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Abstract: Consider a system that should be operating over an indefinitely long operation
cycle n ( n = 1,2,... ). Under the discrete time age-replacement policy, a system is replaced
at the completion of cycle N ( N = 1,2,... ) or at failure, whichever occurs first. For the pro
rata rebate warranty (PRRW), the customer will be refunded a proportion of the purchasing
cost if the system fails within the warranty period. When the system is preventive replaced, a
salvage value that proportional to its expected residual lifetime is gained. Cost models from
the customer’s perspective are developed for both warranted, and non-warranted systems.
The corresponding optimal replacement age N* is derived such that the long-run expected
cost rate is minimized. Under the assumption of the discrete time increasing failure rate, the
existence and uniqueness of the optimal N* are shown, and the impacts of a PRRW on the
optimal replacement policies are investigated analytically. Finally, a numerical example is
demonstrated for the optimal policy illustration and verification. The observations from the
technical analysis and numerical results provide valuable information for a buyer (user) to
adjust their optimal preventive replacement policy when the system is operating in discrete
time and under a PRRW.

Keywords: Age replacement, discrete failure distribution, increasing failure rate, long-run
expected cost rate, pro rata rebate warranty.

1. Introduction

The classical age-replacement policy is proposed by Barlow and Proschan [2], in
which an operating system is replaced at time of failure or at age 7', whichever comes
first. Another well-known preventive replacement policy proposed by Barlow and Hunter
[1] is the classical periodic replacement policy (also called the block replacement policy),
where an operating system is replaced by a new one at times k7 (k=1,2,3,---), and at
failures. Afterwards, many authors have systematically studied and extended these two
well-known replacement model, they become the most commonly used preventive
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maintenance (PM) policies in reliability theory. The aim of optimal PM policies is to
provide optimum system reliability/availability and safety performance at the lowest
possible maintenance cost.

In the modern marketplace, most products are sold with a warranty, thus, to
incorporate various product warranties into the derivation of the optimal PM policy would
be interesting and possibly useful. Jack and Schouten [16], Djamaludin and Murthy [15],
Jung and Park [17], Chen and Chien [7], and Wu et al. [25] incorporate system warranty
with various maintenance actions to investigate the performance of the optimal PM
policies. Yeh et al. [26, 27], and Chien [8-11] analyzed the impacts of various warranties
on the classical preventive replacement policies. However, all the warranty-replacement
problems mentioned above are modeled under a continuous operating circumstance. In
other words, since most of the warranty-replacement model are -classified as
continuous-time models, they will lose their validity in a discrete-time setting. In failure
studies for airplane parts, the time to unit failure is often measured by the number of
operation cycles to failure. In actual situations, jet fighter tires are replaced preventively
after 4-14 flights, which may depend on the kind of use. In other cases, lifetimes are
sometimes not recorded at the exact instant of failure but are collected statistically per day,
per month, or per year. Therefore, in any case, it is interesting and possibly useful to
consider discrete time processes. And after Nakagawa [23, 24] proposed a discrete time
age-replacement policy, Chien [12, 13] and Chien and Zhang [14] incorporate the
warranties into the replacement policy by considering the product is operating in a discrete
time process: in Chien [12], the effects of a free-repair warranty (FRW) on the optimal
discrete time periodic replacement policy is discussed; in Chien [13], the impacts of a
renewing free-replacement warranty (RFRW) on the optimal discrete time age-
replacement policy is investigated. Chien and Zhang [14] further analyzed a hybrid
warranty policy for systems operating in discrete time.

A rebate warranty is one of the most common types of warranty policies. Under a
rebate policy, the manufacturer (seller) refunds a customer (buyer) some proportion of the
sales price if the product fails during the warranty period. Common examples of products
sold under rebate policies include batteries and tires. In this paper, a pro rata rebate
warranty (PRRW) is considered for deriving the optimal discrete time age-replacement
policy, and the salvage value of an un-failed system that due to preventive replacement is
also considered. From the customer’s perspective, a mathematical formulation for the long
term expected cost rate is developed. Under the increasing failure rate (IFR) assumption,
the existence and uniqueness of the optimal age for preventive replacement (i.e., the
optimal number of operation cycles for preventive replacement) such that the long-run
expected cost rate is minimized is shown. Furthermore, the optimal ages for preventive
replacement, and the corresponding cost rates for systems with and without PRRW are
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compared analytically, and their structural properties are summarized.

The reminder of this paper is organized as follows. In Section 2, the model
assumptions are described, and mathematical formulations for the expected cost rates are
established. Based on the cost models, the optimal number of operation cycles for
preventive replacement for both a warranted, and a non-warranted system are derived, and
their structural properties are presented in Section 3. These optimal replacement policies
and their corresponding expected cost rates are compared analytically in Section 4. In
Section 5, a special case of the discrete failure distribution is considered as a numerical
example, and sensitivity analysis of effectiveness of the model parameters on the optimal
policies are performed. Finally, some comments are concluded in Section 6.

2. Mathematical Formulation

In this section, cost models from the customer’s perspective are developed for both
warranted, and non-warranted systems.

2.1. Preliminaries

Under the discrete time age-replacement policy, the system is replaced at the time
when the Nth(N =1,2,---) operation cycle is completed, or is replaced at failure,
whichever occurs first. More precisely, when the system fails at operation n(< N), a
failure replacement (corrective replacement) is performed with a downtime cost C, >0,
and a purchasing cost C, > 0. If the system passes through the cycle N and does not fail
(i.e., the Nth operation cycle is completed successfully), then a preventive replacement is
carried out. Because a preventive replacement is a planned PM action, only the cost C, is
incurred in this action. Therefore, under this model, the design variable is N.

