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Abstract: The solution of polynomial matrix equations lies at the heart of the analysis of
quasi-birth-and-death processes (QBDs), fluid queues and other random walks on a strip in
the plane. Many algorithms have been proposed (and are still being proposed) to solve these
equations. In order to improve upon one algorithm, or to understand the qualities which make
one better than another, it often helps to use our physical understanding of the behaviour of
the process. We illustrate this here by considering algorithms for the solution of the basic
quadratic equation for QBDs, with a particular reference to Newton’s Method.
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1. Introduction

The theory of matrix-analytic methods emphasizes the importance of being able to
perform computations, so that qualitative (or structural) analysis may be accompanied by
quantitative (or numerical) evaluation. Matrix-analytic algorithms, which were first
developed in the applied probability community, are not elementary. They have drawn the
attention of numerical analysts, and there is now an interplay between the two fields, the
thrust towards new progress sometimes coming from a reflection on the physical properties
of a stochastic system, and sometimes from the application of techniques well grounded in
numerical analysis.

Bean ef al. [2] analysed various iterative procedures for solving an algebraic Riccati
equation stemming from the analysis of fluid queues via matrix-analytic methods. They
related the successive approximations in the various algorithms to different types of
constrained behaviour of the stochastic system. One of the procedures applied in Bean et al.
[2] was Newton’s method. In particular, the authors gave an interpretation of Newton’s
method in terms of the dynamics of the model.
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This analysis prompted one of the authors of the present paper (Peter Taylor) to assert
that * All matrix-analytic algorithms have a physical interpretation’, to which one of the other
authors (Guy Latouche) replied “All of them?’. The purpose of this paper is to explore this
issue in the context of the various algorithms that have been proposed for one of the simplest
classes of system amenable to matrix-analytic methods, the quasi-birth-and-death processes
(QBDs), and, in particular, with respect to Newton’s method. Within the context of
stochastic fluid models, Latouche and Nguyen [9, Section 9] have recently considered a
similar question, relating the physical interpretation of one of the algorithms that has been
proposed for fluid models to the behaviour of a stack.

In the next section, we shall set up our notation and recall some basic facts about QBDs,
including the physical interpretations of the original linear algorithms that were proposed
for analysing QBDs by Neuts [11] and Latouche [7], and the quadratically-convergent
Logarithmic Reduction and the Cyclic Reduction algorithms of Latouche and Ramaswami
[10] and Bini and Meini [4].

In Section 3, we shall describe Newton’s method as applied to QBDs and give a
physical interpretation for the iterates which has a surprisingly different character to the
corresponding interpretation for the other algorithms. In Section 4, we shall compare the
efficiency of Newton’s method to that of the Logarithmic Reduction and the Cyclic
Reduction algorithms. We shall conclude with a few recommendations in Section 5.

2. Background

Discrete-time QBDs are two-dimensional Markov chains {(X,,¢, ),k =0} on the state
space N x{1,...,m}, where here we shall take m to be finite. The only possible transitions
are

» from (k,7) to (k+1,/), k=0, 1<i,j<m, with transition probability [4,],,
« from (k,7) to (k,j), k=1, 1<i,j<m with transition probability [4,],,

« from (k,i) to (k—1,j), k=1, 1<i,j<m, with transition probability [A4 ]
« from (0,7) to (0, j), 1<i,j<m, with transition probability B, .

e

Thus, if we arrange the states in lexicographic order, the transition matrix of the QBD
has the structure

B A

A—l AO 1
P=| 4, 4
4,

€]
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The component X of the state space is usually called the /eve/ and the component ¢ the
phase.
Away from level 0, the matrix A=A | + A, + A describes transitions in the phase,
independently of the level. For a discrete-time QBD, let x be the solution to
x4 =x. (2)
Then, with e’ a column of ones, the chain is positive recurrent, null recurrent or transient
according as

xAe' —xA e
is less than, equal to or greater than zero [11].

Write the stationary distribution of a positive recurrent QBD as & = (#,,#,,...). The
well-known matrix geometric property [11] states that there exists a matrix R such that

n, =m R 3)
The vector z, satisfies
n,[B+RA | =x,. 4)
The matrix R is the minimal nonnegative solution to the matrix equation
R=A+RA+R°A . (5)
For any level £, the (7, j)th entry of R can be interpreted as

+ the expected number of visits to phase j of level k£ + 1 before first return to level
k conditional on the QBD starting in phase / of level k.

