
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

We investigate a retrial machine repair problem with working breakdowns operating 
under the N policy. Failed machines join the retrial orbit only when the server is busy or 
is subject to working breakdowns. The failed machines not being served at the failure 
instants join the retrial orbit and then try to get the service again after some random time. 
Working breakdowns describes that the server does not cause total breakdown, but it 
keeps service with a lower service rate. We assume that the server is servicing either at a 
fast rate (when the server is turned on and working) or at a slow rate (when the server is 
subject to working breakdowns). The so-called N policy is to turn the server on 
when  (  1)N N  or more failed machines are present in the system, and turn the server 
off only when the system becomes empty. Retrial queueing problems play a key role in 
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many applications such as telephone switching systems, telecommunication systems, 
redundant repairable systems, production management, inventory management, and so on.  

Fayolle [13] introduced an M/M/1 retrial queue where a customer finds the server 
busy joining the retrial orbit and only the customer at the head of the queue can try for 
service after an exponential retrial time. Farahmand [12] called this discipline a retrial 
queue with FCFS (first-come, first-served) orbit. Falin and Templeton [11], and Artalejo 
and Gomez-Corral [3] provided the most comprehensive concepts for the retrial queues. 
Choi et al. [6] investigated an M/M/1 retrial queue where the retrial time has a general 
distribution and only the customer at the head of the queue is allowed to retry for service. 
They found a necessary and sufficient condition for ergodicity. Wang et al. [26] and [27] 
studied the M/M/1 retrial queue with infinite source and finite source of customers from 
the perspective of reliability for the first time. An unreliable M/M/1 retrial queue with 
infinite-capacity orbit and normal queue was examined by Sherman and Kharoufeh [23]. 
They provided stability conditions as well as several stochastic decomposability results. 
Do [7] considered an M/M/1 retrial queue with working vacations. He developed the 
closed-form solution in steady-state. An M/M/1 retrial queue with working vacations and 
negative customers was studied by Do et al. [8]. They presented efficient methodology to 
compute the stationary distribution of this retrial queue. Tao et al. [25] dealt with an 
M/M/1 retrial queue with collisions and working vacation interruption under N-policy. 
Using the matrix-analytic method, they developed the stationary probability distribution 
and some performance measures. A Markovian retrial queue with constant retrial rate and 
an unreliable server under the threshold recovery policy was discussed by Efrosinin and 
Winkler [9]. They derived mean performance characteristics and waiting time distribution 
as well as determined the optimal threshold recovery level. Moreover, Ke et al. [16] 
considered a repairable K-out-of-(M+W) retrial system, and Kuo et al. [20] also 
considered a retrial and repairable multi-component system with mixed warm and cold 
standby components. Kuo and Ke [18,19] studied the steady-state availability of a 
repairable system respectively. Extensive surveys and bibliographies of retrial queues are 
given in Yang and Templeton [29], Falin [10], and Artalejo [1, 2]. 

Kalidass and Kasturi [15] analyzed an infinite source queue with working 
breakdowns. They developed the Laplace Stieltjes transform of the distribution of waiting 
time in the system as well as several system performance measures. A comprehensive and 
excellent review on the machine repair problem (MRP) was proposed by Haque and 
Armstrong [14]. The particle swarm optimization (PSO) algorithm has been widely 
utilized by several authors such as Wang et al. [28], Liou [21], and so on. A 
multiple-vacation M/M/1 warm-standby MRP with an unreliable repairman was proposed 
by Wang et al. [28]. They applied PSO algorithm to determine the optimal number of 
warm standbys and the joint optimal values for service rate and vacation rate, 
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simultaneously to maximize the steady-state expected profit per unit time. Liou [21] 
examined an M/M/1 warm-standby MRP with multiple vacations and working 
breakdowns. The PSO algorithm was implemented to determine the optimal number of 
warm standbys and two variable service rates simultaneously at the optimal maximum 
profit. Yen et al. [30] studied a MRP with warm standbys and working breakdowns 
operating under the N policy. The steady-state probabilities of the number of failed 
machines in the system were derived using matrix-analytic method. They used two-stage 
optimization method to determine the optimal threshold ,N and the joint optimal values 
for fast and slow service rates simultaneously at the optimal minimum cost. To the best of 
our knowledge, only a few researchers studied the MRP with warm standbys and working 
breakdowns under the N policy. Therefore, this motivates us to work on the retrial MRP 
with warm standbys and working breakdowns where the server operates under the N  
policy. 