Without considering warranty, various replacement policies in discrete time have
been investigated by researchers [19, 20, 23, 24]. However, because the system, that
preventive replaced at the completion of Nth operation cycle, is still operable, so the
salvage value of an un-failed system should be considered in the cost model. It is
reasonable to assume that the salvage value of a used (un-failed) system is proportional to
its expected residual lifetime, thus, in this study, we define it as v -(n—N )‘{n>N }s
which is similar to the definition used in Kaio and Osaki [18] and Chien [11]. On the other
hand, under a PRRW, the customer is refunded a proportion of the sales prices C, if the
system fails within the warranty. Thus, the refund amount, R(n), is a function of the
failure time », and we define it as

cp(l—”—_l} for 1<n<W,
W

R(n) = (1

0, for n>Ww.
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Then, by the similar method to that of Chien [12], the cost model for operating the

system in discrete time, in a long run, can be established.

2.2. Cost model without warranty

Without warranty, any two successive replacements of the system form a renewal

cycle of the failure process, Figure 1 illustrates this case.

Hence, the replacement cycle length (i.e., the renewal cycle length, denote by 7,(N))

is
n, if n<N,
Ty(N) = .
N, if n>N,
and the total cost incurred in a renewal cycle (denote by C,(N)) is
c,+C,, if n<N,
Co (N) = .
C,-v,-(n=N), if n>N.
n=1 n=N cycele length
cycle —p
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Figure 1. Possible replacements without warranty.

Thus, by (2) and (3), the long-run expected cost rate is
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E[C (V)]

= )]

(c, +Cp)-ZA_/:pn + i[cp —v,(n=N)]p,

— n=N+l1
- N w
2, + N 2p,
n=l1 n=N+1
N 0 0
Cp+Cden_vsz an
_ n=1 m=Nn=m+1 ] (4)

N ©
2. 2.7,
2.3. Cost model with warranty

For a system purchased with the PRRW, the total cost incurred in a renewal cycle
depends on whether a preventive replacement is scheduled within the warranty period or
not. Thus, the cost model should be established for two cases: N >W and N <W.

Casel. N>W

When the operation cycle for preventive replacement of a system is scheduled after
the warranty expiration, then there exist three possible replacement states, as shown in
Figure 2. First, if the system fails within the warranty (i.e., the system fails at
the nth operation cycle, where n <W), then a downtime cost C,, and a purchasing
cost C, are incurred; also a refund amount R(n) (see (1)) is gained due to the PRRW.
Second, if the system fails after the warranty, but before the preventive replacement (i.e.,
the system fails at the nth operation cycle, where W <n < N), then it incurs a downtime
cost C,, and a purchasing cost C,, but without any gain due to the PRRW. Third, if the
system does not fail before completing the Nth operation (i.e., the system fails at
the nth operation cycle, where n > N ), then a preventive replacement is performed with

cost C,, and the salvage value v, -(n—N) is also gained from that un-failed system.
According to the above descriptions, the replacement cycle length, and the total cost
in the renewal cycle (denoted by 7,(N) and C,(IV), respectively) become

n, if n<W,
T,(N)=<n, if W<n<N, %)
N, if n>N,
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Figure 2. Possible replacements with PRRW when N > W.

and
C,+C,—R(n), if n<W,
C/(N)=1C,+C,, if W<n<N,
C,-v,-(n=N), if n>N.

Therefore, the long-run expected cost rate is

E[c, (V)]

FN =]

0

i[cd +C, -Rm)]p, +(c,+C,) ﬁ:pn +Yle, -v,(n-Nlp,

n=w+1 n=N+l

-(n—N)

(6)

Z" Pt Zn P2 NP,

n=W+1
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Zzp" ) ®
dzpn_i_c m=l n=m+1 —v, Z an

— n=1 m=Nn=m+1 . (7)

N
§ZP

Case2. N<W

When the operation cycle for preventive replacing a system is scheduled within the
warranty period W, all the replacements (preventive or corrective) are performed within
the warranty. However, it should be note that if a preventive replacement is performed at
the completion of operation cycle N, no refund can be gained because such a replacement
is scheduled, not resulting from failure. In this case, there exist two possible replacement
states, as shown in Figure 3. First, if the system fails before the preventive replacement
(i.e., the system fails at the nth operation cycle, where n < N <W'), then a downtime cost
C,, and a purchasing cost C, are incurred; and a refund amount R(n) is also gained.
Second, if the system does not fail before completing the Nth operation (i.e., the system
fails at the nth operation cycle, where n> N), then a preventive replacement is
performed at the completion of Nth operation with cost C,, and the salvage value
v, -(n—N) is also gained.

n=N n=W cyele length cvele cost

cycle —p
. . ‘ n C;+C,—R(m)
Statel {
. 0000

cyele| ——»

- 900000 v e

Legend
. : successfully completed the operation

& : failed at the operation

Figure 3. Possible replacements with PRRW when N< W,
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According to the above descriptions, the replacement cycle length, and the total cost
in the renewal cycle (denoted by 7,(N) and C,(N), respectively) are

T.(N) = n, if n<N, )
AN, if n> N,
and
C,+C —R(n), if n<N,
O T ©)
C,-v,-(n=N), if n>N.
Then the long-run expected cost rate becomes
E[T,(V)]
N 0
Z[Cd + Cp _R(n)]pn + Z[Cp —VS(I’Z _N)]pn
_ n=l1 n=N+l
- N ©
Zn-pn +N- an
n=l1 n=N+1
0 N )
. W-N)D.p,+>. 2P . .
Cd an + Cp n=N+1 m=1 n=m+1 _ VS Z an
— n=1 W m=Nn=m+1 (1 0)
v .
22,0
Also note that
w 0
w Z an © ©
Cdzpn +Cp%_vs Z an
CR,(W)=CR,(W)=—2" — m=Wn=m (11)
ggpn

from (7) and (10).