The matrix R has spectral radius which is less than or equal to one, and the QBD is positive
recurrent if and only if the spectral radius of R is less than one.
The matrix GG, which is the minimal nonnegative solution of
G=A,+AG+AG", (6)

also has a physical interpretation. For any level £ >0, the (7, j)th entry of G is

« the probability that the QBD first visits level £ —1 in phase j conditional on it
starting in phase 7/ of level k.

The matrix G also has spectral radius which is less than or equal to one, and the QBD is
recurrent if and only if the spectral radius of G is equal to one. With the matrix G at hand
we are in a position to solve various hitting probability and expected hitting time problems.
Furthermore, for a QBD, the matrix K can be written in terms of the matrix G via the
relation

R=A[1-4,-4G]", (7)
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and so the stationary distribution can also be easily derived if we know G. Since itis a
matrix of probabilities, rather than expected values, the matrix G is a “nicer’ object to work
with than R. For this reason, we concentrate on methods for deriving G via equation (6).
This equation has an analytic solution only in a few very special cases, and so we almost
always have to resort to numerical solution.

We start with the simple procedure recommended by Neuts [11]. For an irreducible
discrete-time QBD, /-4, is invertible. So, an obvious first approach to solving equation
(6) 1s to transform it into the fixed-point equation

G=(I-4)'[4,+A4G"] (8)
and use the iterative procedure
G, =(I-4)"'[4,+4G]] ©)
with G, =0

Neuts showed that, with this iteration, G" does converge to G. Furthermore, except
when the QBD is null-recurrent, this convergence is /inear. That is, there exists a constant
v €(0,1) such that

limsup |G, -G |["=v. (10)
The type of question that we shall be interested in is ‘Can we give a physical interpretation
fo the n-th iterate of procedures such as the one described above?’ For Neuts’ original
iteration (9), this question has not had a precise answer until recently. It can be understood
in terms of iterations for tree-structured QBDs, see Bean e al. [1, Section 6].

In general, to understand physical interpretations of the type that we shall discuss here,
we need to know about censoring. Consider an irreducible, finite-state, discrete-time
Markov chain whose states are partitioned into two sets £, and %, . This induces a
partitioning of its transition matrix 7" so that

Ly 1,
r=l (11)
21 22

The irreducibility of 7" means that the spectral radius of 7,, must be strictly less than one.
We can then note that the stationary distribution & = (@,,@,) that satisfies @ 7' = & also
satisfies

a =a, [TH+T]2(I—T22)_] T2l] (12)

with
a,=al), (I_T::)_l (13)

Observe that
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o

(I=Tp) =37

k=0

a1, +1,(1-Ts) Tg.]=al[T.. +TD[ZT;;}T2.]
k=0

and we can interpret @, / (@,e’) as the stationary distribution of the censored discrete-time
Markov chain observed only when itisin £.

Similar comments can be made for a positive-recurrent, discrete-time Markov chain
where £, is infinite. This follows because positive recurrence on / ensures that the
expected total time spent during any sojourn in £, is finite, and so » 7% converges
elementwise.

Indeed, it is not only true that @,/ (@,e") is the stationary distribution of the censored
discrete-time Markov chain, but

[rﬁl +?}:[i?’:’3}’21] (14)

is its transition matrix.

When £, is infinite, we can allow the chain with transition matrix 7" to be transient,
in which case there is a positive probability that the Markov chain may leave £ and not
return, which results in the matrix (14) being substochastic, and this interpretation will still
hold. It follows that transient measures of the censored chain can be derived using standard
methods applied to the transition matrix (14). We can also observe that the (i, j) th entry of

[ﬂﬂﬂ”ﬂs{iﬂﬂﬂl (15)

is the probability that the Markov chain first enters £, in state j given that it started in state
i of I,.
We claimed above that it was hard to give a physical interpretation of Neuts’ algorithm
(9). Neuts did, however, propose a second algorithm in Section 1.9 of Neuts [11] and
Latouche [7] gave a simple physical interpretation for the iterates of this algorithm. Observe
that
G=(I-4,-4G)"'4,, (16)
and use the iteration
Gy =(=4,-4G,) "4, (17)

with G, =0. We can show inductively that all the inverses exist.

