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Abstract: We analyze equilibrium balking strategies and the social benefits in a discrete-time batch arrival
renewal input queue with multiple working vacations. The arriving batch customers decide whether to
join or balk the queue on the basis of a natural reward-cost structure, which integrates their wish for
service as well as their reluctance to wait. We study customers” behavior and estimate the net benefit of
the batch customers that prefer to take part in the system. The fully observable and unobservable cases
with respect to various levels of information availability from the system are examined. We analyze the
fully observable case by applying embedded Markov chain and the fully unobservable case by using the
roots of the characteristic equations of the probability generating function of system length distribution at
pre-arrival epochs. The significance of the information levels along with various parameters on the
equilibrium behavior and social benefits is illustrated by numerical results.

Keywords: Batch arrival, discrete-time. equilibrium strategies, renewal mput.working vacation, social
welfare.

1.Introduction

An equilibrium and social optimal behavior of customers in queueing systems are widely used to
analyze from an economic perspective. In the case of balking, the decision to join or not to join the queue
is left to the customers which are more reasonable than the classical queueing theoretic viewpoint where
customers are compelled to pursue the decisions taken by the system. Information about the system is
made available to the customers at their arrival, which helps the customers in decision making, based on
the customer’s perception about the system congestion. Unlike the classical queueing theory. where
customers are ignorant about the system, with balking features, the customers are having some knowledge
about the system at the time of arrival. Particularly, some reward-cost structure is imposed on the system
that expresses the customers’ goal for service and their unwillingness for waiting. With the increase of
joining rate of the customer, its delay also increases. which sets a negative effect on the system.

The information pertaining to system-length and server’s status is made available to customers at
their arrival epoch. We discuss two different cases: (i) fully observable: the information about the system-
length and server’s status is provided to arriving customers; (i1) fully unobservable: the arriving customer
remains uninformed about the system-length and the server’s status. The equilibrium balking strategies
for M/M/1 queue are analyzed with various types of consideration: Burnetas and Economou [4] (with
setup time), Zhang et al. [16] (for multiple working vacations (MWYV)). Equilibrium balking strategies in
discrete-time queueing systems have been reported in Ma et al. [15] (with multiple vacations). Bixuan et
al. [3] (with MWYV), Wang et al. [13] (for single working vacation). A single working vacation for renewal
input queueing system has been investigated by AD Banik [2]. The renewal input discrete-timeGl/Geo/1
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queue with multiple working vacation is analyzed by Li et al. [11]. Laxmi et al. [12] considered
Gl/Geo/1/N queue with balking and multiple working vacations. A comprehensive analysis on customer
impatience for M/M/1, M/G/1, and M/M/c queue has been analyzed by Altman and Yechiali [1]. State-
dependent balking, reneging and server breakdown for M/M/R queue has been analyzed by Wang and
Chang [14]. Analysis of Nash equilibrium behavior of customers for multiple and single vacation policy
in discrete-time queue is reported in [10]. Similar analysis for the observable Geo/Geo/l queue with
delayed multiple vacations is investigated by Gao and Wang |6]. There are numerous research papers that
have dealt with equilibrium balking strategies, one may refer to the monographs of Hassin [9].

The batch arrival occurrence is more frequent and sensible in the large-scale as the customers’ service
demand increases, such as transportation, tourism, etc. Guha et al. [8] studied equilibrium balking

strategies in GI™) /M /1 queues with multiple and single working vacations. The present work is
enhanced by considering a discrete time service process as the operation of real world communication
devices are discrete in nature. To the best of our knowledge. there is no work reported regarding the
mfinite buffer discrete-time batch arrival renewal input queues with multiple working vacations. We
mvestigate the arriving customers’ balking behavior with respect to different level of information
availability. We also compute the corresponding social net benefit of the fully observable and
unobservable cases.

The rest of the paper is organized as follows. Section 2 gives the model description and assumptions
of the reward-cost structure. The equilibrium balking and social optimal benefit strategies in case of fully
observable are found in Section 3. Section 4 devotes to the equilibrium balking and social optimal benefit
strategies in fully unobservable case. Section 5 presents the numerical results and compares the
performances of fully observable and unobservable cases. Finally. Section 6 concludes the paper with
possible future work.