3. Optimal Policies

*

The main objective here is to derive the optimal number of operation cycles N, for
preventive replacement.
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3.1. Optimal replacement policy without warranty

For a system without warranty, from (4), we see that the inequalities
CR,(N +1)>CR,(N) and CR,(N) < CR,(N —1) hold iff

C —v_ - C —v_ -
H(N)ZPC—S# and H(N—1)<pc—s'u, (12)

d d
where H(N)=r,,, Z:zl ::m P, — ZL P, » which is just the same intermediate function
that used in Chien [13]. Then, the following Lemma concerning the properties of H(N) is
summarized below, which is required and helpful to examine the existence and uniqueness
of the optimal N, .

Lemma 1. Suppose that r, is strictly increasing in n (i.e. IFR), then H(n) is also strictly
increasing in n. Furthermore, lim, ,,H(n)=H(0)=0 and lim, , H(n)=H(w)

=rpu—1L

n—0

Proof. See the Appendix of [13] for the detailed proof.

Because most systems deteriorate due to the number of operations, the case that 7,
has IFR will be focused throughout this paper. In this case, the optimal number of
operation cycles N, , for preventive replacing a system without warranty, can be easily
obtained through (12), i.e., H(N,—1) <(Cp -V, -y)/Cd <H(N,), and the property
results are given in the following Theorem.

Theorem 1. To consider salvage value of a system that operating in discrete time with an
IFR 7, the following results that concerning the optimal N, are true.

(i) When C,<v -u, N, =0.

(i) When C,>v -, if H(oo) > (Cp —vs,u)/Cd , or equivalently )
r,> (C,+C,—v, -,u)/(Cd -U), then there exists a finite, unique N, (i.e.,
0 < N, <) that satisfies the inequality

Ni-1 o N1 C —v, -u Ny oo No
FNS Zzpi_zpj <%SFN;+1ZZPI‘_ZP]! (13)
Jj=li=j J=1 d j=li J

and the resulting expected cost rate satisfies the inequality

Cyor +v, <CR(N; )< Cyorye 4, (14)

N,+1 N

Otherwise, N, = and the resulting expected cost rate is CR, (N;= ) =CR, (oo) =
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(c,+C,)/u.
Proof. (i) When C, <v_-u,and by (4), we have
L HN)-(C, - v, 1)

[Zzpnj(fipn)

m=1 n=m m=1 n=m

CR,(N +1)—CR (N)—

>0. (15)

Thus CR,(N) is strictly increasing in N, and thus N, = 0.

(i) When C, >v -u, then (12) is equivalent to H(N — 1)<( -V, y)/Cd <H(N).
And by Lemma 1, it is obvious that if H(o0)> (C -y ,u§ / C,, or equivalently
r, > (Cp +C,—v, - ,u)/ (Cd . ,u) , then there exists a finite, and unique N, (i..,
0< N, <) that satisfies H(N, —1)< (Cp -V, -,u)/C < H(N,), which is equivalent to
(13); further through algebraic manipulation, the resulting expected cost rate satisfies (14).
Otherwise, N; =0 and CR,(N;)=CR,(=0)=(C, +C, )/ .

3.2. Optimal replacement policy with warranty

Again, to derive the optimal N, under PRRW, the two cases have to be investigated
separately: N >W and N <W, For N>W, let N, be the optimal number of operation
cycles for preventive replacement that minimize the cost rate CR(N). Then, the
following lemma concerning N, can be obtained.

Lemma 2. 7o consider salvage value for a system that operating in discrete time with an
IFR r, and under the PRRW with period W, the following results concerning the
optimal N, hold for N =W +1,W +2,---

(i) When Cp(ZZ=lz:O=m+1pn/W)S v, - i, then N =W +1, and

w 0
W+l Z Z ’1
Co oY p,+Cy iy S S
n=1

CR,(N;)=CR, (W +1)= Wi (16)

(i) When €\ 7, b, [W)> v,

(1) if HW)=[C, (Z}L S b, /W)—vs ] /c , then
N, =W +1, and CR, (Nl*): CR,(W +1) is as given by (16).
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@ i B <ic,(3. 3"
unique N, (i.e., W <N, <o), which satisfies the following inequality

n= m+1

>3

C m=ln=m+l

qg%Mg

N -1 Ny -1
er” Zzpn - an <
n=1

m=1 n=m

MZZPn an,

d m=1 n=m

and the resulting expected cost rate satisfies

C,-r.+v <CR1(N1*)SCd-r .tV

N; s Ny +1 s
(3) if H(o)<[C, (ZL z:;mﬂ P, /W) -V, -u]/Cd , or equivalently
< [G +Cp(zzzlzf=m+1p"/W)_vs "u]/('u'cd)’ then Nl* =, and

> 3,

C + C m=1 n=m+1
d
i w

CR1(N1*): CR, ()= P

Proof. (i) When C (Zm lzn Dy / W)S v, - i, and by (7), we have

P

€, H(N)=| €, "t =y,
CR,(N +1)— CR,(N) = —— >0.
555

/W)— Vv, ~,Ll]/Cd < H(w), then there exists a finite,

(17)

(18)

(19)

(20)

Thus CR,(N) is strictly increasing in N (>W), and thus N, =W +1. Put N=W +1

into (7), it yields (16).