The matrix G, =(I —A4,))"' A4, = [Z;(Af ]A_, . It follows that the (7, j)th entry of G,
is
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« the probability that the QBD never reaches level £ + 1 and first visits level £k —1 in
phase j, conditional on it starting in phase i of level k.

We can use induction to show that the (i, j) th entry of G, is

* the probability that the QBD never reaches level £ + n and first visits level £k —1 in
phase j, conditional on it starting in phase i of level k.

Thus, the successive iterates of this algorithm have the same physical interpretation as
that of the matrix . but with a faboo level that increases linearly. Like the original
algorithm of Neuts, this algorithm is linearly convergent except when the Markov chain is
null-recurrent.

The two algorithms that are currently used as benchmarks for analysing QBDs (and,
indeed, more general matrix-analytic models) are the Logarithmic Reduction algorithm of
Latouche and Ramaswami [10] and the Cyclic Reduction algorithm of Bini and Meini [4].
Precise descriptions of these algorithms are given in Appendices 6.1 and 6.2 respectively,
and a good explanation of the thinking behind them can be found in Bini et al. [3]. If the
reader wants to implement them, we recommend using the Matlab packages available from
Van Houdt’s web-site at Bini et a/. [S]. A number of speed-up features, such as transforming
the matrices to move eigenvalues away from the unit circle and using Fast Fourier
Transforms, are included in these implementations.

For the Logarithmic Reduction algorithm, we can write

G=Y K,
=0
where, for any £ >0,

K)P=Ply(k+2" ) <pytk-D)<pyk+2"" =)0, = j| X, =k,0,=1]

and (/) is the time of first visit to level /. 1If; in the execution of Algorithm 6.1, Step 6.1
is performed » times, then one obtains the approximation @"”) = ZU_ K 7 meaning that
the physical interpretation of the (7, j)th entry of @M) is as

« the probability, conditional on it starting in phase / of level k. that the QBD first

visits level k —1 in phase j and never reaches level & +2"" —1.

Cyclic reduction is related to a slightly different sequence, based on the fact that
G=1limJ"",
L

where, for any k£ >0,
J;_f) = P[;V(k - ]') <;V(k +2f)7(0}'(k—l) = .] | XL'I =k:¢?0 =?]

If, in the execution of Algorithm 6.2, the sequence of matrices /' is truncated after »
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iterations, then one obtains the approximation ém =J"™  whose (i, j)th entry has an
interpretation as
« the probability, conditional on it starting in phase i of level & , that the QBD first
visits level £ —1 in phase j and never reaches level & +2".

We see that the two algorithms have very similar performance in that they compute nearly
the same sequence of approximations. One would expect that, for a given precision,
Algorithm 6.1 might require one iteration less than 6.2, but, on the other hand, each iteration
of Algorithm 6.1 requires two more matrix multiplications than an iteration of 6.2 and so it
takes more time. One might also expect that the convergence of both algorithms would be
quadratic in the sense that there is a v € (0,1) such that

limsup | G» —G [ =v, (18)

H—0

with a similar statement also true for G, . This is, in fact, the case unless the QBD is null-
recurrent Bini ez al. [3].

3. Newton’s Method

We start with the equation for G, written in the form (16). If we apply Newton’s
method to the solution of this equation, we obtain the sequence

GI(\JMI) —W(H)AIGI(\]”H)W(H)A_I — W(H)A_] _W(H)A]GIEIH)W(H)A_I (19)

where

W= (1~ 4,-AG") (20)
and G\” = 0. It was shown in Latouche [8] that for any initial matrix G’ with 0< G’ <G ,
the sequence (19) converges monotonically and quadratically to G. A description of the
algorithm is given in Appendix 6.3.

Also in [8], Latouche provided an algorithm for evaluating the sequence of matrices
{G{”} . The difficult part of this is solving equation (19), which is a special case of a
Sylvester equation, for G in terms of G\ . Latouche provided an algorithm in which
(19) is transformed into a standard linear system by concatenating the columns of G\
and writing the coefficient matrix as a direct sum involving W "4, and W " A , . Using this
transformation, he showed that each iteration of the algorithm has a complexity of order
m° .

Latouche went on to test Newton’s algorithm against the best known algorithm of the
time (the sequence (17)) on a suite of examples and found that, while Newton’s algorithm
required up to an order of magnitude fewer iterations, it could take up to an order of
magnitude longer in terms of computer time to calculate G to within a given tolerance.