2. Model Description and Assumptions

We consider a discrete-time renewal input batch arrival single server queueing system with multiple
working vacations. Let us assume that customers arrive at the system in batches of random size X with
probability mass function (pmf) g, =P(X =i).i=1. probability generating function (pgf)

G(z)= Z;i £z and mean batch size E . The mter-arrival times {A,.n =1} of batches are independent

and identically distributed random variables with pmf a, =P(A4,=i), i=1, corresponding pgf
A(z)= Z:;a,-z’ and mean inter-arrival time 1/ 4= A"(1), where A" (k) is the » -th derivative of

A(z) with respect to z at z=4k. When the system gets empty at the service completion epoch, the
server takes multiple working vacations. Upon arrival of customers in a vacation period. the server serves
the customers at a lower service rate. The vacation times F}° are mdependent and geometrically
distributed with common pmf P(V =i)=¢ '¢,i =1, 0<¢ <1, where for any real number xe[0,1]. we
denote X =1—x. The service times m a regular busy period and in a working vacations period are
independent and geometrically distributed with mean 1/ and 1/7. respectively. An arriving batch

with size larger than available buffer space is partly accepted and remaining part is rejected. Customers
are served according to the first-come-first-served (FCFS) discipline.

We consider an early arrival system (EAS) setup. The time axis is assumed to be slotted into mtervals
of equal length with the length of a slot being unity. Let the time axis be marked by 0.1.2.....#n...., and

assume that potential arrival occurs in (#.#+) and a potential departure takes place in (#—.1). The

working vacation can only startor end at 2, that 1s, just after the departure. Consider the embedded points
at the epochs immediately prior to the batch arrivals. Let successive batches of customers arrive at time

epochs 7,.7,.7,,... and 7, denote the time epochs just before the batch arrival instant 7, . The mter-
batch arrival times 7., =7,,—7,.7n=0,1.2, ...:7, =0 are mutually independent identically distributed
random variables with common probability mass function {@,.7 =1}. The state of the system at pre-
arrival epoch of the K -th batch is defined as {N,(z;).J(z,)}. where N,(7;) denotes the number of
customers in the system and J(z, ) =0, indicates that the & -th batch arrival takes place during a working

vacation period and J(z;)=1 indicates that the £k -th batch arrival takes place during a regular service
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period. The process {N,.(7;).J(7y)} 1is an embedded two-dimensional Markov chain with the state
space Q={(k.0).k = O‘U{(k,l),k =1}. In limiting case,

nO llmPlN (Tfr)_” J(Ti’) 0},?’1)0
P,= 11111P{N (te)=n.J(r,)=1}.nz=1,

where P, (P,,) denotes the probability that there are »n customers in the system just before an arrival
mstant of a batch of customers when the server is m the regular service period (on working vacation).

We define the (ransition probability between two consecutive pre-arrival epochs as
Ponimpn = P{Ns(r;) =nJ(r,)=j|IN(r,m) =m.E(1,) = r'} . Let P,,(P,,) denotes the probability
that there are » customers in the system when the server is in the regular service period (on working
vacation) at an arbitrary epoch.

Our assumptions is that the decision to join or balk from the system is left upon the arriving batches.
This decision is modeled by assuming that each customer receives a reward of R units upon completion
of service and is charged a cost of ' units per time unit during sojourn-time of the customer. We also
assume that customers are risk neutral and wish to maximize their net benefit. At the arrival instant the
customer computes the difference between expected waiting costs against their reward associated with
receiving service.

