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Abstract: We study a Markovian finite orbit capacity retrial queue of a multiprogramming-
multiprocessor computer network system in which the service channels avail vacation under Bernoulli
schedule. For this system, the steady-state probabilities of the number of programs in the system and the
mean number of programs in the orbit along with other descriptors of the system are obtained by
adopting the matrix analytic methods. Moreover, the expressions for the Laplace-Stieltjes transforms of
the busy period of the system and the waiting time of a program in the orbit are determined. The
probability generating function for the number of retrials made by a program is also derived. Some key
performance measures of the system and various moments of quantities of interest are discussed. Finally,
extensive numerical results are carried out to reveal the influence of the system parameters on the
system performance measures.
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1. Introduction

In recent years, retrial queueing systems have been investigated by many researchers because of
theirr broad practical applicability m the performance analysis of auto-repeat facilities n
telecommunication networks, computer systems with retransmissions, packet switching networks,
shared bus local area networks, optical network systems, etc., Retrial quevemg systems are
characterized by the fact that customers (or calls, packets) who find all servers busy upon arrival are
obliged to leave the service area and repeat their demand after some random time, called “retrial time".
Between retrials, the blocked customers remain n a retrial group, called “orbit’. The literature on retrial
queueing systems is very rich. For the reviews of the main results and applications of retrial queueing
systems, the readers are referred to the monographs by Falin and Templeton [16] and Artalejo and
Gomez-Corral [5]. For more references on this, see the bibliographical overviews m Falin [14], Kulkarni
and Liang [29] and Artalejo [4].

Study of multiprogramming computer networks for performance analysis has received wide
attention in the computer and communication systems. Multiprogramming computer networks with
main memory mcorporate both autonomous peripheral devices, central processing unit (CPU) capable of
operating concurrently with mput-output (I/O) devices and multiple programs (packets). The system
admits several programs to reside simultaneously in the main memory (service area) of the computer, so
that when one program requests an I/O operation, the CPU can be switched immediately to another
waiting program for carrying out the computation. Typically, a program’s execution in the system
consists of a sequence of I/O and CPU activities until its request for work is completed. After that, the
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program relinquishes its occupied main memory when it leaves the system and a new program
immediately enters the system, if any, and joins the queue of I/O device. In other words, once the
program enters into the main memory. it joins the I/O queues for input activities. In due course. after
completion of its input activities, the program may join the CPU queue for processing activities. Soon
after . the completion of a CPU service, the program either departs from the system (i.e.. when its
requirement has been completed) or continues cycling from CPU to I/O and vice versa until the
completion of the requirement. While the system runs in a multiprogramming mode, several programs
contend simultancously for the resources. thereby creating queues of requests. For the reasons of
efficiency. the number of programs admitted. by request. to use the resources in the main memory is
kept fixed to a maximum level, say M, which is called the maximum degree of multiprogramming.

There i1s a great deal of literature devoted to multiprogramming computer networks. For the
systematic developments of the mathematical descriptions and applications on this topic, one can refer
to the research articles by Gaver [17]. Lewis and Shedler [32], Gaver and Shedler [20], Adiri et al. [1].
Avi-Itzhak and Heyman [9]. Hofri [22]. Konheim and Reiser [26]. Daduna [11]. Kameda [23].
Avi-ltzhak and Halfin [7. 8]. Latouche [30]., Rege and Sengupta [33] and the monographs by Allen [2]
and Gelenbe and Mitrani |21].

Several queueing protocols have been implemented in order to obtain the various significant results
for the system described above either under heavy traffic/loaded situations, i.e., there is a buffer of
finite/infinite capacity in front of a main memory (service area) which is never empty (see Gaver [17],
Adiri et al. [1]. Konheim and Reiser [25], Kameda [23]. Gelenbe and Mitrani [21] or the closed
queueing networks which consist of a fixed number of programs in the main memory and a cycle queue
of multiple I/O and CPU service channels (see Lewis and Shedler [32], Gaver and Humfeld [18],
Brandwajn [10]. Daduna [11] and Gelenbe and Mitrani [21]).