Since Latouche [8], it would be fair to say that the conventional wisdom in the matrix-
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analytic community is that, even though it is a quadratically convergent algorithm, the
complexity of each iteration of Newton’s method makes it uncompetitive with other
algorithms that have been proposed for solving (6). This attitude has only been reinforced
by the later discovery of the quadratically-convergent Logarithmic Reduction and Cyclic
Reduction algorithms.

However, there is actually an m” algorithm for solving the Sylvester equation (19) (see
Gardiner ef al. [6]). This motivated us to revisit the question of how useful Newton’s method
is for solving (6). At the same time, we considered whether we could give a physical
description of the sample paths whose probability is recorded in the » th iteration G A
physical description is given in this section, while we report in Section 4 a comparison of
our numerical experience with the analysis of QBDs using Newton’s method implemented
according to Gardiner ef al. [6], and via the Logarithmic and Cyclic Reduction algorithms.

As with the iterations of the Logarithmic Reduction and Cyclic Reduction algorithms,
for k >0, the matrices G contain the probabilities of certain sets of sample paths that
startin level & and end in level k —1; we shall denote the set associated with G for k =1
by G and so

(G, =PH{(X,.0)} € G0, = 1 X, =L, =il.

For n =0, equation (19) can be written as

GT(JI) _ W(o)A_] + W(O)A]GT(J”W(O)A_I (21)
o0 -1 £
_ Z(W(O)Al) (W(O)A_l) (22)
=1

where the second equation follows by repeatedly replacing G\’ in the right hand side by the
right hand side itself. To understand the physical meaning of (22), it is necessary to associate
sets of trajectories with the matrices U, =W "4, and D, =W "4 . As

WA= 44,
vl

we see that (U,), is the probability that, starting from (1,7), the QBD moves to (2, j)
before moving to level 0. Similarly, (D,), is the probability that the QBD moves from
(1,7) to (0, j) before reaching level 2. Formally,

Uy), =Ply(2)<7(0), 0,0, = J| X, =1, =1]
and
(D), =Ply(0)<y(2), 0, =J1 X, =1, =1].

We see from (22) that G” may be interpreted as follows: starting from level 1, the QBD
progressively moves to levels 2, 3, .., ¢ for some ¢, without going down, then moves
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Figure 1. A sample path that contributes to G .

downtolevels ¢—1, ¢-2, .., 0without going up again. Loosely stated, the sample paths
in G\ are those that have a “single peak”, no matter how high. An example with (=7 is
given in Figure 1.

To give a description of G for general n, we introduce some set notation and two
set operators. First observe that the spatial homogeneity of the transition matrix (1) ensures
that

Uy =Plyk+ 1) <y(k=1), @y = J | Xy =k, ¢, =1]

and
(‘DO)g = P[:V(k —1) < }/(k + 1)’ ‘;oy(k) = JlXu =k’ @, = I]
independently of 4 forany & >1. Now define

U, tobe the set of trajectories associated with U, : the QBD stays at its initial level
for a while and eventually jumps one level up, and so

(U,), =Prl{(X,.¢)} € Uy, @iy = J 1 X, =k, @, =11,
independently of & ;

« D, is the set of trajectories associated with [);: the QBD stays at its initial level
before jumping one level down, and so

(D), =Prli(X,, @)} €D @,y = J| X, =k, @, =1],
independently of % .

Furthermore, we define the concatenation operator “|” to join trajectories from two
sets. For example, in U, |U,, the QBD starts at some level k, moves to level & + 1 without
visiting level & —1, and then moves to level £ + 2 without having returned to level & .

We shall also use the operator “ ™" to denote concatenation of » trajectories from
identical sets. For example, U,” =U, | U, |U,.

With these, we may associate with (21, 22) the set equations
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L =D,Ul, |67 |D, = JU" | DD (23)

For general n, we define -
U =WwW"4  and  D,=W"4, (24)
Lemma 3.1. 7he sets U, and D, of trajectories associated with U, and D, are such that
D, = UO(%I D, (25)
U, =Jt 197" 14, (26)

m=l

Proof. By (24)
D,=(I-4,-AG]) 4,
=(I-(I-A4)"AG) (I -4) "4,
= _UOGI(J”))_]DO
= Z(UOGT(;‘})mDo (27)

The interpretation of U/ G\ is that, starting from some level k, the QBD eventually
jumps to level k+1 and later returns to level & by following the constraints that
characterise G\ . Corresponding to the mth term in the series (27) this is repeated exactly
m times before the QBD eventually moves to level k& —1. This justifies (25), the proof of
(26) is similar.