Let b; and c; denote the probability that ;. ;=0 customers have been served during an inter-
batch arrival time when the service period is busy, and the working vacation continues, respectively. Let
d; (j = 0) represent the probability that ; customers have been served during an inter-batch arrival

time given that working vacation terminates and service period is going on. Therefore, forall j =0, we

have
b, —Za,( ] e, = D0 a;@fr,]f?"f?
. i=maxil, ;) .}1

d,= i H;ZE"_lg:: m%r) [;Jnkﬁ*—k[ff—_!}'k]ﬂj_kﬁf—r—j+k.

i=maxil. ) r=l1 ke=max(0, j+r-1)

The probability generating function (p.g.f)of b;,. ¢, and d; are given by

i

B()=2pz" = AT+ p2). C()=2c,z/ =A {57 +n2)}.
J=0 =

G A @ - A G+ )|
I+ pz — ¢ (77 +72)

D(z)= id_,.b
J=0

3. Analysis of Fully Observable Queues

In this section, we assume that the arriving batches are well informed about the queue length in
addition to server state (N, (7, ).J(z;)) for fully observable case. Let us assume that the buffer capacity
1,(0) (during working vacation) and #n,(1) (during regular busy period). An equilibrium threshold
strategy is specified by a pair (17.(0).n.(1)) and the balking strategy has the form ‘Observe the

embedded Markov chain (N,(z;)..J(7;)) at an arrival instant z;: enter if N,(z;)<n.(J(z;)) and
balk otherwise’. In the following analysis, we restrict our attention to the existence of positive equilibrium,
under which the server can be active. We have considered partial batch acceptance scheme. Due to the
reduced rate of service during working vacation, we assume that the customers are not interested to join
m a longer queue. Hence, we have considered (72.(0) < n,.(1)) . Our objective is to find out the values of
n,(0) and n.(1) for which we can reach the equilibrium threshold which is defined in Section 3.4. Then
(N.(r;).J(z;)) is an embedded two-dimensional Markov chain with the state space
Q={(0:0=i=n (0} OiG.D:1=i=n,(1)}.

The state probabilities at pre-arrival epochs, P ’s (0=i=<n.(0))and P, ’s(l1=i<n.(1)), may be
obtained by solving the system of linear equations
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1 (Uit (1341
Po.P)= 2 (Po.P0;. 0<7<n,(0)+n,(1)+1,
=0
where Q=[O ] is the one-step transition probability matrix with four block matrices and is given below:

(1)

Q_ ] ] (115 (00102, (0)+1) VS(!Q(O)H»(%(I))
‘SI/(HE(I))%HQ(UHI) ‘S‘S(nefl)%(:‘!e(l)

j|(n£, (O, (D)L ra g (O)+2, (1)+1)

Their expressions for the partially and totally rejected models can be easily obtained using probabilistic
arguments and are given below:

Blocks V¥ and FS; refer to the transition from vacation state to vacation state and busy state,
respectively and are given by the following expression:

PROE w0

Zci+k—jgk+CN—j Z k-

=i k=n, (0)-i+1

g (00— )

Z Civk— &kt Coiayy Z ks
=

!(=nr, (0)—i+1

W j'=0,0£n"£ﬂe(0),

ny ()i w

Z di 8k +d, 0 Z & J=iz0,

k=j—i k=, (0)=i+1

ne ()i w0

Zdhk—jgk""dne(m—_; Z g, 1=j<i,
k=1

!(=nr, (0)—i+1

VS, i=n(0),1=< j=n.(0),

where
n (-1  jipo] 1, (0)-1

yi=l- 2 g 2 (e+dd)— X g D (ci+di).0<i<n,(0).
=1 k=0 =t (0)—i+1 k=0
Similarly, the other blocks S¥F; and SS; refer to the transition from busy state to vacation state and
busy state respectively, and are given by

(11 itr—1 (11

o 1= e 3h— Y & S b 1<i<n,). =0,
Sy

r=1 k=0 r=ng(D-i+l k=0

0, otherwise,

tg(1)—t o

Z bi+k—jgk +b"ef1)‘f Z Lo j =iz 0,

= f=ry (1)-i+1

g (1= @

Zbﬁk-}gk"'bnf(l}ﬂ Z gk l=j=i
k=1

k=ng (1)=i+]

SSi. i=n(1),1<7<n,(1),

Let O=(0;) be the transition probability matrix (TPM), and ¢~ =[F0. 0. ... P, 0. Prrs oo P i

be a row vector of pre-arrival epoch probabilities. Then ¢~ can be obtamed by solving the system of
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equations ¢ Q=g usmng GTH algorithm [7].
A significant performance indicators of the batch arrival finite-buffer queueing system is the blocking

probability of an arbitrary customer in an arriving batch ( Py,) is specified by
n, (0} m,(1)

ZROZgJ+ZPIZng

g (0)—i = (1

where g, = —Z

customer vuthm the batch, see [5, p. 171].