In a recent paper. Krishna Kumar et al. [28] have dealt with the multiprogramming -
multiprocessor computer network retrial queueing system with constant retrial policy for infinite/finite
orbit capacity. For such repeated request system. the level-independent quasi-birth-death (LIQBD)
process of three-dimensional Markov process 1is constructed. By employing the matrix
geometric/analytic methods. the stationary distribution and various performance measures such as busy
period, waiting time, etc., of the system have been obtained. Although several queucing models have
been extensively investigated in the literature for multiprogramming-multiprocessor computer networks,
to the best of our knowledge. the classical retrial policy for the multiprogramming-multiprocessor
computer network with the Bernoulli vacation schedule of CPU service channels is not studied. In
practical situations. allowing the service channels to take the Bernoulli vacations makes the system more
realistic and flexible in studying the multiprogramming-multiprocessor computer networks with
maintenance activities. In addition, repeated requests of the programs (packets) have quite an impact on
the performance of vacation systems and hence cannot be neglected in computer network designs and
planning.

This motivates us to study a novel computer network system with classical retrial policy as well as
with Bernoulli vacation schedules of the service channels. Thus, the proposed queucing system makes
the anlysis more complex and challenging. In what follows, after formulating the level-dependent
quasi-birth-death (LDQBD) process of four-dimensional Markov process, where level is referred to as
the number of programs in the finite retrial orbit, we derive the stationary distribution and performance
measures for the various vacation systems by adopting the matrix analytical techniques. Besides. we
explore both analytical and numerical results for the system which are new and different from the results
of the paper by Krishna Kumar et al. [28].

The retrial queueing systems with Bernoulli vacation schedule for the multiprogramming-
multiprocessor computer network systems occur in many real life situations where the service channels
may be used for other tasks, maintenance activities. etc. For instance. the proposed system can be
applied to analyse the performance of a host-processor which consists of several central processing units
(CPUs). a main memory. several channels and disk files. The disk sub-system has the feature of
rotational position sensing (RPS), by which the channels and storage controls are allowed to be released
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during most of the record search time, thus increasing channels and control units availability for other
operations. The processors themselves are operated in a multiprogramming environment and are
assumed to have more than one program waiting for processing. For an efficient use of the limited
resources of the host-processor system, the maximum number of programs allowed to reside in the
computer network is bounded by some number. called the degree of multiprogramming. The CPU
service channel makes input/output (I/O) requests whenever the program being processed issues the I/O
commands (such as read, write. etc.) either for data or for any information not available in the main
memory. Having initiated the requests, the CPU starts to process the next program waiting at the CPU
queue. At the same time. the requested /O operators are performed independent of the CPUs. When the
desired informations are transferred into the main memory, the program that made such requests will
return to the CPU queue for another CPU processing. This process is repeated until all the required
processing is completed for a particular program. Upon completion of its final request, the program
leaves the system.

Apart from the programs execution in the CPU and I[/O queueing systems of the
multiprogramming-multiprocessor computer networks, there are many circumstances under which the
normal flow of a program in the computer system is interrupted. The interruption causes the temporary
suspension of the program in progress. Hence the network controller requests the CPUs to take
necessary action for the special events. A major application for interruptions is to use interrupt as a
method of allowing the CPUs’ time at such periods to different programs or threads that are sharing the
CPUs. (The threads are small pieces of a program that can be executed independently). As the CPU can
execute only one sequence of instructions at a time. the ability to time share multiple programs or
threads implies that the computer network system must share the CPUs by allowing small segments of
time to each program or thread. in rotation among them. Further, each program sequence is allowed to
execute some instructions. After a certain period of time, that sequence is interrupted and relinquishes
control to a dispatcher program within the operating system that allocates the next block of time to
another program sequence.

The computer network system provides an internal clock that sends an interrupt periodically to the
CPUs. The time between interrupt pulses is known as a quantum which represents the time that is
allotted to each program or thread. When the clock interrupt occurs, the interrupt routine returns control
to the operating system. which then determines. which program or thread will receive the CPUs’ time
next. The interrupt is a simple but effective method for allocating the operating system to share CPU
resources among several programs at the same time.