Theorem 3.2. For n=0, the set of trajectories associated with the n th iteration of
Newton’s method is given by the set
v =Ju 1D, 1Dy (28)
£=0
Before giving the proof, which requires several steps, a few remarks are in order.

The first is that (28) is very similar to (23): at each iteration, the QBD moves step by
step through a series of “plateaus’ from level 1 to some level ¢+ 1, then reverses itself and
moves down to level 0, again through a series of plateaus. During a plateau at level
v </({+1, the QBD is allowed to move above level v and back but it must do so via a
sample path adhering to the constraints in the previous iteration.

In Figure 2, we give a sample trajectory in G.”, with times 7,, 7,, 7, and 7, the
initiation times for the plateaus on the way up to level 4 and the times ,, 6, and 6, the
initiation times for the plateaus on the way down to level 0. Specifically,

» on the way up to level (=4, Plateau I is from time 7, to 7,, Plateau 2 from 7, to
7,, Plateau 3 from 7, to 7, and Plateau 4 from 7, to &,

* on the way down, we have Plateau 3 from &, to 6,, Plateau 2 from &, to €, and
Plateau 1 from &, to 6,, at which time the QBD is at level 0.
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T

1 ™ RYE s f "'L' ”U

Figure 2. One possible trajectory for the second iteration of Newton’s algorithm.

* During the interval (7,,7,) there are two excursions to higher levels with profiles in
G and, similarly, two excursions in (7,,7;) and (6,,6,), one in each of (7,,7,),
(7,,6;)and (6,,6,) and none during (6,,6,).

A major difficulty with the analysis to follow results from the fact that the sets
S =U"|D,| D, are not disjoint over different values of (. Indeed, we have shown
above that the sample path in Figure 2 belongs to S.” but it also belongs to Si” if one
forgets about 7, and #;, and takes the whole interval (7,,6,) as a plateau at level 3, with
two excursions in G, Furthermore, the sample path also belongs to S.” : to see that, we
need to add epochs z,for the first jump to level 5 after 7, and &, for the first jump to level
4 after 7.

A major step in understanding the physical interpretation of Newton’s method is to
write G""" as a union of disjoint sets.

To this end, rewrite (19) as

Gy =D, +U (G~ G)D,, (29)
so that
0, =Gy G = D, ~ G UG - GD,

=>U\D,-G")D, (30)
=0

and finally
Gy =D, + TUAD, ~GED, 61)

£=1

Lemma 3.3. For n>1, the difference D, —G." is given by

‘Dn - G’;Jn) = (Un—lz; )ED;:'
Proof. By (29),
GT(JHH) = Dn + UnTnHDn’

so that
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D,-G"=D,-D,,~U,1,D,, (33)
Furthermore,
D,=( _UOGI(;:))_]DO
=(I ~U (G +T,) ' D,
=(I-(I-UGIYy'ur)'(1-u,Gly'D,
=(I-U, T,)y'D,,. (34)

This, together with (33), shows that
Dn _GI(\IHJ - [(1 _(’rﬂ—ly;)_l —1 _Un—IR]Dn—I
= Z([}n—lTn)g‘Dn—l
£22
which, on account of (34), we may rewrite as (32).
Denote by R, the set of trajectories associated with D, — G From (32) we conclude

that
D =G"UR, (35)
where the two sets on the right are disjoint. Now, using the facts that
U, =(I=UG")'U, = Y (UG,
=0

and

D, =(I=UGE) "Dy = 3 (UGY" Dy,
m=0

we can write the right-hand side of (32) in expanded form as

(Un_] Tn)2 Dn = Z (UOGT(;:—I))"H UO(GT(;:) _ Gg,_l))

1y i Ty =0

(UOG]EJ”_I) )mg UO(GI(\I”) _ GT(JH_I) )(UOGI(;!))% DO,

and we characterise R, as follows: starting from some arbitrary level k, a trajectory
consists of

* two jumps from level £ to level £ +1 which are followed by a return to level &
through trajectories in G{” but notin G,
* before each of these two jumps, there may be an arbitrary number of jumps from &
to k + 1 followed by a trajectory in G"",
« after these mandatory two jumps, excursions to higher levels are constrained by
" only.
For n=1,as G\” is empty, this simplifies to the fact that R, is formed of trajectories

with at least two excursions to higher levels.