(i) WhenC, (ZZ:] zzf:ml ) / W)> v, - i, then from (7), the inequalities
CR,(N; +1)>CR,(N;) and CR,(N;)<CR,(N; —1) hold iff
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w
2
C, ==l —y C,

H(N')=> —,and H(N -1)<

21)

a S %Mg

M=

S M
-3

Thus, by (21) and Lemma 1,

() it Hy=[C,(3" 3" p,/W)-v,-1/C,, then the optimal N; =W +1, and
corresponding cost rate CR (N ) CR (W+ 1) is as given in (16).

@ 1 HO<IC, DD Y
* (=W +1), which satisfies (21) and is equivalent to the inequality (17). Further,

D, /W)— 2 -,u]/Cd, then there exists a finite, unique

through algebraic manipulation, the resulting expected cost rate CR, (Nl* ) satisfies
(18).

(3) If H(o)<[C, (ZZZI z:;mﬂ D, / W)—v, - 1] / C, , which is equivalent to

> 3

Cd + C m=ln=m+l n=m+l Y ‘/,l

r < ’ - VZ i 22)
d

because H() =7, u—1. Then N, =oo, and the resulting expected cost rate is as given
by (19).

Next, for N<W ,let N, be the optimal number of operation cycles for preventive
replacement that minimize the cost rate CR,(N). Then, the following lemma concerning

N, can be obtained.

Lemma 3. 7o consider salvage value for a system that operating in discrete time with an
IFR r, and under the PRRW with period W, if [C y —R(n)]rn is strictly increasing in n,
then the following results concerning the optimal N, hold for N =1,2,---,W .

(i) When C,<v -y, N,=0.
(i) When C,>v -, the following two situations should be considered.

(1) For C, (Z:; Z:;mﬂ D, /W)S v, - i, there exists a unique N, (i.e., 1< N, <W)

that minimize CR,(N), and the resulting expected cost rate satisfies

[C, —R(N} )]r +v, <CR,(N ;)S[Cd—R(N;+1)]rN;H+vS, (23)
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where R() is defined by (1).

(2) For Cp (Zn”a/:] Zj:mﬂ Py /W)> Vs " Hs

@ if Hw)>[C,(3 >

n=m+1

D, /W)— 12 -y]/C , then there exists a unique N,

(ie, 1< N, <W ) that minimize CR,(N), and the resulting expected cost rate
satisfies the inequality (23).

o0

) FHONSIC, (S, 3 0, W)=, -/, then
N, =W ,and CR,(N,)=CR,(W) is as given by (11).

Proof. (i) By (10),

CR,(N +1)=CR,(N) = —— L4 ,)v — (24)
£5.|550)
where
W-N)+. > p,
Y(N)=[C, -R(N+1)[H(N)-C, Wm=l VNS (25)
Since W(N+1)-¥Y(N)= {[Cd —R(N + 2)]rzv+2 - [Cd —R(N + 1)]FN+1 }X an: ::m P, >0

because [Cd —R(n)]rn is strictly increasing in n. Thus, W(N) is a strictly increasing
function of N. Therefore, when C, <v -u, then ¥(0)=-C +v -u >0 that is
WY(N)=0 for all N, which implies that CR,(N) does not decrease in N. Hence,
N, =0.

(i1) Further, from (10), the inequalities CR,(N +1) = CR,(N) and CR,(N)< CR,(N -1)
hold iff W(N)>0 and W(N —1)<0. Therefore,
(1) whenC, >v - puand C, (Z::l zw D, /W)S v, - i, then we obtain

n=m+1

o0

Y(0)=-C,+v,-u<0and ¥Y(W)=C, ><H(W)—[Cp@zzlzn:mﬂpn/W)—vs -u]>0.
Thus, there exists a unique N, (i.e., 1< N, <W ) that satisfies W(N,)>0 and

W(N, —1)<0. Algebraic manipulation of W(N, —1)<0<W¥(N,) yields the resulting
expected cost rate satisfies (23).

On the other hand, (2) when C, >v -xu,and C, (ZZ:I Zj:mﬂ D, / W)> v, - u, then
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(@if HW)>[C, (ZL an:m-#l D, /W) —v, - u]/C,,thus we have

W(0)=-C, +v,- <0 and W) =C,-HOW)-[C,37 3" p, /W)-v,-u1>0,
this implies that there exists a unique N, (i.e., 1< N, <W ) satisfies ¥(N,)>0
and W(N, —1)<0, and the resulting expected cost rate satisfies (23). Otherwise, (b)

if H(W)S[Cp(z:ﬂz::mﬂpn/W)—vs-,u]/Cd, Y(W)<0. Thus N, =W and
CR,(N,)= CR,(W) is as givenin (11).

It is worthy noting that the condition C, <v, - means that the purchasing cost of a
new system is lower than the expected salvage value over its lifetime. That is, under this
condition, the optimal replacement policy is always that the customer should preventively
replace a new system when it is purchased. Theorem 1 and Lemma 3 confirm the state of
affairs. Theorem 1 indicating that when C, <v_ -y is true for a system without warranty,
the optimal number of operation cycles for preventive replacing a product is N, =0.
Lemma 3 indicating that for a PRRW warranted system under the case N <W, the
optimal number of operation cycles for preventive replacement is N, =0. Furthermore,
from Lemma 2, it shows that for a PRRW warranted system under the case N >W, the
optimal operation cycles for preventive replacement is N, =W +1 because

c, ¥ zw D, / W)< C, <v, - u. In fact, however, it seems more reasonable that the

safe prn{ge olfng l new system should be larger than its expected salvage value over its
lifetime. Therefore, the following discussion on the optimal policies in the remainder of
this paper will focus on the condition C, >v, - u.