The purpose of this paper is threefold. Firstly, we employ matrix-analytic method to 
develop the steady-state probabilities which are used to calculate various system 
performance measures. Secondly, we establish a profit model to determine the optimum 
number of warm standbys ,S and the joint optimal values for fast service and slow 
service rates, simultaneously by means of CPSO algorithm. Numerical examples are 
provided to illustrate CPSO. Thirdly, we carry out sensitivity analysis to examine the 
effects of system parameters on the optimal expected profit function.  

2. Assumptions of the Model 

We consider the N policy retrial MRP consisting of M operating machines with 
S warm standby machines in which the server is subject to working breakdowns. The 

definition of the N policy is to turn on the server when at least  (  1)N N  failed 
machines are present in the system, and turn the server off only when none is present. The 
standby machine is referred to as warm standby when the failure rate is nonzero and is less 
than the failure rate of an operating machine. The assumptions of the model are described 
in the following. 

(1) Operating machines are subject to failure according to independent Poisson 
process with parameter  . 

(2) Warm standby machines are subject to failure according to independent Poisson 
process with parameter  (  0 ). 

(3) Once an operating machine fails, it is immediately replaced by an available spare. 
When a spare moves into an operating state, its failure characteristics will be that 
of an operating machine. 
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(4) When the server is turned on and working, the service times at this facility follow 
exponential distribution with parameter 1 for a fast service rate. 

(5) When the server is turned on but subject to working breakdowns, the service 
times at this facility follow exponential distribution with parameter 2 for a slow 
service rate. 

(6) Whenever a machine fails, it is immediately sent to the server and once a machine 
is repaired, it becomes as good as new. 

(7) The server can serve only one failed machine at a time and the failed machines 
have to wait in the queue until the server is available. 

(8) Breakdown times of the server are exponentially distributed with rate .  
(9) Repair times of the server are exponentially distributed with rate .  
(10) Retrial failed machines of the retrial queue repeats its request for service with an 

exponential amount of retrial time with rate .  
(11) The failure times, the service times, the breakdown times, the repair times, and 

the retrial times are mutually independent of each other. 
(12) Although slow service occurs during the working breakdown period, the failed 

machines continue arriving by a Poisson process. Once recovered to a normal 
situation, the server immediately serves failed machines with a fast service rate.  

3. Steady-State Results 

We represent the states of the system by the pair ( ( ), ( )),C t N t where ( )C t describes 
the status of the server and ( )N t is the number of failed machines in retrial orbit. 

( ) 0C t  denotes the server is in dormant state, where the server does not be activated 
until N failed machines are accumulated in retrial orbit. 

( ) 1C t  denotes the server is turned on and in idle state, where the failed machines in 
orbit can retrial. 

( ) 2C t  denotes the server is turned on and in busy state with service rate 1 . 
( ) 3C t  denotes the server is turned on and in working breakdowns state with service 

rate 2 . 
( ) 4C t  denotes the server is turned on and in working breakdowns state, where the 

failed machines in orbit can retrial. 

The mean failure rate n and the mean retrial rate n are given by 

( ) , 0
( ) ,n

M S n n S
M S n S n L M S
 




   
       
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, 1 ( )n n n L M S      . 

For different states of the system, we define the steady-state probabilities as follows. 

(0, )P n probability of having n failed machines in retrial orbit when the server is 
in dormant state, where n = 0, 1, 2, ..., 1N ; 

(1, )P n  probability of having n failed machines in retrial orbit when the server is 
turned on and in idle state, and the failed machines in orbit can retrial, 
where n = 1, 2, …, 1L ; 

(2, )P n probability of having n failed machines in retrial orbit when the server is 
turned on and in busy state, where n = 0, 1, 2, …, 1L ; 

(3, )P n probability of having n failed machines in retrial orbit when the server is 
turned on and in working breakdowns state, where n = 0, 1, 2, …, 1L ; 

(4, )P n probability of having n failed machines in retrial orbit when the server is 
turned on and in working breakdowns state, and the failed machines in 
orbit can retrial, where n = 1, 2, …, 1L . 