70
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Using our set notation, we write (32) as
R, =U, (GG U, (GG )| D,

Lemma 3.4. We can express the set GV as a union of disjoint sets of sample paths via

the expression
g =p,Ju’ IR, D, . (36)

£z1

Proof. We focus on the set I4,” | D, | D,* for a fixed value of v . By (35), it is the union
u' D, =U" 167D UUT R, | D)
of two distinct sets of trajectories. Furthermore,
Z/{:" |g;qn) |D:v — M:("_]) |Un |g;qn) |Dn |D:(y_l)
U U 1@ 168 Uy |G | Uy 1G) ™ D, | D

ml.mEZO

— Uu:‘.'l’—l )] | (uo |gIEIn))*m | DO | ID:_'V_] )]
mz=l

-1} -1}
clU, |D, |D," .
As a consequence,

D, Uu:f|Dn|n?f=Dﬂuu:"|R,,|D,?"U[ U M:‘mwf]

l=f=w l=f=w¥-1

-0, U IR, D"
l=f=v

In view of equation (28), since v is arbitrary, this proves the lemma.

This, together with Lemma 3.3 and Equation (31), concludes the proof of Theorem 3.2,
As an illustration, we give two trajectories of G.” in Figure 3. The only difference lies
between the epochs 7, and &,. The path on top belongs to I, |R,|D,” and the one
underneath belongs to U, | R, | D;*.

4. Some Numerical Experience

We implemented in Matlab the Logarithmic-Reduction algorithm, the Cyclic
Reduction algorithm and Newton’s method as described in the Appendix at 6.1, 6.2 and 6.3
respectively and applied it to some specific examples of QBDs. Our three examples were
all initially defined in continuous-time. We uniformized them to derive discrete-time QBDs
which are directly amenable to the analysis discussed above.
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T T T T T T T
T Ta 3Ty H-3 H_l Hl HEI

Figure 3. Two trajectories that belong to G .

4.1. Example 1

For our first example, we considered a small six-phase QBD with

005 1.0 O 0 0 0
0 005 10 O 0 0
0 0 005 0 0 0
0 0 0 005 10 O
0 0 0 0 005 0
0 0 0 0 0 0.05

~121 01 0 0 0
01 -131 01 0 0
0.1 -331 01 0
0 01 -131 o0l

0 01 -331 o0l
0 0 0 01 -321

o © © O

o © © O

and
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0

0
0
0
0
0

06 3.0
3.0 0.06

We set the value of £ in 6.1, 6.2 and 6.3 to 10", All three methods produced the matrix
[0.7831 0.0148 0.0015 0.1084 0.0015 0.0905 |
0.6538 0.0492 0.0029 0.1889 0.0018 0.1033
0.0532 0.0015 0.0180 0.9180 0.0001 0.0087
0.7426 0.0014 0.0015 0.1270 0.0022 0.1252
0.0650 0.0001 0.0000 0.0040 0.0182 09126
09489 0.0002 0.0000 0.0017 0.0006 0.0485

to this precision, even though it is displayed above with entries given only to four decimal
places. The logarithmic reduction, cyclic reduction and Newton’s method took 7, 8 and 8
iterations respectively to achieve this precision. Despite the number of iterations being
consistent, the computer time used for each algorithm on a Dell Precision 5520 varied across
different repetitions of the program: the logarithmic reduction algorithm ran for between
0.0048 and 0.0075 seconds, the cyclic reduction algorithm ran for between 0.0037 and
0.0051 seconds, while Newton’s algorithm took between 0.0045 and 0.0080 seconds.

4.2. Example 2
Our second example was taken from Latouche and Ramaswami [10] (p. 208). It has
A =09 diag[O.Z 02 02 02 13 11 0.2] (37)
A, =21 (38)

A=8S-4-4, (39)
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10716 L 1 I 1
0 5 10 15 20 25

Figure 4. The precision of the three algorithms plotted against the number of iterations
(logarithmic reduction in blue, cyclic reduction in black, Newton in red).