In the previous discussions of Lemmas 2 & 3, the local optimal replacement cycles
for a PRRW warranted system in discrete time were derived under the
constrain N >W and N <W.However, in practice, the preventive replacement timing
should not be pre-determined to be in a certain interval. Therefore, it is important to
investigate the global optimal replacement cycles N, without any constraint. The global

optimal number of operation cycles N, for preventive replacement is defined as:

NW = * (26)

. [N i er (V)< cr,(V3)
N, i CR(N])= CR, (W)

Combining Lemmas 2 and 3, the following theorem concerning the N, can be
obtained.
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Theorem 2. 7o consider salvage value for a system that operating in discrete time with an
IFR 1, and under the PRRW with period W, if C,>v -u, and [Cd —R(n)]r” is strictly

n

increasing in n, then the following results hold.

(i) For C, (ZZ:] Z:lmH D, /W)S v, u, then 1< N, <W, and the resulting expected
cost rate satisfies the inequality (23).

(it) For C, (ZZ:] Z:lm” D, /W)> v, - U, then

(1) if HOW)>[C, (ZL S b, /W)—vs ] /C . then 1SN, <W and the
resulting expected cost rate satisfies the inequality (23).

@) if H)=[C, (Z’L S b /W)—vs ] /Cd , then N,=W and the
resulting expected cost rate is given by (11).

o0

(3 if HON<IC,(X) X0 o, /W)=y [C < H(w) . then W <N, <o,
and the resulting expected cost rate satisfies the inequality (18).

(4) if H(o)<[C, (Z::l Z:;mH pn/W) -V, -,u]/C , then N,, = and the resulting
expected cost rate is given by (19).

Based on Theorem 2, note that when the expected salvage value over the lifetime of a
new system is larger than a threshold (i.e., v,-u=>C, (ZZZI ZZWI D, / W)), the system
should be preventively replaced before the warranty expires, to take advantage of the
salvage value. However, if v -u<C, (ZZ:] Zj:nm D, / W), then the timing to perform a

preventive replacement may be scheduled before or after the warranty expiration; the
condition for whether a preventive replacement is performed within the warranty period or

n=m-+1 Py /W)_ Vs "u]/cd
and H(W). Carefully checking the term [C,(3" > p /w)-v - u1/C,, we find

that as the downtime cost C, or the salvage value per cycle v, become larger, then
HW)=[C, (Zzzl Z:):mﬂ ) / W)— v, - ] / C, becomes more likely and
[C, (ZL ijmﬂ P, / W)— v, ] / C, becomes smaller. Thus the optimal policy is that the

system should be replaced preventively before the warranty expires to avoid system
failures, or to take advantage of the salvage value of an un-failed system. Otherwise, the
optimal timing for preventive replacement should be greater than the warranty period to
take advantage of the warranty coverage. These properties are reasonable, and make sense.

o0

not depends on the relationship between the values [C, (ZZ:]Z
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4. Comparisons

In this section, the impact of a PRRW on the optimal discrete age-replacement policy
is investigated by comparing the expected cost rates CR(N) as well as the optimal
number of operation cycles N, for preventive replacement. First, we have the following
corollary results.

Corollary 1. CR/(N)>CR(N) for N>W >0, and CR/(N)>CR,(N) for any
O<NZW.

Proof. From (4), and (7), it is obviously that

CR,(N)—-CR,(N) = >0 27)

forany N>W >0.
And from (4), and (10),

CR,(N)—CR,(N) = >0 (28)

forany O<N<W.

Corollary 1 means that given any fixed number of operation cycles N for preventive
replacement, the expected cost rate for a system without warranty is always greater than
the expected cost rate for a system with PRRW. This results in turn implies that, when the
optimal policies are attained for both cases (i.e., N, and N,,), the optimal expected cost
rate for a warranted system results in a smaller value.

Next, the difference between N, and N,, is compared to show the effect PRRW.
Through Theorems 1 and 2, H(#) plays an important role in the comparison of N, with
N,, , and we have the following corollary results.
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Corollary 2. To consider salvage value for a system that operating in discrete time with
an IFR 1, and under the PRRW with period W, if C,>v -u and [C,—R(n)]r, is
strictly increasing in n, then the optimal N, and N, , which minimize the long-run
expected cost rate, have the following properties.

W When €[S 37 b, W)>v,

o0

(1) if HW)<[C, (ZZ:Z » /W)— v, 1l/C, . then W <N} <N;.

n=m+1

@) if [C, (Z:f D /W)— v, - 1/C, <HW)<(C, v, -w)/C, , then
0< N, <W<N,.

3)if HW)>(C, v, u)/C,, then O<N, <Ny <W or 0<Ny <N, <W.

(i) When C, (ZZ:1 Zj:ml ) /W)S 7

(1) if HW)<(C, v, u)/C,, then N, <W <N, .

2) if HW)>(C, —v, - u)/C, , then 0<N; <Ny <W or 0<N; <N, <W.
Proof. By Theorem 1, the optimal N, can be obtained by solving H(N, —1)<
(Cp -V, - u)/ C,<H (N; ) . Because H(n) 1is strictly increasing in n , thus if
HW)<(C, -v, u)/C,,then Ny >W;otherwise, Ny <W .
(1) When C, (Zzzl Z:;mﬂ P, / W)> v, because [C, (ZZ:I ZLM D, / W) —v, - u] / C,
< (Cp -V, -,u)/Cd for any W >0, thus we may divide the value of H(W) into 3
regions. First, (1) if H(W)<[C, (ZZZI Z:;mﬂpn/W)—vS -4]/C,, then Nj >W and
N,, >W are hold by Theorems 1 and 2; and since H(n) is strictly increasing in 7, thus
the result <N, <N; is true. Next, () if [C,(X0. > p,/W)-v,-u/C,
<HW)< (CP -V, -y)/Cd , then Ny >W and 1< N,, <W by Theorems 1 and 2, thus
0< N,, <W <N, is true. Finally, 3) if H(W)> (Cp —v, ~,u)/Cd ,then 1< N, <W and
N, <W by Theorems 1 and 2; so it could be 0< N,, <N, <W or 0<N, <N, <W.