3.1. Steady-state equations 

The steady-state transition-rate diagram for the retrial MRP with working 
breakdowns operating under the N policy can be drawn as shown in Figure 1. The 
following steady-state equations are given by: 

              0 1(0,0) (2,0) (4,0)P P P    ,                    (1) 

                1(0, ) (0, 1)n nP n P n    , 11  Nn ,               (2) 

 1( ) (1, ) (2, ) (4, ), 1 1,n n P n P n P n n N                   (3) 

         1 1( ) (1, ) (0, 1) (2, ) (4, ),N N NP N P N P N P N                 (4) 

      1( ) (1, ) (2, ) (4, ), 1 1,n n P n P n P n N n L                     (5) 

1 1 1( ) (2,0) (1,1) (3,0)P P P        ,               (6) 

     1 1 1( ) (2, ) (1, ) (1, 1) (2, 1) (3, )n n n nP n P n P n P n P n               , 

                                                 1 2n L   ,   (7) 

  1 1 1( ) (2, 1) (1, 1) (2, 2) (3, 1)L LP L P L P L P L             ,     (8) 

           1 2 0 1( ) (3,0) (2,0) (4,0) (4,1)P P P P          ,           (9) 
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1 2 1( ) (3, ) (2, ) (3, 1) (4, ) (4, 1),n n n nP n P n P n P n P n                 

                                            ,21  Ln   (10) 

2 1 1( ) (3, 1) (2, 1) (3, 2) (4, 1),L LP L P L P L P L                    (11) 

0 2( ) (4,0) (3,0)P P    ,                          (12) 

      2( ) (4, ) (3, ),n n P n P n       1 1.n L            (13) 

 

Figure 1. The state-transition-rate diagram for the retrial MRP with working 
breakdowns under the N policy. 

3.2. Matrix-analytic method 

Neuts [22] proposed a matrix-analytic method to analyze many complex queueing 
systems. We use this method to develop the steady-state probabilities ( , )P k n  
( 0,1, 2,3,4)k  . We establish the corresponding transition rate matrix Q of this Markov 
chain having the following block-tridiagonal form:  
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0 0

1 1 1

2 2 2

2 2 2

11 1

1 1 1

2 2 2

1 1

N N N

NN N

N N N

N N N

L L L

L L

B C

A B C
A B C

A B C
Q A B C

D E F
D E F

D E F
D E

 



  



 



  

  

 

 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
  

          

 

Each element of the matrix Q is listed as follows. 

0

0

1 1 1

1 2 2

0 0

0 0 0
( ) 0

0 ( )
0 ( )

B


    

    
   



 
    
   
   

, 

0

1
0

1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0

C








 
 
 
 
 
 

 

1

1

1

0 0 0 0
0 0 0
0 0 0 0
0 0 0 0
0 0 0

A






 
 
 
 
 
 
  

,         

0 0 0 0 0
0 0 0 0
0 0 0 0 0 , 2 1
0 0 0 0 0
0 0 0 0

n

n

n

A n N




 
 
 
    
 
 
  
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1 1 1

1 2 2

0 0 0 0
0 ( ) 0 0
0 ( ) 0 , 1 1
0 0 ( )
0 0 ( )

n

n n n

n n

n

n n n

B n N


  
    

    
    





 
   
       
    
    

          

1

1

0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0

n

n n

n

C










 
 
 
 
 
 
  

,  1 2n N   ,      

1

1

0 0 0
0 0 0 0
0 0 0
0 0 0
0 0 0 0

N

N N

N

C












 
 
 
 
 
 
  

,         

0 0 0 0
0 0 0 0 0

,
0 0 0 0 0
0 0 0 0

N

N

N

D







 
 
 
 
 
 

   

0 0 0
0 0 0 0

, 1 1
0 0 0 0
0 0 0

n

n

n

D N n L





 
 
     
 
 
 

 

 

1 1 1

1 2 2

( ) 0 0
( ) 0

, 1
0 ( )

0 ( )

n n n

n
n

n

n n n

E N n L

  
    

    
    





  
       
   
    
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1

1

0 0 0 0
0 0 0

, 2.
0 0 0
0 0 0 0

n
n

n

F N n L







 
 
    
 
 
 

 

Let P denote the corresponding steady-state probability vector of .Q By partitioning 
the vector P as 0 1 2 1 1[ , , , , , , , ]n N N LP P P P P P P  , where 

0 [ (0,0), (2,0), (3,0), (4,0)],P P P P P   
[ (0, ), (1, ), (2, ), (3, ), (4, )]nP P n P n P n P n P n , 1 1n N   , and 
[ (1, ), (2, ), (3, ), (4, )],nP P n P n P n P n 1,N n L     

are row vectors with dimensions 4, 5, 4, respectively. The steady-state equations PQ  0  
can be written as follows. 