S TR 0, refers the probability of /i number of customers ahead of an arbitrary

3.1. Steady-state distribution at an arbitrary epoch

Let us derive the expression for steady-state system-length distribution at arbitrary epoch. The
steady-state system-length distribution at an arbitrary epoch 1s obtained by using renewal theory [5]. Let

bs and cx (k =0) be the probability that & customers have been served during a residual inter-batch
arrival time when service period is in progress and working vacation continues, respectively. Similarly,

let dx be the probability that & customers have been served during a residual mter-batch arrival time
given that working vacation has terminated and service period has began. Hence for all & =0, we have

b’" — (F‘Jﬂijﬁi_jﬁp{-’r>i},c:\.’ _ Z ¢ [ J?}jﬁi_jﬁP{T‘)j},

f=max{l f}

w0 i mini_j,r) : : )
2207 { k]v*??"*{J_l]ﬂ-""ﬂ""‘-’”‘ﬂuP{T > i}

=max(l, i) r=1 Fe=ma (0, j+r—1)

System-length at an arbitrary epoch P, P, can be obtained from O by applying b ;. ¢, and dj n
placeof b;,c; and d; in(l).Then g=[F,. y.....P,

e

0-Pr1s oo Py pn] can be obtained by solving
the system of equations ¢Q =¢ using GTH algorithm [7].

3.2. Outside observer’s distribution

The outside observer’s observation epoch falls in a time interval after a potential arrival and before
a potential departure. Let PS5 (0<i<n,(0)) and P;(0<i<n, (1)) denote the probabilities that i
customers are in the system when the outside observer sees the server on working vacation and m the busy
period, respectively. They are given by

Poo = Poo+ 0P + 1Py,

Poo =GP+ fnPho. 1<i <n,(0) -1,

P, 00 =71P; 0)0-

Py =iy + ubly + b+ ¢nblip. 1<i <n (0)—1,
P on = 8Py o0 + 1P 0y + OTTE, 000

Py =paPi+ulPl.n 0y +1<i<n,()-1,

P, na = HP o

Subsequently PS5 and P} can be obtained from the above (2)-(8).

3.3. Sojourn time analysis

We compute the sojourn time in system for an arbitrary customer in an arriving batch. Let E[W,]
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be the mean sojourn time in the system for an arbitrary customer and #,(s) denote the probability

generating function (pgf) of the sojourn time for the same. We can compute W, (z) for partial batch
acceptance model as:

n, (0)-1 #, (0} -1 1 ??5’ reitl ) R (@)1
Wi(z)= [Z Z [l_—_ ] + _ZOP;.o ZO gr
J= r=

Ik

(1-
( aﬁn_ #z ]:'+_,i'+1 N ii[ ??az ]ﬁ( aﬁ_ ]( #z ]r+_,i—k+1
= @5?1 1 iz 7 \1-g7z ) \1-g7= \1- iz

a1 b (1) i1 i+l

- iz

+ 2. P g, [ — ] I ©
= ,=0 1— =z

Now the mean sojourn times in the system for an arbitrary customer ( E[¥;]) may be computed as

1 #, (1)1 N(O)jl o+ +l ?_ el
EW=o U2 P Y, g 1

Bt =0 — ng \1—¢n
¢T?[#+(J +r+D(1=g)] E@J"'l?ﬁ[(r’( + P+ (_J'+f‘+ 1-i)(1 —Jﬁ)]}
w(1—gi7)* = 1 —pi)t?
n, (1)1 (1) -1 :"+j+1.
DI AED I > [—]} (10)
=1 #=i) ,U .