As mentioned earlier, in the host-processor, programs have to be routed and pass through a
sequence of links and nodes. Programs from different sources are time-multiplexed and thus flow
sequentially through the network links. When programs arrive, they need to be queued in a buffer and
have to wait before they can be forwarded to the I/O and CPU queues service area and travel through the
computer network. This store-and-forward procedure can cause a serious increase of the latency and
congestion of programs. In order to avoid the increasing number of programs and network complexity.,
the buffering processes need to be designed as efficiently as possible. This can be achieved when the
program which finds the I/O and CPU queues service area is fully utilized upon arrival, will leave the
service area and re-initiate its attempt for execution of the I/O and CPU service activities of the
computer network after a random time. This process is repeated until the blocked program enters into
the service area of the computer network system.

The rest of the paper is organized as follows: In section 2, we describe briefly the mathematical
model and formulation of the retrial queueing network system under consideration. The steady-state
probabilities of the number of programs in the retrial group and the status of the service channels in the
main memory for finite orbit capacity (FOC) system are reported in Section 3. The measures of interest
arc obtained in Section 4 for the retrial queueing network system under discussion. Section 5 deals with
some specific probabilistic descriptors such as ideal and vain retrials of the FOC retrial queueing
network system. Moreover, the optimal rate of retrial has been investigated numerically. The
computational analysis for the length of a busy period of the system is studied in Section 6. In Sections
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7 and 8. we analyze the waiting time of a tagged program and the number of retrials made by a tagged
program before entering into the main memory (service area), respectively. Extensive numerical results
have been carried out on the main performance measures against various system parameters to
corroborate our theoretical analysis. Finally. in Section 9. we conclude our results and present some
future directions.

2. Model Description

We consider a multiprogramming-multiprocessor computer retrial queueing network system with
finite orbit capacity (FOC). say. K. and inner multiprocessor network (main memory). The structure of
the system is depicted in Figure 1. The inner multiprocessor network consists of J; identical
input-output (I/O) service channels with buffer and J, identical central processing (CPU) service
channels with buffer. Each CPU service channel takes a Bernoulli vacation as described by Keilson and
Servi [24]. That is, upon the completion of a service, if there are programs in the buffer of the CPU
queue. either the service of the next program begins with probability (1—p), (0<p<1), or a
vacation period begins for a duration with complementary probability p. On the other hand. if there is
no program left in the buffer of the CPU queue after a service completion. the service channel always
takes a vacation period for a duration. At the end of a vacation period, the service commences. if there is
a program present in the buffer of the CPU queue. Otherwise, the service channel takes another vacation
immediately and continues in the same manner until it finds at least one program waiting in the buffer
upon returning from a vacation (i.e., multiple vacations). This process holds good for all J, service
channels of the CPU queue. The length of vacation periods {Vi;k = 1,2,3, ...} of service channels of
the CPU queue are independent and identically distributed (i.i.d) exponential random variables with
parameter 6.

The important merit of the Bernoulli vacation scheduling is the existence of a control parameter p.
By adjusting the value of p. we can control the congestion of the system. Besides, when p = 0, the
Bernoulli vacation scheduling service discipline is equivalent to the exhaustive service discipline and
when p =1 to the 1-limited service discipline.

When the system executes in a multiprogramming mode. several programs (packets) contend
simultancously for the resources. thereby creating queues of requests in the inner multiprocessor
network. For reasons of efficiency, the maximum length of I/O queue and CPU queue (including both
buffers and service channels) is assumed to be a fixed number. say, M, ie.. a maximum of M
programs are allowed to occupy the inner multiprocessor network.