0 10 1P B P A
 

  0 ,         (14) 

00 1 1 2 2P C PB P A


   0 ,        (15) 

1 1 1 1n n n n n nP C P B P A      0 , 2 2n N       (16) 

2 2 1 1 NN N N N NP C P B P A


      0 , 1n N      (17) 

111 1n nnn n nP C P B P A
  

    0 ,  2N n L        (18) 

   122 1 LLL LP C P B
 

   0 ,         (19) 

where 0  is a zero matrix. 

3.3. Steady-state solutions 

Taking some routine manipulations to (14)-(19), we finally get 
1

1 00 1 1 0( )P P A B P X
 

   ,  where 
1

1 00 ,X A B
 

        (20) 

121 XPP  ,  where 1
01 2 0 1( ) ,X A X C B


          (21) 

nnn XPP 1 ,  where 1
1 1 1( )n n n n nX A X C B 
     , 2 2n N       (22) 

1 1N N NP P X  , where 1
1 2 2 1( ) ,N N N N NX A X C B 
                    (23) 

1n n nP P X , where 1
1 11( )n nnn nX A X C B

  


    , 2N n L         (24) 

121 2( )LLL LP X C B
 

    0 .             (25) 

Consequently, nP (0 2)n L   in (20)-(25) can be written as product form in terms of 
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1LP . The steady-state probability 1LP  can be found by using (25) and normalization 
equation, that is,  

1ˆ
11

1
0  









L

Nn
n

N

n
n ePePeP ,  

where both [1,1,1]Te  and ˆ [1,1,1,1]Te  are column vectors. Once the steady-state 
probability 1LP  is obtained, the steady-state probabilities 0 1 2 3 1[ , , , , , ]LP P P P P  are solved 
from (20)-(24). The steps of the solution algorithm are described as follows. 

3.4. The solution algorithm 

Step 1. Set
1

1 00 ,X A B
 

  1
01 2 0 1( ) .X A X C B


    

Step 2. For n from 2 to 2N  , set 1
1 1 1( ) .n n n n nX A X C B 
      

Step 3. For 1,n N  set 1
1 2 2 1( ) .NN N N NX A X C B




       

Step 4. For n from N to 2,L  set 1
1 11( ) .n nnn nX A X C B

  


     

Step 5. For k from 0 to 2,L  set 2 3 .k L L kX X X    

Step 6. Solve 121 2( )LLL LP X C B
 

    0, 1ˆ
21

1
01 








 










L

Nn
n

N

n
nL eeeeP , and 

obtain steady-state probability 1.LP   

Step 7. Construct the steady-state probability nP as follows: 
if 0 2n L   , assign 1 .n L nP P    

4. System Performance Measures 

We define several system performance measures of the retrial MRP with working 
breakdowns operating under the N policy as follows: 

     ][ sNE  the expected number of failed machines in the system, 
     ][SE  the expected number of warm standby machines in the system, 

][OE  the expected number of operating machines in the system, 
      eff   the effective failure rate. 

After obtaining the steady-state solutions, we can calculate [ ]sE N , [ ]E S , [ ]E O and 
eff  from the following equations. 

    
1 1

1 1

[ ] (0, ) (1, ) (2, ) (3, ) (4, )
N L

s
n n

E N nP n n P n P n P n P n
 

 

            (26) 
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)].,4(),3(),2([),1(),0(
2

0
1

1

1

1

0

nPnPnPnPnP
L

n
n

L

n
n

N

n
neff  













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Thus the expected waiting time in the system, sW , is given by 

eff

s
s

NEW


][
 .                            (30) 