We have considered FE[W,] for our numerical purposes in the rest of the paper.

3.4. Balking strategies

3.4.1. Relation between reward and cost

Each customer has to pay a fixed cost C after completing service. The reward-cost is chosen in
such a manner that the customer is attracted to participate i the system even when the system is empty at
the batch arrival instant whose probability is FP,,. Considering i =0 in (10), the mean sojourn time of
an arbitrary customer in a batch who arrives at an empty system (denoted by A ;) is given by

el ne J ¢T?[(f+1)(l—¢n)+;z]
Aobs= ¥ 2 b
e zg {?}‘{Iﬁ‘(l_iﬁ'n ,Ll(l_i?j’??)

r=0

1
= w(1—pi)*? an

The system should be designed in such a way that reward ( R ) shall not be very high and cost (') may
not be very less for attracting too many customers to participate in the system. The linear relationship
between R and C should follow the constraint given below

R>C-A 4y, (12)

I ‘[(f»+¢rzm+(r+1—k)(l—¢m1}

3.4.2. Equilibrium balking strategy

Let A=R—-C-E[W,] be the net benefit of a customer who has been served. Let us define the

equilibrium threshold (n,(0) and n.(1)) as the number of customers in the system when an arriving
customer finds the net benefit (A ) becomes zero or closest to zero. Under low traffic intensity the system-
length never grows beyond a particular value. In that case, the particular value of system-length for which
the system occupancy never grows beyond a threshold is known as equilibrium threshold. Under high
traffic intensity the numerical results show that there exists an equilibrium threshold when A=0.
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3.4.3. Socially optimal balking strategy

Evaluation of steady-state distribution at arbitrary epoch is needed for computation of social benefit

per unit time. The average number of customers in the system at an outside observer’s observation epoch
) s, (1)

(L)isgivenby L] = Zrﬂ o+ Zrﬂ", We may evaluate the average number of customers in the system

=1 =1
at an arbitrary epoch ( L,) by replacing PS5 (P7) by P, (F,,). The average waiting-time in the system
may be computed using Little’s rule as E[W,|= L./ A.. where A, = Ag(l— Pg,) isthe effective arrival
rate. Let A (72.(0).72.(1) be the social benefit per time unit, which can be expressed as

a1, (1) 1, (1)
A, (n,(0),n,(1)) = RRE(I—PM)—C[ Dl + Zr‘P.fiJ-
=l i=1

4. Analysis of Fully Unobservable Queues with Balking

An arriving batch remains unaware about the system-length while deciding whether to join or balk

for unobservable queues. As a result, unobservable queue behaves as an infinite buffer GI™1/Geo /1
queueing system. Unobservable queues are classified under two categories: (1) Almost unobservable case:
The status of the server £(r) is known to the arriving batches; (2) Fully unobservable case: Information

is not made available to the arriving batches to distinguish whether server is on vacation or on normal
busy period. Let f be the joining probability of the arriving batches to the system. The following

difference equations are obtained by observing the state of the system at two consecutive pre-arrival
epochs:

Poy= fPooZg Z(C +d)+(1_f)Poo+fz IZS Zb +(1_f)z lzbk

r=1 k=i+r i=

+IZROZ§ Z(C.ﬁ +d‘)+(l—f)ZROZ(C‘ +dy).

k=ite

P= fZPk_,OZg:-ck+r—l +(1- f)ZPk_,ock_n
k=0 r=
B=,fiPk_o Zg Criri T+ fZPkoZg Cropi+(1- f)ZPkOC!r =R
o

r=i—k k=i—1 r=1

= iP *0 Zgrdk+r-1 +(1-f )ZP odi + [ ZP k_,lzg:-bk+:-—1
R —) = -

(1~ f)iﬂ:.b‘._l,

[ZPkO Z‘gydnr-f + ZPkoZg Ay +Z-Pkl Zg:b!Hr i

r=i—fk k=i-1 r=i—f

+za.ngh.-,]+a f>[za”,+zpm ] 22 (17)

he=i—

Summing (13)- (15) after multiplying the appropriate powers of z' and using the definition of pgf
Py(2)= Z Poz', we get (18). In similar fashion, multiplying (16) and (17) by the appropriate powers

of z'', and applying the definition of pgf, P, (z) as P, " (z)= Z =lP,]z"' . we obtain (19).
o= S D Fioz' D “’Zg 2 =(1- f)ZP Z