On the other hand, (i) when C, (Z::l z:;w D, / W)S v, - i, the Theorem 2 shows

that N, is always greater than or equal to . By the similar way, we may divide the
value of H(W) into 2 regions. Thus, by Theorems 1 and 2, (1) if
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HW) <(C, v, -u)/C, , then Ny, <W <Ny (2) if HW)>(C,—v,-u)/C,, then it
couldbe 0< N, <N, <Wor 0<N, <N, <W.

To give a better illustration for the Corollary 2, Figures. 4 and 5 are provided to show
the relationship between optimal N* and H(W). It indicating that adding a PRRW to a
system not only reduces the long-run expected cost rate, but also effects the location of the
optimal number of operation cycles for preventive replacement. More precisely, when the
optimal N, for a system without warranty is greater than /¥, a PRRW with period W
will shorten the optimal N, for preventive replacement. On the other hand, if the
optimal N is less than #, then a PRRW with period W will also make the optimal
N,, for preventive replacement within the warranty, but is may be that N, <N, <W or
N, <N, <W. Figure 6 is a combination of Figures 4 and 5 for the purpose of further
illustration in a different perspective.

c Xn=1linem+1Pn

W Vsk Cp — Vst
Cy Ca
H(W) >
Region 1 Region 2 Region 3
W < N, <Ng 0 <Ny <W <Ny 0<Ny =Ny =W
or

0<N;<Nj <W

Figure 4. Relationship between optimal replacement ages (operation cycles) and
H(W), when Cp m=12$=m+1 Pn/W) > vs - .
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Cp —Vsi
Ca

HW)

v

Region 1 Region 2

Ny <W < N; 0< Ny <N;<w

or

0<N;<Nj <W

Figure 5. Relationship between optimal replacement ages (operation cycles) and
H(W), when Cp @Pn!:l Z$=m+1 P/W) =vs -

Conditions

. W< Ny <N,

0< Ny < <N,

. 0<Ny <Ny <
0<N, <Ny =W

Cp [ZL]Z::.HP

CF (Z; Z;Mpn /ﬁ’]srﬁ, -l

- ' H(P)
v x
CPLW"}'F C, —v,-u
T C
d
CJ

Figure 6. A diagram description for the Corollary 2.

Furthermore, the difference between the optimal cost rates provides a measure of the
value of a PRRW. To study the variation in the magnitude of savings in the expected cost
rate by PRRW, we can define
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CR,(N )~ CR(N,, )
CR,(N;)

ACR = , (29)

where CR(N,,)=CR,(N;) when N, =N, and CR(N, )=CR,(N;) when N, =N;.

That is, ACR provides a measure of the value of PRRW, and it will be evaluated through

a numerical example in the next Section.

5. A Numerical Example

This section investigates the sensitivity of the model parameters on the optimal
discrete age replacement policy. Suppose that the failure distribution of a system operating
in discrete time is a negative binomial one with a shape parameter of 2; that is,

p, = npzq”’1 , n=1,2,---, (30)

where g=1—p (0< p<1). Then, the mean number of operation cycles to failure is
1= (+q)/ p; the failure rate is », = np” /(np +q), which is strictly increasing from p’
to p; and the function H(n) becomes [(n + 1) pg—q+q""] / (np+1). Note that
H0)=0, H(©)=¢q, and H(n+1)—H(n)>0 for n=1, 2, 3, ---can be shown. Thus
H(n) is strictly increasing in n, and follows Lemma 1. This interesting discrete
distribution was first introduced by Nakagawa and Osaki [24]. Nakagawa [23, p. 81] also
applied this model as a discrete failure distribution when he discussed the replacement and
maintenance policies.

Fix the warranty period W =20, and the purchasing cost C, =200. The resulting
optimal replacement policies, and corresponding expected cost rates, for both without
warranty, and with a RFRW, are compared under various p, C,, and v, . The numerical
calculation results are summarized in Table 1.
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Table 1. Numerical results under various p, C,, and v, .

P Co vs No® CRo(N™)  Ni* CRi(NY)  N2* CRa(N-)  Nw®  CR(Nw")  ACR

1 331 13.793 87 12.500 20 13.966 87 12.500 9.37%
3 58 13.770 31 12.270 20 12.487 31 12.270 10.89%

200 6 12 12.197 21 10.395 12 9.638 12 9.638 20.98%
8 0 — 21 9.034 0 — 0 — —
10 0 — 21 7.673 0 — 0 — —
1 59 17.209 39 15.774 20 16.443 39 15.774 8.33%
31 16.889 21 14.965 20 14.963 20 14.963 11.40%
300 6 9 13.931 21 12.924 10 11.460 10 11.460 17.73%
8 0 — 21 11.563 0 — 0 — —
1/15 10 21 10.202 0 — 0 — —
1 28 23.338 22 21.382 20 21.396 22 21.382 8.38%
3 18 22.143 21 20.022 16 19.721 16 19.721 10.93%
500 6 6 16.791 21 17.981 7 14.563 7 14.563 13.26%
8 0 21 16.620 0 0
10 0 — 21 15.259 0 0 —_
1 14 35.442 21 34.026 14 32.896 14 32.896 7.18%
3 11 32.348 21 32.665 11 29.806 11 29.806 7.85%
1000 6 4 22.372 21 30.624 4 20.600 4 20.600 7.92%
8 0 21 29.263 0 — 0 — —
10 0 21 27.902 0 — 0 — —