5. Profit Optimization Analysis 

There are numerous researchers who have contributed to the study of MRP operating 
under different threshold control policies, namely, N policy, F policy, bi-level policy, 
recovery policy, and so on. In the MRP, most of the researchers have aimed at determining 
the optimal threshold policy or the optimal system parameters, such as the optimal number 
of spares, the optimum number of servers, the optimal service rate, the optimal balking 
rate, the optimal retrial rate, and so on. We construct the total expected profit function per 
unit time for the retrial MRP with working breakdowns operating under the N policy, 
where three decision variables ,S 1 , and 2 are considered. The discrete variable S 
should be a natural number but the continuous variables 1 and 2 are positive real. Our 
objective is to find the optimum value of 1 2( , , )S   , say * *

1 2( , , )S   , so as to maximize 
the profit function. Let us define 

p   revenue per unit time when one machine is in an operating state, 

1C   cost per unit time when one machine is in an operating state, 
2C   cost per unit time when one machine is functioning as a warm standby, 
3C  cost per unit time of providing the service rate 1 , 
4C  cost per unit time of providing the service rate 2 , 

5C   cost per unit time when one machine is waiting in the system. 

Then the total expected profit function per unit time for the N policy retrial MRP as 
follows. 
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   .])[(][)(),,( 524132121 ss WCCCSESCNECpSF      (31) 
The profit maximization problem can be presented mathematically as 

1 2
1 2, ,

( , , )
S

Maximize F S
 

  . 

5.1. Sensitivity analysis 

We consider the revenue and cost elements for computational examples as follow: 
1 2 3 4 5$100, $50, $25, $20, $10, $15.p C C C C C       

To investigate the effect of various parameters on the profit function, we first give a 
graphical analysis in six cases for 15M  and 5N  with various values of 3, 6, 9,S   
respectively. 

Case 1: 1 23.0, 1.5, 1.5, 3.0, 0.1, 0.5,            varies from 0.15 to 0.5. 

Case 2: 20.15, 1.5, 1.5, 3.0, 0.1, 0.5,           1 varies from 1.5 to 3.0. 

Case 3: 1 20.15, 3.0, 1.5, 3.0, 0.1, 0.5,            varies from 0.1 to 3.0. 

Case 4: 1 20.15, 3.0, 1.5, 1.5, 0.1, 0.5,            varies from 0.1 to 3.0. 

Case 5: 1 20.15, 3.0, 1.5, 1.5, 3.0, 0.5,            varies from 0.01 to 0.15. 

Case 6: 1 20.15, 3.0, 1.5, 1.5, 3.0, 0.1,            varies from 0.1 to 1.0. 

Figures 2-7 depict the sensitivity performance of profit function F on 1, ,   
, , ,   and , respectively. We observe from Figure 2 that (i) /F   is negative 

which means that F is decreasing on  for all S ; (ii) /F   has the same tendency for 
all S ; and (iii) as  is fixed, /F   is getting smaller as S increases. It reveals from 
Figure 3 that (i) 1/F   is positive which means that F is increasing on 1 for all S ; 
(ii) 1/F   has the same tendency for all S ; and (iii) as 1 is fixed, 1/F   is getting 
larger as S increases. From Figure 4, it is clear that (i) /F   is negative which means 
that F is decreasing on  for all S ; (ii) /F   has the same tendency for all S ; and 
(iii) as  is fixed, /F   is getting smaller as S increases. Figure 5 shows that (i) 

/F   is positive which means that F is increasing on  or all S ; (ii) /F   has the 
same tendency for all S ; and (iii) as  is fixed, /F   is getting larger as S increases. 
It appears from Figure 6 that (i) /F   is negative which means that F is decreasing on 
 for all S ; and (ii) as  is fixed, /F   is getting smaller as S increases. It is seen in 
Figure 7 that (i) /F   is positive which means that F is increasing on  for all S ; (ii) 

/F   has the same tendency for all S ; and (iii) as  is fixed, /F   is getting larger 
as S increases. 
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Figure 2. Sensitivity analysis of F with respect to  for different ,S  
where 1 23.0, 1.5, 1.5, 3.0, 0.1, 0.5.            
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Figure 3. Sensitivity analysis of F with respect to 1 for different S , 
where 20.15, 1.5, 1.5, 3.0, 0.1, 0.5.            
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Figure 4. Sensitivity analysis of F with respect to  for different ,S  
where 1 20.15, 3.0, 1.5, 3.0, 0.1, 0.5.            
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Figure 5. Sensitivity analysis of F with respect to  for different ,S  
where 1 20.15, 3.0, 1.5, 1.5, 0.1, 0.5.            
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Figure 6. Sensitivity analysis of F with respect to  for different ,S  
where 1 20.15, 3.0, 1.5, 1.5, 3.0, 0.5.            
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Figure 7. Sensitivity analysis of F with respect to  for different ,S  
where 1 20.15, 3.0, 1.5, 1.5, 3.0, 0.1.            
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5.2. Profit optimization 