Figure 4 plots two indicators of the precision achieved by the three algorithms against
the number of iterations used, the logarithmic reduction algorithm is depicted in blue, the
cyclic reduction algorithm in black and Newton’s method in red. For each algorithm, the
continuous line depicts the residue |G, — (A—1 +A0G, +A1G2) || where G, is the matrix
obtained at the n th iteration of the respective algorithm. The dotted line is ||G, -G, | -
We see that Newton’s method achieves better precision for the same number of iterations
than the other two algorithms. However, the time taken by Newton’s method to achieve a
given precision was generally comparable.

4.3. Example 3

Our third example illustrates an interesting numerical phenomenon that we noticed
when coding up the three algorithms. It involves a 2N phase QBD with N by N blocks

given by
Al 0
4 = ,
0 A/(2N)I

0 0
A4,= ,
0 ul

and where 4, has entries of » on the upper and lower diagonal, zeros in all the other off-

and

diagonal entries and its diagonal entries adjusted so that the row sums of 4, + 4, + A4, are
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zero. Wetook N =50, A=15, =25 and y=0.05.

When the value of & was set to 10", the logarithmic reduction, cyclic reduction
and Newton’s algorithms took 23 , 24 and 12 iterations respectively, and typical durations
were around 0.03 , 0.02 and 0.08 seconds respectively, but were also variable across
different runs. When & was reset to 10", the logarithmic reduction and cyclic reduction
algorithms worked in the same way, but Newton’s algorithm took 21 iterations and its
processing time increased by about 70% . With the tolerance set to 10™'*, the number of
iterations used by the logarithmic reduction and cyclic reduction still remained the same,
but the number of iterations used by Newton’s method increased further to 25, with a
corresponding increase in the processing time. We conclude that, at high precision,
Newton’s method seems to be affected by numerical factors more than the other two
algorithms.

5. Conclusions

In this paper we have discussed physical interpretations of various numerical
procedures for evaluating the matrix G in a quasi-birth-and-death process. While the

physical interpretations of the linear, logarithmic reduction and cyclic reduction algorithms
arise from restricting sample paths from rising too high, the restriction on the sample paths
of Newton’s algorithm is different: it involves restrictions on the complexity of the sample
paths.

We expect similar results to hold for general M /G /1 -type Markov chains, but the

analysis is likely to be more complex still.

Appendix:
6. Algorithms
Algorithm 6.1. (Logarithmic reduction for positive recurrent QBDs)

Input: The positive integer m and the m xm matrices A4 |, 4,, 4,, defining a QBD; a real

>0,
Output: An approximation of the minimal nonnegative solution of (6).
Computation:
1.Set V,=(I-A) "4, V., =(I-4)"'4,, Gy=V,, T=V,.
2. Compute

Vo=VV,+V. V,

Vi=(-V)'V:, V,=(-V) "V,

G =G +1V
=17
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3.If [[1-Gip1]|,> €, then repeat from step 2, else move to step 4
4. Output G, and stop.
Work count: One matrix inversion and 8 matrix products per iteration for a rough total of.
18m° floating point operations.

Algorithm 6.2. (Cyclic reduction for positive recurrent QBDs)

Input: The positive integer m and the m xm matrices A4 ,, 4, 4,, defining a QBD; a real

e>0.
Output: An approximation of the minimal nonnegative solution of (6).
Computation:

1.Set V,=A, i=-1,0,1, V = 4,.

T

2. Compute
X=(-V)'V, Y=(U-V)V,
W=rx, Vi=Vy,

f;'+W_,

w=vy, V'
Vi=Vy+W+V X,

andset V. =V', i=-1,0,1, V=i

3.1f ||V} |,>¢, then repeat from step 2, else move to step 4

4. Output G, =(/-V)"A4, and stop.
Work count: One matrix inversion and 6 matrix products per iteration for a rough total of
14m* floating point operations.

Algorithm 6.3. (Newton iteration for positive recurrent QBDs)

Input: The positive integer m and the m xm matrices A4 ,, 4, 4,, defining a QBD; a real
e>0.

Output: An approximation of the minimal nonnegative solution of (6).
Computation:
1.Set V,=(I—-A) "4, V, =(I-4)"'4,, Gy=0.

2. Compute
U=(-VG) ', U, =(U-VG) 'V,
C=U,-UGU,,
Solve X -U XU ,=C,
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and set Gy =X .
3.1f ||[1-G,1|,>¢&, then repeat from step 2, else move to step 4
4. Output (7, and stop.

Work count: One matrix inversion, 4 matrix products and the resolution of the Sylvester
equation, for a rough total of 65m° floating point operations per iteration.
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