Primary programs (those that arrive at the system for the first time) arrive at the multiprocessor
retrial queueing network system according to a Poisson process with rate A. If the number of programs
in the inner multiprocessor network is less than M. an arriving primary program joins the queue in front
of J; I/O service channels having exponentially distributed service times with rate p,;. Soon after the
completion of an I/O operation, the program either joins the queue in front of /, CPU service channels
with probability p,, (0 < p; < 1). or leaves the system forever with the complementary probability
1—p;. In the former case, the programs, that have joined the queue in front of J, CPU service
channels, will be served with exponentially distributed service times of rate . After completion of a
CPU operation, the program either joins the I/O queue again for service with probability p,, (0 < p, <
1). or leaves the system forever with the complementary probability 1 —p,. In each queue. the
programs are served by the FCFS discipline. On the other hand. if an arriving primary program finds the
inner multiprocessor network fully occupied by M programs. it is forced to join the orbit/retrial group
of capacity K from where the retrial programs can repeat (independent of each other) their requests an
exponentially distributed time period with intensity equals to nv where n, (1<n <K). is the
number of programs present in the orbit and v is the rate of retrial. The arriving primary program will
lost forever if the main memory and the orbit group are fully occupied. respectively, by M and K
programs. Clearly, the orbital programs compete with potential primary programs to decide which
program will enter next into the inner multiprocessor network. Upon retrial from the orbit, if the
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Figure 1. Retrial Queueing System for Multiprocessor- Multiprogramming Computer Network

program finds M programs in the inner multiprocessor network. then it always rejoins the orbit. This
process continues until it eventually enters into the inner multiprocessor network. The behavior of a
retrial program is the same as that of the primary program. The inter-arrival times of primary programs,
interval of successive retrials, vacation times and service times are assumed to be mutually independent.

Based on the assumption of Poisson arrivals and exponential distributions for services, vacations
and retrials, the system may be described as a continuous-time Markov chain (CTMC) model. The state
of the queueing system under investigation can be described by means of a four-dimensional Markov
process {X(¢); t =0} ={(N(©),1(D),C(6),S(D)); ¢ = O] where N(t) is the number of programs in
the orbit (source of repeated demands), I(t) is the number of programs in the I/O queue with J;
service channels, C(t) is the number of programs in the CPU queue with J, service channels and
S(¢) is the number of busy/active service channels in the CPU queue at time ¢. In the sequel, without
loss of generality. we assume that /; +/, < M in order to avoid several different cases. Thus, the
process {X(t); t = 0} forms an irreducible regular CTMC on the state space Q = {(n,m —[,[,j); 0 <
n<K, 0<j<s,0<l<m, 0<m<M} where s, =min(J,,m), m=0,1,2,..,M, and the
4-tuple (n,m — L,1,j) represents that ‘n’programs are in the retrial orbit, “m — [ programs are in the
I/O queue, “I'programs are in the CPU queue and °j’service channels are busy in the CPU queue at an
arbitrary time. We further define the leveln, n =20, 1, 2,..,K. as the set of statesn = {(n, 0,0,0),
(n,1,0,0), n,0,1,0), (n,0,1,1),..,(n,0,M,1),...,(n,0,M,s5,)}. The queueing system under
discussion can be treated as a Markov model of level-dependent quasi-birth-death (LDQBD) process
with the state space € and hence the technique of the classical matrix analytical method can be
employed to obtain the stationary distribution of the system size.
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3. Stationary Distribution

The elements of the set of states in € can be enumerated in the lexicographical order. Using
elementary argument, the finite state Markov chain for the system under study has a transition rate
matrix @ which has a block tri-diagonal structure given as
[A1o Ao
Azr Aix Agy

A2,2 A1,2 Jq-i],?.

Q= Ay Ain Agn . (1)

Azk-1 Aig-1 Aok-1
A,k Agg + Ak

Matrix Q is an infinitesimal generator of a continuous time Markov chain (CTMC) which is a
level-dependent quasi-birth-and-death (LDQBD) process (see Latouche and Ramaswami [31]). The
dimension of the square matrix, Q.is Ay = (K + 1)I'y, where Ty, = XM _o ¥, with

_ [Gmt1)(sm+2)

Yo CntD) 4 (m = 50 (5m + DO, 1]

in which s, = min(J,,m), m =0,1,2,..., M, and the Kronecker’s delta function &;; is defined as
1 if i=j,
8ij = {0 if i#].