PO—"(Z)= =i =i+l = =l =i

I-(-7+ fG(-'))C(j)
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(= + fGE T DEOP () - J‘Z,B-" f
P = DR

l—(l—f+fG(:))B(;)
i—1 — i1 < bj = ¥
(l—f)z Z_—+fz Z;Zg,.z

1-a —f+fG(z))B(§)

(- f)Z 21> %

- (19)
1= (- + fG(NBC)

The above expressions are analytic and convergent in |z|<1. We require to compute zeros of the

denominator (18) and (19). Let us assume that the maximum size of an arriving batch is . The equation

1-(1-f/+ jG('z))ﬁ(l) =0 and 1-(1-f+ jG(:))E(’l) =0 hasexactly » roots in the region |z[=1,
z z

see ([5], pp- 119). We consider the » roots of the equations 1—(1— f+ fG(z))E(%) =0 and

1-(1-f+ J‘G(:))E(l) =0, respectively, in the region |z [= 1. As the denominator of (18) has 7 roots
z

outside the unit circle, the function 1-(1— f + ﬁ(’%))f(’z) =0 has r zeros @, 1nside the unit circle
|z|<1.As P,7"(2) isan analytic function of z for |z|< 1, employing the partial-fraction method, we get
. L H,
Py(z)= —, 20
5 (2) Z . (20)

where H, are the » constants to be determined. In order to simplify the expression of P, "(z), let us
consider

fZ 02 Z JZg T+ (1- f)Z 02 Z‘i

JJ+1- r=1

T(z)=-

l—(l—f+ﬂ3(:))B(—)
ZP:.-”Z Zgz +(l—f)Z Fa

J=i J=i =

I-(1-7+ J’G(-‘))B(;)
Then P, (z) can be further simplified as
A=+ B IDGRTG)
P (z)= — +T(2). (21)
I-(I-f+ J’G('Z))B(;)

Now let us analyze the analytic expression (21). Since the equation 1—(1— f+ jG(z))E(l) =0 has r
4

i

roots outside the unit circle, the function 1—(1— /' + fG(%))E(:) =0 has r zeros &, inside the unit

circle. It is obvious that P,"(z) is dependingon P, (z).As P, (z) isan analytic function of z for
| z |1, applying the partial-fraction method, we obtain

"

(22)
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Now, equating the coefficient of =z’ from both sides of (20) and (22), the pre-arrival epoch probabilities
can bc obtained as

Poo=YHwo! k=0, (23)

=1

P =YKo/ +> L k=1 (24)
i=1 i=1

At this point, the unknown constants are ;. K, and L,(f= 1,2,;). Considering Eq. (13)-(15), for
i=2,3,‘.‘,;’—1 , (16) and (17) for i=2,3,2;‘—1, we have 3 7 simultancous equations with 3

unknowns. One may note here that we ignore the values for 7= r of (15) which are redundant equations
and we must use normalizing condition by putting z =1 1in (20) and (21) which is given below as

H, < K, L,
ALy Ky

S l-o, FTl-w 3

Therefore, solving these 37 equations, we can evaluate 37 unknown constants.

4.1. Steady-state distribution at an arbitrary epoch

System-length at an arbitrary epoch F,;. F,; can be obtained from pre-arrival epoch probabilities

PL. P, (Vi=1) by employing bj,c and dJ in place of b,,c; and d; in (14)- (17), which is
descrlbed below

ZﬂOZg Cror + (1= f)ZPMck_ (25)
f(ZPko Zg,c;m i+ ZPMZg Chor f)+(1-f)ZPch niz2, (26)

r=i—k k=i—1

= fZPk_,g Zg,.dk+r_1 +(1—f)z&fodk-1 B ZP{I {fZg,.ShrA +(l—f)£’k—l},
f(ZPko Zgrdhr*—r + ZPJE oZg d i) +fZPk| Zgrbk+r i

r=i—k k=i-1 +=1 k=1 r=i—k

P g b+ (1 f)ZR b :+(l—f)ZPkodk iz 2.