The particle Swarm Optimization (PSO) algorithm was firstly presented by Kennedy 
and Eberhart [17] in 1995. Under some necessary conditions, the global convergence 
analysis is summarized in Solis and Wets [24] and Bergh and Engelbrecht [4]. In this 
paper we use the Canonical particle swarm optimization (CPSO) algorithm (see Carlisle 
and Dozier [5]) which has improved performance and preferred properties in convergence.  

When the basic PSO algorithm is used to solve an optimization problem with D  
decision variables, the solution space can be viewed as a D dimensional space. Generally, 

1 2( , , , , , )i i i id iDX x x x x is denoted as the position of particle i and the value of thd  
variable idx is the position of particle i in the thd dimension. Meanwhile particle i  
moves forward according to its own direction and step-size, i.e., velocity 

),,,,,( 21 iDidiii vvvvV  , which is randomly generated by its best position pbest and 
globally best position gbest . 

The formulae that update the position idx and velocity idv are as follow: 



 


,,0

,)),(())(()( maxmin21

otherwise
XxXxprandcxprandcvK

v ididgdididid
id  

 (32) 
and 

            














,,
,,

,,

minmin

maxmax

maxmin

XvxX
XvxX

XvxXvx
x

idid

idid

idididid

id               (33) 

where (i) the constriction factor 1 2 1 22

2 , , 2.8, 1.3,
| 2 4 |

K C c c c c
C C C

    
  

 and  

(ii) rand() is random variable in [0,1], idp is the best position of particle i in dimension d  
and gdp is the globally best position of flock in dimension d , minX and maxX which are 
the lower bound and the upper bound of the component of vector iX , respectively. The 
process for implementing the CPSO algorithm is as follows: 

Step 1. Set initial parameters including the population size Pnum , the dimension of 
solution space D , the number of iteration min max, ,M X X . 

Step 2. Set randomly initial positions 0X and velocities 0V of all particles. 
Step 3. Evaluate the benefit function values of all particles and define the initial 

particle best positions pbest and global best position gbest . 
Step 4. Update the velocities and positions of all particles according to the equations 

(32)-(33). 
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Step 5. Update the benefit function values of all articles and the corresponding pbest  
and gbest . 

Step 6. If the termination criterion is reached, usually a maximum number of iterations, 
stop and return the consequence list; otherwise, go back to Step 4. 

In this application, the number of particles is 100Pnum  , the number of iterations 
is 2000M  , the lower bound minX and upper bound maxX of decision variables are 0 
and 3, respectively. All examples in our paper are repeated 10 times and each run has the 
almost identical result which illustrates the CPSO algorithm is robust to our model.  

We set 15,M  1 10,S  10.1 10,  20.1 10,  2 1.   As the following 
numerical examples, we consider $100,p  1 $50,C  2 $25,C  3 $20,C  4 $10,C  and 

5 $15.C   The detailed optimal solutions * *
1 2( , , )F S   (= Max{Profit}) and related 

parameters are shown in Tables 1-6. One sees rom Tables 1-6 that (i) the number of warm 
standbys S increases as N or  or  or  increases; (ii) the number of warm 
standbys S are the same even though  varies from 1.0 to 2.5 or  varies from 2.0 to 
4.0; (iii) * *

1 2( , , )F S   decreases as N or  or  or  increases; and (iv) 
* *
1 2( , , )F S   increases as  or  increases. Intuitively, the optimum number of warm 

standbys S seems too insensitive to changes in  or .  
 

 Table 1. The search results of numerical experiments by CPSO for various values of .N  

 
  Table 2. The search results of numerical experiments by CPSO for various values of .  