The non-zero blocks. A;,. 0<n<K, Ay,,,1<n<K. Ay,,0<n<K and the zero blocks. 0.
are all square matrices of order I'y;. Fach of these blocks is itself highly structured. Specifically. the
main diagonal blocks A4,,. n=0,1,2,..,K, appearing in @ are specified as follows:
The boundary block A;, has a partitioned block tri-diagonal structure given as:

FALO A00
Ayo Ajg

2, 11 401
Al}) Ay, Ay

22 Al2  A02
AT, Ayy A
A, = 2,m 1,m 0m 2
Lo ATy Ayy Ay @

2,M-1 1,M-1 0M-1
AI,D AI.O AI,D

2,M 1.M
AI,D A1,0

“Tpg =l pg

where, in the above, the main diagonal blocks All'_?, 0<m <M, are square matrices represented
by
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Tm:So D?'m
51 B"m—iysi D"m—l
Es‘z B"m—zﬁz D"m—‘z
ATy = E B D
Lo sy P15t Tim-i
Esm—l B?'I:Sm—l Drl
Esm Bro,sm

“Ym*X¥m

in which the diagonal sub-blocks B, . 0 <[<m, aresquarc matrices expressed as

_(‘3’ + rm—lﬂl ]29
+(1 = 60)/28)
—(A+ Tl
- 1)
iy + (J, — DO) Ga= D)
Brin-us1= —(A+
+(s;— Doy (Jo—si+ 18
+02 — 5 + 1)9)
_(’1 + Tt
+Siit, s x(sp+1)

with  =min(Jy, ), 0 <1 <M, the lower diagonal sub-block matrices, Es, 1 <[ < m, are given

as
( 0
PPz (1 —ppatt,
2pp,u, 2(1 = pIp2ity
(si = Dppapz - (51— DL = plpapz
SiPalkz
T(spH1)x (s +1),
for 1=1,2,3,..,/2
Ev =] ) 2
pp2ttz (1= plpauy
2ppaitz 2(1 = ppaiy
(s1 = Dppattz (51— DA — pIpatta
SiPP2H2 si(1 = pIpaity
\' s (s+1)
for I=/,+1),+2,....m,

and the upper diagonal blocks D, .. 0 <1 < m, are described as

[rm—tpllullsi+l 0((8“1))(1)](St+1)><(5t+1+1)' 1=0,12,..,],—-1,

D?‘m—z = [?’m—splﬂlfsl+1]{sl+1)xcsl+1) , [=]))+1,.,m—1,

where 1. in general, denotes the nxn identity matrix.
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Now we specify the upper diagonal block matrices A'}B‘“ 0 <m< M —1, of the boundary block A,
as

-HS 05'0

0
om _ ' :
A1,0 - Hs

m Sm

“YmXVm1

with sub-blocks
Hsf = A’(sl+1)><(si+1) fOl" l = 0, 1,2,...,m,
and

0(5!+1)X(5!+1+1) for 1 =0,1,2, ...,)(2 -1,
031 = 0(s;+1+1)x(s;+1+1) forl=4, ,+1, ,+2,..m

the lower diagonal sub-blocks A‘if&‘, 1< m < M, of the boundary block matrices A;, are defined
by

G,
Fsl G"m—l
52 G?‘m—z
2’ _ . .
Al,gt - FSI Gl‘m_l
Fsm—i G"i
F,
¥mX¥Vm-1
with partitioned sub-block matrices
G, = [ Q= P, | i DD for [ =0,1,2,..,m—1,
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T 0
( p(L=pdpz (1 —p)(L—pu,
2p(1 —pia 2(1 = p)(A = pu,
(st = Dp(l —ppz (5= DL = p)(1 = pity
$i(1 = pdHz
(s x(s-+1)
for Il=1,2,...]2
F=1r1 o :
p(L =Pz (L =p)(1 =Py
2p(1 = palus 21 =p)A —puy
(5= Dp(l —pluz  (s; — (A =) — puz
sip(1 = p2dus si(L=p) (1 = p2)u,
N s+ +1)
\ for l=J,+1,],+1,. M

The remaining main diagonal block matrices A;,. 1 =n < K. of @ can be expressed as

1 0
Aian=A0— ?’LV[ fhi rM_ier] 3

OYMXFM—i OYMXYM TpXTa .