) Cy vs No®  CRe(No') N CRi(M) N CRaN-") Nw'  CRWNwY) ACR

1 654 17.391 62 15.178 20 16.052 62 15.178 12.72%
3 69 17.388 28 14.969 20 15.076 28 14.969 13.91%

200 6 20 16.897 21 13.709 15 13.369 15 13.369 20.87%
8 7 14.549 21 12.820 9 11.078 9 11.078 23.85%

10 0 21 11.931 0 — 0 — —
1 53 21.717 29 19.270 20 19.495 29 19.270 11.26%
3 31 21.519 21 18.545 19 18.516 19 18.516 13.95%
300 6 14 20.079 21 17.211 13 16.361 13 16.361 18.51%
8 5 16.391 21 16.322 7 13.246 7 13.246 19.18%

1/12 10 0 21 15.433 0 — 0 — —
1 24 29.593 21 26.438 19 26.349 19 26.349 10.96%
3 17 28.614 21 25.549 15 25.017 15 25.017 12.57%
500 6 9 25.356 21 24.216 10 21.719 10 21.719 14.34%
8 4 19.505 21 23.327 4 16.813 4 16.813 13.80%

10 0 — 21 22.438 0 — 0 — —
1 12 45.288 21 43.950 12 41.558 12 41.558 8.23%
3 9 42.548 21 43.061 10 38.881 10 38.881 8.61%
1000 6 6 35.693 21 41.727 6 32.490 6 32.490 8.97%
8 3 25.885 21 40.838 3 23.545 3 23.545 9.03%

10 0 — 21 39.949 0 — 0 — —

(—: undefined)
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yz Cy Vs No®  CRo(No") NI°  CRu(N") N CRa(N:")  Nw'™  CRWNw") ACR

1 ) 21.052 45 17.681 20 18.132 45 17.681 16.01%

3]
o0
W

21.052 23 17.448 20 17.467 23 17.448 17.11%
200 6 26 20.881 21 16.558 16 16.298 16 16.298  21.94%
8 13 20.062 21 15.959 12 15.037 12 15.037  25.04%
10 4 16.724 21 15.360 6 12.559 6 12.559  24.90%

1 48 26.300 23 22.566 20 22.588 23 22.566 14.19%

3 30 26.171 21 21.974 18 21.889 18 21.889 16.36%

300 6 16 25.294 21 21.076 14 20.342 14 20.342 19.57%

8 9 23.599 21 20.478 10 18.619 10 18.619  21.10%

1/10 10 3 18.673 21 19.879 5 15.028 5 15.028 19.52%

1 20 SRyl 21 31.611 17 31.303 17 31.303 12.97%
3 16 35.131 21 31.012 14 30.196 14 30.196 14.04%
500 6 10 32.700 21 30.114 10 27.704 10 27.704 15.27%
8 6 29.499 21 29.515 7 24.898 7 24.898 15.59%
10 2 22.060 21 28.917 3 18.898 3 18.898 14.33%

1 10 55.413 21 54.205 10 50.417 10 50.417 9.01%

3 8 52.903 21 53.606 9 47.988 9 47.988 9.29%
1000 6 6 47.248 21 52.708 6 42.818 6 42.818 9.37%
8 4 41.112 21 52.110 4 37.33 4 37.339 9.17%
10 2 29.095 21 51.511 2 26.371 2 26.371 9.36%
yz Ca Vs N CRo(No) N CRi(VY") N2 CRaN:2")  Nw'  CRWNVw") ACR
1 o0 26.666 29 21.160 20 21.254 29 21.160  20.64%

3 124 26.666 21 20.885 20 20.869 20 20.869  21.73%
200 6 33 26.638 21 20.375 16 20.133 16 20.133 24.42%
8 19 26.407 21 20.035 14 19.412 14 19.412 26.48%
10 11 25.602 21 19.695 11 18.372 11 18.372 28.23%

1 43 33.325 21 27.313 19 27.266 19 27.266 18.18%
3 29 33.255 21 26.973 17 26.772 17 26.772 19.49%
300 6 17 32.778 21 26.463 14 25.732 14 25.732 21.49%
8

3

12 31.943 21 26.123 12 24.720 12 24.720  22.61%

1/8 10 8 30.266 21 25.783 9 23.211 9 23.211 23.30%
1 17 45.772 21 39.489 15 38.785 15 38.785 15.26%

3 14 45.074 21 39.149 13 37.906 13 37.906 15.90%

500 6 10 43.283 21 38.639 10 36.081 10 36.081 16.63%
8 7 41.305 21 38.299 8 34.306 8 34.306 16.94%

10 5 38.103 21 37.959 6 31.678 6 31.678 16.86%

1 8 71.139 21 69.930 9 64.026 9 64.026 9.99%

3 7 68.825 21 69.589 8 61.910 8 61.910 10.04%

1000 6 6 64.222 21 69.079 6 57.689 6 57.689 10.17%
4 59.967 21 68.739 5 53.825 5 53.825 10.24%

10 3 53.808 21 68.399 4 48.531 e 48.531 9.80%
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Below are a few points summarized on the basis of Table 1.

