfied by setting 1( ) = tG t te  . 
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To find the solution to (15) for arbitrary 0 < 1a  , we suppose that ( )G t can be 
represented as a power series centered at =1t , so that  

 
=0

( ) = ( 1) .n
n

n
G t b t



  (16) 

To simplify the calculation, we change variables by letting = 1s t  and put =1r a  
(notice that 0 <1r ). Then (15) and (16) imply  

 1 2 2

=1 =0 =0
0 = (1 ) ( 1) (1 ( 1) ) ( 1) ( )n n n

n n n
n n n

r s s nb s r s b s r s b rs
  

           

  1
1 0 2

=2
= (1 )[(1 ) 2 ] [ 1]n

n
n

r r b b s b r



      

 1
1[ 3 ( 1) 2 ] [ ( 1) ] .n n n

n nb n n r r b n n r r s
          

Thus  

 0
1

2=
1

bb
r

 

and for 2n  :  

 
1

1 21 1

3 ( 1) 2 1= .
( 1) ( 1)

n n

n n nn n

n n r r rb b b
n n r r n n r r



  

    
 

     
 

Because (1) =1G , it follows that 0 = 1b and  

 1
2= ,

1
b

r
 

so that 0 1= (1) = = 2 /EX G b a , which verifies the mean of the stationary distribution in 
Theorem 3. 

Enumerating the ratios 1/n nb b  leads to the following observation:  

 1
1

( 1)(1 )=
[ ( 1) ]

n
n

n
n

b n r
b n n n r r 



 
  

 

for all 1n  , which can be proven easily by induction. It follows from the ratio test that the 
radius of convergence of the power series (16) is found to be  

 
2

1
1

( 1)[ ( 2) ( 1)]= = = ,lim lim ( 2)(1 )

n
n

nn nn

b n r r n nR
b n r




 

    


 
 

since 0 <1r . This serves as a post hoc justification of our use of the power series method. 
Since  
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0

11

= 1,

( 1)(1 )= ,
[ ( 1) ]

n

n nn

b

n rb b
n n n r r 





 
   

 (17) 

it follows that  

 1
=1

( 1)(1 )=
[ ( 1) ]

kn

n k
k

k rb
k k k r r 

 
    

 1
=1

1= ( 1) .
( 1)

kn

k
k

rn
k k r r 




    

Following the convention that 
0

=1
=1kk

c , this closed form applies when = 0n as well as 
for all > 0n , and this is (13). Also, the observation that  

 1[ (1 )( 1) (1 ) ] = ( 1)[1 (1 ) ]k kd k a k a k a
da

         

suggests the alternative expression (14). 

4.3. Model with no arrivals 
When =1q , there are no arrivals and (7) gives  

 ( 1) ( ) 2 ( ) 2 (0) = 0.t t G t G t G    

Inspecting the point = 1t and recalling (1) =1G , we find that (0) =1G , and ( )G t solves 

 ( 1) ( ) 2 ( ) = 2t t G t G t   

subject to the initial condition (1) =1.G  Since the general solution to this linear differential 
equation is  

 
2

2( ) =1 ,
( 1)

CtG t
t




 

it follows that = 0,C  and ( ) =1.G t This is not surprising in that the equilibrium 
distribution for the model with only service is obviously 0( = 0) =1P X and 

0( = ) = 0P X n  for all 1n  . 

4.4. Model with 100% reneging 

When =1a , each line cutter causes a mass exodus from the queue by those who were 
cut. In this case (7) reduces to the linear differential equation  

 2( ) ( ) [( 1) ( 1) 2 ] ( ) 2 (0) = 0,t t q G t q t q t q G t G q        (18) 

and we have the following. 
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Proposition 7. When =1a  the stationary distribution 0 1( , , )p p of { ( ), 0}X t t  is 
given by  

 

2
2

=0 1
0 1 22 2 2

2 2 2
=0 =0 =0

[( 1) ](1 )
( 1)1= , = , = ,

(1 ) (1 ) (1 )
( 1) ( 1) ( 1)

k

k k
k k k

k k kk k k

q qq
qq qp p p

q q q
q q q




  





  
  



  
 

and for 3n     

 1 2( 2 ) ( 1)= .
( 2)

n n
n

q n p q pp
q n

    


 

Proof. Supposing ( )G t is analytic at = 0t , and applying the power series method reveals 
that for  

 
=0

( ) = ,n
n

n
G t p t



  

since in this case 0(0) =G p ,  

 1 1 2 0
=0 =1 =2

2 [( 1) ] [ ( 1) ( 1) ] 2 = 0.n n n
n n n n n

n n n
qp t q p nqp t p n q p t qp

  

             

Collecting like terms nt and setting the corresponding coefficients to 0 gives the following 
recurrence relations:  

 1 0

1 0

1 2.