 

 
 
 

),,,,,( N  *S  *
1  *

2  Max{Profit} 
(3,0.3,0.1,1.5,3.0,0.15) 3 7.381 2.879 423.324 
(5,0.3,0.1,1.5,3.0,0.15) 4 7.331 2.979 419.739 
(10,0.3,0.1,1.5,3.0,0.15) 5 6.932 3.077 409.017 

),,,,,( N  *S  *
1  *

2  Max{Profit} 
(5,0.3,0.1,1.5,3.0,0.1) 4 5.067 2.351 498.875 
(5,0.3,0.1,1.5,3.0,0.15) 4 7.331 2.979 419.739 
(5,0.3,0.1,1.5,3.0,0.2) 2 8.478 3.131 341.092 
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Table 3. The search results of numerical experiments by CPSO for various values of .  

 
Table 4. The search results of numerical experiments by CPSO for various values of .  

 

 
Table 5. The search results of numerical experiments by CPSO for various values of .  
 

 
Table 6. The search results of numerical experiments by CPSO for various values of .  

 

 
6. Conclusions 

This paper analyzes a retrial machine repair problem with working breakdowns under 
N policy. The server is subject to working breakdowns when there is at least one failed 
machine in the system. To derive the steady-state probabilities of the system as well as 
several system performance measures, a matrix-analytic method is employed. We carry 

),,,,,( N  *S  *
1  *

2  Max{Profit} 
(5,0.3,0.05,1.5,3.0,0.15) 5 7.451 3.071 422.389 
(5,0.3,0.1,1.5,3.0,0.15) 4 7.331 2.979 419.739 
(5,0.3,0.15,1.5,3.0,0.15) 3 7.125 2.869 418.047 

),,,,,( N  *S  *
1  *

2  Max{Profit} 
(5,0.3,0.1,1.0,3.0,0.15) 4 7.693 1.394 430.333 
(5,0.3,0.1,1.5,3.0,0.15) 4 7.331 2.979 419.739 
(5,0.3,0.1,2.5,3.0,0.15) 4 6.319 5.442 412.038 

),,,,,( N  *S  *
1  *

2  Max{Profit} 
(5,0.3,0.1,1.5,2.0,0.15) 4 6.713 4.651 413.723 
(5,0.3,0.1,1.5,3.0,0.15) 4 7.331 2.979 419.739 
(5,0.3,0.1,1.5,4.0,0.15) 4 7.694 1.689 426.535 

),,,,,( N  *S  *
1  *

2  Max{Profit} 
(5,0.1,0.1,1.5,3.0,0.15) 2 9.154 2.988 277.693 
(5,0.3,0.1,1.5,3.0,0.15) 4 7.331 2.979 419.739 
(5,0.5,0.1,1.5,3.0,0.15) 4 6.251 2.974 464.383 
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out the sensitivity analysis of these measures with respect to various system parameters. 
Moreover, we construct a profit model to determine the optimum number of warm 
standbys S, and the joint optimal values for fast service and slow service rates, 
simultaneously by using Canonical particle swarm optimization algorithm. 

Acknowledgement 

This work was supported by National Natural Science Foundation of China under 
Grant Nos. 71571014 and 71871008. The authors would like to thank the anonymous 
reviewers for their valuable comments and constructive suggestions that help to improve 
the presentation of this paper. 

References 

[1] Artalejo, J. R. (1999). Accessible bibliography on retrial queues. Mathematical and 
Computer Modelling, 30, 1–6. 

[2] Artalejo, J. R. (1999). A classified bibliography of research on retrial queues: 
progress in 1990-1999. Top, 7, 187–211. 

[3] Artalejo, J. R., & Gomez-Corral, A. (2008). Retrial Queueing Systems: A 
Computational Approach, Springer-Verlag. 

[4] Bergh, F. V. D., & Engelbrecht, A. (2002). A new locally convergent particle swarm 
optimizer. IEEE International Conference on Systems, Man, and Cybernetics. 

[5] Carlisle, A., & Dozier, G. (2001). An off-the-shelf PSO. Proceeding of the workshop 
on particle swarm optimization. Indianapolis, Purdue School of Engineering and 
Technology. 

[6] Choi, B. D., Park, K. K., & Pearce, C. E. M. (1993). An M/M/1 retrial queue with 
control policy and general retrial times. Queueing Systems: Theory and Applications, 
14, 275–292. 

[7] Do, T. V. (2010). M/M/1 retrial queue with working vacations. Acta Informatica, 47, 
67–75.  