(1)

(2)

€)

Under the same failure distribution, both N, and N, decrease as C, increases,
or as v, increases. This result is reasonable because a system with a higher
downtime cost (or with a higher salvage value) should be replaced preventively
more early to avoid failures (or to take advantage of the value of residual life).
Moreover, it is also intuitive that CR,(N;) (i =0,1,2, and W) are increasing
(decreasing) as C,(v,) increases. This result can be easily verified analytically
through (4), (7), and (10).

These numerical results are consistent with the characteristics identified in
Theorems 1 & 2, and Lemmas 2 & 3. For example, when p=1/10 or 1/8, and
C, =200, v, =1, the optimal N, calculation result is infinite (i.e., N, =)
because the H (o) calculated value is never larger than the (C L=V ,u) / C, value;
on the contrary, under the cooperating conditions of other parametric values, the
condition of H (o0)> (Cp -V, y) / C, can be achieved, thus the N, value will be
finite (i.e., N, <o), the details of this part were illustrated in Theorem 1. When
p=1/15 and v, =8 or 10, or when p=1/12 and v, =10, the optimal N, and
N, calculation results are 0 (i.e, N,=N,=0) because the condition of
C, <v,u is satisfied; on the contrary, in the case of other parametric values, C,
is bigger than v, 4, therefore both N, and N, are greater than or equal to 1 (that
is N, >1, N, >1), with details as illustrated by Theorem 1 and Lemma 3. As for

the calculation results of N, and N, , they are also consistent with the

/8]
characteristics as described in Lemma 2 and Theorem 2, and thus are not

elaborated here.

By carefully observing these numerical calculation results, we also found that it
confirms the advanced findings as proposed in Corollaries 1 & 2. Although the
property proposed in Corollary 1 cannot be directly seen in Table I, however the
authors found that CR,(N)>CR,(N) for 1SN <20 and CR,(N)>CR,(N)

for N >21, these are all consistent the characteristics proposed in Corollary 1.
Regarding the characteristics described in Corollary 2, they can be directly found
in the Table I. For example, in the case of a certain fixed parameter combination, if
the calculation value of N, is greater than the warranty period W (i.e., N, >20),
then the calculated value of N, must be smaller than N, , it may be
20< N,, <N, or N, <20< N,; however, if the calculated value of N, is less
than or equal to 7 (i.e., N, <20), then N,, is also less than or equal to W, but
the relationship between N, and N, is uncertain, it can be N, <N, <20 or
N, <N,, <20. These are presented as shown in Table I. The above phenomena
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4)

)

and the properties mentioned in Corollary 2 are completely consistent.

ACR , as shown in Table I, is defined by (29), and it represents the percentage of
saved cost by using a system with warranty (i.e., PRRW), rather than a system
without warranty. It can be found from Table I that, the cost saving percentage is
7.18% at least and can be up to 28.23%. Hence, we can find the benefits of
operating a system in discrete time process with PRRW for the implementation of
the optimal age replacement policy.

We consider the case p=1/10 (i.e., £=19) for the purpose of verification the
Figures 4 and 5. Fixed W, C "\ and C, at 20,200 and 200, if v, =6, then it match

the condition of Figure 4 (i.e., 136.23~C, (Z:; Zimﬂ D, /W) >y -u=114,

because [C, (3 X P, W)=v,- 41/ C, <0111, (C,~v, 1)/ C,=0.43 and
H(W)=0.363, thus it also satisfies the condition of Region 2; further from Table 1,
we observe that N, =26 and N,, =16, thus it confirms the fact 0< N,, <W < N, .
If v, =10, then it match the condition of Figure 5 (ie.,
13623~ C, (X0 30 p,/W)<v,-#=190, because (C,-v, u)/C, =005

and H(W)=0.363, thus it also satisfies the condition of Region 2; further from
Table 1, we observe that N,=4 and N, =6, thus it confirms the fact
0<N,<N, <W.

6. Conclusion Remarks

Based on the phenomena observed from the above numerical calculation results as

well as the technical analysis, we can further explain the connotations and summarize the

practical information for the product users.
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(1)

(2)

When downtime cost C, is bigger, no matter whether the system has a PRRW or
not, its preventative replacement time should be as early as possible, as it can avoid
the high price the system user has to pay due to unexpected breakdown. On the
other hand, when system residual life’s salvage value v, is higher, no matter
whether the system has a PRRW or not, its preventative replacement time should
be also as early as possible, as it can allow the system user to enjoy the benefits of
the salvage value of the preventively replaced system (since the product can
operate normally because it has not been broken down).

The optimal time of the preventive replacement of a system is subject to the
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availability of the PRRW service of the system. When the calculation result of the
optimal preventive replacement time of a system without warranty is out of the
warranty period (i.e., N; > W), then, if the system is changed to have the PRRW
service, the optimal preventive replacement time N, will become earlier, namely,
W <N, <N, or N, <W<N,. When N, calculation result is before the
termination of the warranty period (i.e., N, <W), then N, is also before the end
of the warranty period (that is, N, <N, <W or N, <N, <W). This suggests
that, if the system has a PRRW service, then the optimal preventive replacement
time will be close to the end of warranty period, or even within the warranty period,
as it can enjoy the benefits of the PRRW service of the system.

(3) When system has a warranty service, this usually means the consumer has to bear
more costs; that is, the price of buying a system with warranty is higher than the
price of buying a system without warranty. ACR is just to measure the percentage
of saved operating cost of using a system with warranty than a system without
warranty. This can provide a reference to the system purchaser in deciding whether
it is worth spending more money to buy a system with a warranty service.

The above messages are believed as considerably useful to the system user in
determining whether to buy systems with PRRW service or not, as well as the
implementation of the optimal age replacement policy.
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