k=i-1 r=1

After obtaining P,, and P (¥i=1),one canobtain F, =1 _Z(Pr.o +P)).
i=1
4.2. Outside observer’s distribution
Similarly the outside observer’s distribution in case of fully unobservable case may be obtained using
(2). (3), and (5). Let L% denotes mean system-length that can be obtained from steady-state distribution
at arbitrary epoch as L= Z}‘(P,f’o + P7). Considering f=1.g,=1 and g, =0.vi=2, our model

=1

reduces to GI/Geo/1/ MWV queueing without balking [11].

4.3. Sojourn-time analysis

Waiting time in the system can be computed from the pre-arrival epoch probabilities P, and P

by following the similar derivation of (14)-(17). The unobservable balking behaves similarly as an infinite
buffer queueing system, we focus on the sojourn time for an arbitrary customer in an arriving batch. Hence,

W, (z) can be given by,

s o) ()

=0 1- iz
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i () e s

The mean of the sojourn time of an arbitrary customer ( E[#,]) of an arriving batch is given by

regrl( ng \7 L #TIG e DA-F) + 4]
= ;Z Zg{ e (_1—577_] T gy

S ﬁ*‘lrz*[(k+Er7);e+(f+r+1—k)(1—a7r7)]} N p- Ny LEI L
N S B P - -
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4.4. Balking strategies

4.4.1. Equilibrium balking strategy

Let A, be the mean waiting for an arbitrary customer in a batch that finds the system to be

empty at arrival. Using similar derivation of Section 3.4 and considering i =0 in (30), A 4. 1s given

by
ﬂﬁ‘:ms=f2g;{rt}[ g ] ¢T?[(?+1)(1—¢3?;)+,u]

= ng "\ 1-9i7 w(1—gi7)’

+2['¢J*'ln*[<r+1>(l_-s?r7>+(k+1)s?r;1 (r+1-kgg* 'y ‘}} 31)
(1—gm)* u(1=gip)*

A linear relation between cost and reward can be obtained from (12) by replacing A 4, by A 4, . The

net benefit A.(/)=R-C-E[W,] is depending upon mean sojourn time in the system. The joining
probability ( /') which produces A closest to zero is the desired equilibrium joining probability for the
fully unobservable queueing system. The pair of values of ( /. /') which produces A_.(f.f) closestto
zero are the desired equilibrium joining probability (denoted as  £,"(0) and £.'(1)) when the system is
m working vacation or normal busy period, respectively. Let us denote the net benefit for equilibrium

balking case as A (d)=R—-C-E[W,]. Solving A_.(/) where [ e [0,;—‘!_) and taking R,_‘u_ <1, we
o4 24

get the positive and feasible root /., . For fully unobservable case, the equilibrium joining probability is
denoted as f.". We numerically observe that E[W,] is increasing with AZ(AZ < z). It can be seen that

the customer’s mixed strategy f, is unique in the unobservable queues and £, = min{ f. .1}.

4.4.2. Socially optimal balking strategy

For the social planner, we impose a mixed strategy f so that social benefit per time unit may be
maximized. Using Little’s law. A (/) is given by

A= A8 (R=C-E[W,]). (32)
The first order and the second order derivatives of A, (/) withrespectto f are given as

No()=AZ(R-C-EW, )~ AgfC-E'W.]. [ E’[WA]=% E[W.]]

AN Y=—AgC - ENW, |- AgC E'[W, | =-=2.8C-E'[W,].

In order to get first-order optimality conditions, we have to take A’ (/) =0, that is,
R r
?—(E[WA]+f‘E [7.])=0.