Next. the lower diagonal block matrices A,,. 1 <n < K. of @ are represented as
r 0,0
0 Ay,

0,1

0 Ay

Az’n =hn

0 A% @)

oM-1
0 Az,n

T gD g

in which, the off-diagonal block matrices Ag’;‘ can be obtained from A‘l"}? by replacing A with v for
m=0,12,.., M—1.
Finally, the upper diagonal block matrices Ay, of @ are defined as

OrM—l XUpg—1 OrM—l KYM]

Ay, = 0 U forn=0,12,..,K. (5)

¥m <l pm—1 ¥MXYM AT Ty

Under the assumptions on primary program (packet) arrivals, the repeated attempts from the orbit
and the representations of service time distributions, the time-homogenous Markov process {X(¢t); ¢ =
0} on the finite state space Q is irreducible. Hence it admits a unique stationary distribution. The
LDQBDs have been well studied in the literature (see Gaver et al. [19] and Servi [34]). Hence it is
possible to adopt a computational procedure proposed by Elhafsi and Molle [13] to compute the
steady-state probabilities associated with our system. which we now describe below.

Let Y. be partitioned according to the orbit level as ¥ = (¥,,¥4,¥,, ..., ¥g). denote the
steady-state probability vector of @. Thatis, ¥ is the unique solution for the linear system of equations

Y@ = 0, and Ye,,x = 1L (6)
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where e, «; = [1,11,.. '1]3;Mx1'
For use in the sequel, we further partition the probability vectors ¥,,. 0 <n < K, as

Yo =[Vuo Vo1 Yoo oo Yo Yamets oo Yo,
where, for m =0,1,2, ..., M.

Yom= [Y(n,m00),Y(n,m-110),Y(n,m—111),Y(n,m—2,2,0),Y(n,m—2,2,1)
Y(n,m-222),..,Y(n,1l,m—-10),¥(n,1,m—11),¥(n,1,m—1,2), ...,
Y(n,1,m —1,5,-4),Y(n,0,m,0),Y(n,0,m,1),Y(n,0,m,2),..,Y(n,0,m,5,) lixy,,
in which Y(n,m —1,1,j) denotes the steady-state probability that there are n programs in the retrial
orbit, m — [ programs in the I/O queue, ! programs in the CPU queue and there are j channels busy

in the CPU queue. From (6) , the steady-state probabilities ¥,,, 0 <n < K. can be represented in the
form of recursive relations

Y,=Y,..R,, forn=012,.. ,K—-1, (7
where the set of matrices {R,}X_] satisfy the recursive relations
Ry = —A,1A70, Ry =—Ay,1[Ra1Agn_1+A1,]"Y, for n=123,.. ,K—-1 (8)
Moreover. the steady-state probabilities ¥,. 0 < n < K. can be expressed as
Y, =Y TS0 Ry, forn=0,12,..,K -1 9)

Now, using the boundary condition at n = K and the normalization condition, one can obtain the
following system of linear equations for ¥ as

Yi[Ri-1 + (Ao + A1 )Agk—1] = 0,
and
Yillr,, + 2525 l'lf;f’“ Ry il eryx1 =1 (10)

Once Y is determined, we obtain ¥,,, 0 <n < K—1, via (9). It is clear that the steady-state
probability vector ¥ is a unique solution of (6).

4. System Performance Measures

Once the steady-state probabilities have been computed. we can easily find the main system
performance characteristics. These measures are used to bring out the qualitative behaviour of the retrial
queueing network system under study.