= 0 : 0 = 0,
= 1: 0 = ( 1) ,
= 2 : 0 = ( 1) ,

3: 0 = (2 ) ( 2 ) ( 1)n n n

n
n qp q p
n qp q p
n q n p q n p q p 

 
 

      

 (19) 

Note the equations corresponding to = 1n and = 2n are identical, which means there are 
solutions for nonzero choices of 0p . Furthermore, since 2p is not determined by the 

= 2n  equation, there are two parameters which must be chosen in order to close this system, 
namely, 0p and 2p . Once 0p and 2p are determined, the power series can be iteratively 
constructed. 

If instead we expand the power series about =t q , we find that for  

 
=0

( ) = ( ) ,n
n

n
G t c t q



  

and letting =s t q ,  
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 2 2
0 1 00 = [ ( 1) 2 (0) ] [ ( 2) ( 1)(2 1) ]q q c G q q q c q q c s        

2 2
1 2

=2
[ ( 1 ) (2 2 ) ( 1) ] .n

n n n
n

q q n c q q n c q c s


           

Therefore  

 0 2

2 (0)= 0 : = ,
1

Gn c
q 

 

 1 02 2 2

(1 )(2 1) 2(1 )(2 1) (0)=1: = = ,
( 2) ( 2)( 1)
q q q q Gn c c

q q q q q
   

  
 

 
2

2 12 2

1 2 22 : = .
( 1 ) ( 1 )n n n

q q q nn c c c
q q n q q n 

   
 

   
 

By induction it can be proven that the ratios 1/n nc c  satisfy  

2
1

( 1)(1 )(2 )= ,
(2 1)( 1)

n

n

c n q q n
c n q n q n

  
   

 

and therefore  

 
0 0

12

=
( 1)(1 )(2 )= for 1.
(2 1)( 1)n n

c c
n q q nc c n

n q n q n 




       

 

This recurrence relation has solution for 1n    

 0 2
=1

( 1)(1 )(2 )=
(2 1)( 1)

n

n
k

k q q kc c
k q k q k

  
     

 0
2

=1

( 1)(1 ) (2 ) 1=
2 1

n n

k

c n q q n
q q k

  
   

 0
2

( 1)(1 ) (2 )= ,
2 ( 2)

n

n

c n q q n
q q

  


 

where ( )nx denotes the Pochhammer symbol defined by  

 0( ) =1 and ( ) = ( 1) ( 1) for 1.nx x x x x n n     

We note that this formula for nc also holds when = 0n . 

The radius of convergence of a power series solution centered at =t q with 1q  is 
therefore found to be  

 
2

1

( 1)( 2 )( 2)= | |= = .lim lim ( 2)(1 )( 2 1)
n

n nn

c n n q n qR
c n q n q 

   


   
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To determine 0c , we must enforce (1) =1.G  Hence  

2
0 2

=0

( 1)(2 ) (1 ) =1,
2 ( 2)

n

n n

n q nc q
q q

  


  

i.e.,  

 
2

1
0

=0

( 1)(2 )(1 )= ( )
2 ( 2)

n

n n

n q n qc
q q


  

  

 2
2

2
=0

2= .
(1 )( 1)
( 1)

k

k k

q
qq

q

 



 (20) 

It is noteworthy that the series  

 0 2
=0

( 1)(1 ) (2 )( ) = ( )
2 ( 2)

n
n

n n

n q q nG t c t q
q q

   
 

  

can be put into a closed form by Mathematica, which allows us to quickly find exact 
coefficients of the Maclaurin series. 

To close the loop in the discussion of the Maclaurin series for ( )G s studied above, the 
closed-form solution allows us to specify after some effort that  

 

2
2

=0 1
0 22 2

2 2
=0 =0

[( 1) ](1 )
( 1)= and = .

(1 ) (1 )
( 1) ( 1)

k

k k
k k

k kk k

q qq
qqp p

q q
q q




 





 
 



 
 

It follows that  

 1 2

2
=0

1= ,
(1 )
( 1)

k

k k

qp
q

q







 

and the recurrence relation (19) 4  allows us to reconstruct the probabilities np for 3n  . 