[8] Do, T. V., Papp, D., Chakka, R., Sztrik, J., & Wang, J. (2014). M/M/1 retrial queue 
with working vacations and negative customer arrivals. International Journal of 
Advanced Intelligence Paradigms, 6, 52–65. 

[9] Efrosinin, D. V., & Winkler, A. (2011). Queueing system with a constant retrial rate, 
non-Reliable server and threshold-based recovery. European Journal of Operational 
Research, 210, 594–605. 

Queueing Models and Service Management

79



[10] Falin, G. I. (1990). A survey of retrial queues. Queueing Systems, 7, 127–167. 

[11] Falin, G., & Templeton, J. (1997). Retrial Queues, Chapman & Hall. 

[12] Farahmand, K. (1990). Single line queue with repeated demands. Queueing Systems, 
7, 223–228. 

[13] Fayolle, G. (1986). A simple telephone exchange with delayed feedbacks. Teletraffic 
Analysis and Computer Performance Evaluation, 245–253. 

[14] Haque, L., & Armstrong, M. J. (2007). A survey of the machine interference problem. 
European Journal of Operational Research, 179, 469-482. 

[15] Kalidass, K., & Kasturi, R. (2012). A queue with working breakdowns. Computers 
and Industrial Engineering, 63, 779–783. 

[16] Ke, J.-C., Yang, D.-Y., Sheu, S.-H, & Kuo, C.-C. (2013). Availability of a repairable 
retrial system with warm standby components. International Journal of Computer 
Mathematics, 90, 2279–2297. 

[17] Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceeding of 
IEEE International Conference on Neural Networks, IV, Piscataway, NJ: IEEE 
service center, 1942--1948. 

[18] Kuo, C.-C., & Ke, J.-C. (2016). Comparative analysis of standby systems with 
unreliable server and switching failure. Reliability Engineering & System Safety, 145, 
74–82. 

[19] Kuo, C.-C., & Ke, J.-C. (2017). Modeling and comparison of the series systems with 
imperfect coverage for an unreliable server. Soft Computing, 
https://doi.org/10.1007/s00500-017-2922-y.  

[20] Kuo, C.-C, Sheu, S.-H., Ke, J.-C., & Zhang, G. Z. (2014). Reliability-based measures 
for a retrial system with mixed standby components. Applied Mathematical 
Modelling, 38, 4640–4651.  

[21] Liou, C.-D. (2015). Optimisation analysis of the machine repair problem with 
multiple vacations and working breakdowns. Journal of Industrial and Management 
Optimization, 11, 83–104. 

[22] Neuts, M. F. (1981). Matrix Geometric Solutions in Stochastic Models: An 
Algorithmic Approach, The John Hopkins University Press, Baltimore. 

[23] Sherman, N. P., & Kharoufeh, J. P. (2006). An M/M/1 retrial queue with unreliable 
server. Operations Research Letters, 34, 697–705. 

[24] Solis, F., & Wets, R. (1981). Minimization by Random Search Techniques. 
Mathematics of Operations Research, 6, 19–30. 

C  Wang, Wang, Liou, Zhang

80



[25] Tao, L., Liu, Z., & Wang, Z. (2012). M/M/1 retrial queue with collisions and working 
vacation interruption under N-policy. RAIRO Operations Research, 46, 355-371. 

[26] Wang, J., Cao, J., & Li, Q. (2001) Reliability analysis of the retrial queue with server 
breakdowns and repairs. Queueing Systems, 38, 363-380. 

[27] Wang, J., Zhao, L., & Zhang, F. (2011) Analysis of the finite source retrial queues 
with server breakdowns and repairs, Journal of Industrial and Management 
Optimization, 7, 655-676.  

[28] Wang, K.-H., Liou, C.-D., & Wang, Y.-L. (2014). Profit optimization of the 
multiple-vacation machine repair problem using particle swarm optimization. 
International Journal of Systems Science, 45, 1769–1780. 

[29] Yang, T., & Templeton, J. G. C. (1987). A survey on retrial queues. Queueing Systems, 
2, 201–233. 

[30] Yen, T.-C., Wu, H., Wang, K.-H., & Chou, W.-K. (2015). Optimal control of the 
machine repair problem with removable repairman subject to working breakdowns. 
Journal of Testing and Evaluation, 43, 1487–1496. 

 

Queueing Models and Service Management

81