By recalling from (30) that E[W,]= /¥ where
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Let f is the socially optimal joining probability in the unobservable queue. It is easily seen that

/= 7" is the solution of A’.(f)=0, by solving (33). /"~ can be obtained by using f = %

As E'[W,]=0. we have that A7(/)<0 for any probability [O,Ei_). Therefore, the function
4

A,(f) 1in (32) is concave function of f in this interval, and it attains a unique maximum at the point

f=f". I f <1, then the maximum of A (f) in the interval [O,A—‘u_) is attained at f= f":
g

otherwise. it is attained at /" =1.

5. Numerical Results

In this section, we present the effect of the system parameters on the equilibrium and the social
benefit for both fully observable and unobservable cases. The parameters are assumed as
A=02.0=03n7=04,R=20,C=8,03=< =08 and batch size distribution as g, =0.6, g, =0.6,
g,=0.1,g,=0.1. Figure 1 presents the impact of the mean vacation time ( ¢ ) on the mean waiting time
in the system ( E[#,]) when the inter-batch arrival time distribution is deterministic. It is observed that
for all values of traffic load ( p ). the mean waiting-time in the system decreases as the mean vacation time
increases. We further observe that for fixed mean vacation time, the mean waiting-time in the system
mcreases as traffic load increases. Subsequently in the following discussion we consider the inter-batch
arrival time is following an arbitrary distribution. Figure 2 illustrates the dependence of the mean waiting
time in the system on the traffic load ( o) for various mean vacation time. It is observed that the mean
waiting time in the system increases as traffic load increases. Moreover, FE[W ;] decreases as the mean

vacation time increases.

0s 0.6 0.7
mean vacation time ¢ when n=0.4

Figure 1. ¢ vs E[W,]| for deterministic inter-arrival time in fully observable queue
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32 e e s o o7 o8 oo
Figure 2. o vs E[W,] for inter-arrival following an arbitrary distribution in fully unobservable queue

Figures 3 and 4 depict the behavior of the net benefit and social benefit with respect to joining probability
for a fully unobservable case, when the inter-batch arrival is following a geometric distribution. The net
benefit increases slowly upon the increment of joining probability up to certain level, thereafter the net
benefit decreases sharply with further increase of joining probability. The equilibrium joining probability
1s shown in Figure 3 when the net benefit becomes zero or closest to zero. Similarly, the social jomning
probability is also shown in Figure 4. The net benefit and social benefit decreases with the increase in the
values of [ .Ttisseenthatfor x#=03 and =04, thereexistsapomt f intheinterval (0.1) such

that A=0 and A,(f)=0.The value of A and A (/) are positive or zZero or negative according to
the value of f is less than or equal to or greater than 0.75. If = 0.5, both benefits are always positive
for any f €(0.1). Therefore, the optimal response for individual customer is to join the queue with
probability one, that is, /., =1 when u=0.5.

net benefit (A)

92 03 04 05 6 07 08 09
joining probability when 3=0.2, 1=0.4, 6=0.3

Figure 3. Joining probability vs net benefit for fully unobservable queue
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: : : : *
-10 i i i i i i i
0.1 02 03 0.4 05 0.6 0.7 [X] [X]

joining probability when A=0.2, n=0.4, 0=0.3

Figure 4. Joining probability vs social benefit for fully unobservable queue
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6. Conclusions

An equilibrium balking strategies in discrete-time G/ /Geo/1 queueing systems with multiple
working vacations have been studied from an economic point of view. We considered the stationary
behavior of the systems for fully observable and unobservable cases, and derived the equilibrium balking
and social optimal strategies. Customers can take their decisions according to the exact situation, which
1s more practical than the classical assumptions in queueing theory. We have discussed the fully
observable and unobservable cases with reference to the level of mformation given to arriving customers
and found the equilibrium strategies. The closed form expressions to obtain the probability generating
functions of the system-length at the pre-arrival epoch in the fully unobservable case have been provided.
Moreover, the equilibrium balking and social benefit behavior with reference to various parameters on
the impact of the information level have been carried out. Analysis of equilibrium joining with state
dependent balking and reneging for GI* /Geo/1 queueing systems can be carried out as future works.
Furthermore, there is a necessity to look into operational controls, such as scheduling.
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