4.5. The general setting 

Having studied the cases in which =1q , = 0q , and =1a , we now turn to the case 
when , (0,1)a q . 
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Proposition 8. For , (0,1)a q , the stationary distribution 0 1{ , , }p p of { ( ), 0}X t t   
is 

 
=

= ( 1) ,k n
n k

k n

k
p b

n


 

 
 

  

where 
 0 =1,b  

 
 0

1

2 1 2
= ,

(1 )
q p q

b
a q
 


 

 
2

0
2 2 2

3{2 [1 (2 ) ] 2 4(2 ) (8 3 ) }= ,
(3 )(1 )

p q a a q a a q a qb
a a q

        
 

 

and for 3n    

 2
31

1= ([1 (1 ) ]
(1 ) ( 1) 1

n
n nnb a b

a n a


  
   

 

1
2

( 2){3[1 (1 ) ] }
1

n
n

n aa b
q





   


 

1
[2 1 (2 )]{3[1 (1 ) ] } ),

1
n

n
a q n qa b

q 

  
   


 

and 0p is chosen such that  

 0
=0

= ( 1) .k
k

k
p b



  

Moreover, the stationary distribution satisfies:  

 1 0
1= qp p

q


 

and for 0k  ,  
 1

1 2 3(1 )[1 (1 ) ] = ( 1) ( 1)(1 ) ( 1)k
k k k kq a p a k p a k q p a k qp

            

             1

= 1

(1 )(1 ) ,k n k
n

n k

n
q a p a

k


 



  
     

  
  

with  

 
=0

= 1.k
k

p


  

Proof. Note that 0 = (0)p G . Suppose that  

 
=0

( ) = ( 1) .n
n

n
G t b t



  

Then setting = 1s t  , the general equation (7) requires that  
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0 1 02 = [ (1 ) 2(1 2 ) ]ap qs a a q b q b s    
2

2 1 0{ (3 )(1 ) 3[1 2 (1 )] 3(1 ) }a a a q b q a q b q b s          

 2 1
3 2

=3
((1 )[(1 ) 1] {( 2) 3(1 )[1 (1 ) ]}n n

n n
n

q a b n a q a b


 
            

1{3(1 )[(1 ) 1] [2 1 (2 )]}n
nq a a q n q b          

1(1 )[(1 ) ( 1) 1] ) ,n n
nq a n a b s       

which gives values of the nb above. Equating
=0 =0

( ) = = (  1)n n
n nn n

G t p t b t 
  gives the 

stationary probabilities np to be  

 
=

= ( 1) .k n
n k

k n

k
p b

n


 

 
 

  

The relations for kp can be found similarly upon substitution of 
=0

( ) = n
nn

G t p t  directly 
into (7).             

5. Simulations and Approximations 
We compared simulation output statistics with analytical approximations derived in 

the previous sections for various values of  and a with  fixed at 1 , since the 
distribution of queue lengths depends only on the values of a and = / ( )q    , and we 
have considered separately the case =1q , we are free to choose =1 . We simulated 
100,000 iterations of the DTMC in R software for {2,1.5,1,0.1,0.01},  

{0.1,0.2, ...,0.9}a , and = {0.1,0.2, ,0.9}a  . Each time the chain was initialized 
near the mean. We found confidence intervals are of the Wilson-Agresti-Coull (WAC) type, 
which helps mitigate when true proportions are close to 0 or 1 (see Ott and Longnecker[ 24]). 
Also, each confidence interval is constructed at the 99.90909% individual confidence level 
so that we can apply the Bonferroni adjustment and make simultaneous intervals at the 99% 
family-wise level: for fixed  and a , we can be about 99% confident that all eleven 
confidence intervals contain the true corresponding stationary probabilities. Following the 
traditional Wald confidence interval construction and using the individual confidence level 
of 99.90909% results in a minimum required sample size of 99,811 in order to achieve at 
most a 0.00525 margin of error (which is why we ran each simulation 100,000 steps):  

 
2

(1 .9990909)/2= 0.25 = 99,811.
0.00525

z
minimum required sample size 

  
  
   

 

All but seventeen of the 594 intervals contain the analytical approximation. The tables of 
the approximations along with the confidence intervals can be found at the following 
website: https://sites.google.com/site/mattjones1204/publications. 
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6. Conclusions 
Batch reneging of impatient customers due to line cutting provides a stabilizing 

mechanism for the standard / /1M M model—even in the case in which the arrival rate is 
greater than the service rate. We have found closed-form solutions for the distribution of 
steady state queue lengths for certain values of the model parameters by brute force. For the 
most general scenario, we found an approximation scheme for the distribution of queue 
lengths, which was in good agreement with estimates found through simulations for 35 
combinations of the two essential parameters. 
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