1. The probability. Pgy,pyy. that the system is empty as
Pgmpey = Y(0,0,0,0) = Yye,. where e; = [1,0,0,...,0]7 ;.
2. The utilization factor, U, of J; 1/O service channels and j, CPU service channels, is obtained as

K
U= Z Y,ey,
n=0

where e, is a column vector of dimension [;X1 whose elements are arranged according to the set
{(hm—-1011);0<sn<K 0<j<s,0<l<m, 0<m<M} such that the eclements
correspondingto  the set {(n,m—101),); 0Ssn<Km—-1= ], =], 1+, <m< M}are
equal to one and remaining elements are zero.

3. The blocking/loss probability. P . of a newly arriving primary program is found to be
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Pross = z?i(] 2}:2:0 Y(K,M —1,1,]) = Yge,os, where ep,q = [0, 0[-’ ., 0 r.lr 1,.. J1|FM><1'
M—1 ¥m
4. The throughput. Ty. of the system is the rate of successful transmission of an arriving primary
program and is computed by

Ts = A (1 — Pposs).
5. The total loss rate. Lgq¢e. of the arriving primary programs is determined as
Lrate = APposs.
6. The probability.Pjygmpty. that there is no program in the inner multiprocessor network is calculated
by
PINEmpty = 21!5:0 Y (n,0,0,0) = ZLO Y,e;.
7. The probability. Pjyp, that the inner multiprocessor network is fully occupied by M programs is
obtained as:
Pive = X0 ZiLo Zjio Y(,M = 11,j) = Zi_o Ynenr where eyp = €y
8. The probability. P;jogmpey- that there is no program in I/O queue, i.e. all J; service channels in I/O
queue are idle. as
Prjoempty = Eﬁ:o Efio Z?ﬁ] Y(n,0,1,)) = E£=(] Y.er08
where €10 = [ei/O,Dr €i/01) €ijo2r - €ijoms "'Jei/O.M]FMX1 with elements €ijop = [1],
eijom =10,0,0,..,0,1,1,.., 17, , for m=1,2,3,.., M.
(sm+1)
9. The Probability. Pcpygmpty- that there is no program in CPU queue is computed as
Pepugmpty = Yhoo Zm=o Y(n,m,0,0) = Tf_, Yoecru .
Whel'e ECPU’E=[ecpu’0, ecpu’l, ecpu'z, sy ecpu'm, was fecpu,M]'l[l:Mxl “Plth elel'llelﬂs ecpu'o = [1],
ecpu,m = [1r Or OJ ey 0]1><]fmr fOl’ m= 1r2J3J e JM‘
10. The probability, P;o . thatall M programs are buffered at /0 queue is determined by
Pijor = Thoo Y(n,M,0,0) = X5, Yoeor
where €0 =1[0,0,0,...,0, 1,0,0,0,...,0Jme1_
Ca—1 yu—1
11. The probability, Pgpy p. thatall M programs buffered at CPU queue is calculated as
PCPU,F = Zg=0 E;:a Y(n,0,M,j) = Zﬁ:o Ynecpu,f.-
where e¢pur =1[0,0,0,...,0,1,1,1, ..., 1]F 1.
J2+1
12. The probability, Pj/o ;, pusy- thatall J; service channels are busy at /0 queue is given as

P.'/O.,-'lBusy = sz:l) Ynei/o,b-
where e/, 1s a column vector of dimension [}, X1 in which the elements are arranged according
totheset {(n,m—1LLj); 0<n<K, 0<j<s, 0<I<m, 0<m < M}such that the elements
corresponding to the set {(n,m—1,1,j); 0<n<K, 0<l<m-—],, J; <m < M} are equal to
one and the remaining elements are zero.
13. The probability, Pepy j,pusy- thatall J, service channels are busy at CPU queue is obtained as

PCPU,}ZBusy = sz:l) Ynecpu,ba
where e, , isacolumn vector of dimension I}, X1 whose elements are arranged according to the
set {(mm—=LLj);, 0=n<K 0<j<5,0=<I=<m, 0=m<=M} such that the clements
corresponding to the set {(n,m —=1L1,/,); 0<n <K, J, <l < m, J, <m < M} are equal to one
and the remaining elements are zero.
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14. The probability, Pgpy pqc. thatall J, service channels are on vacation at CPU queue is computed as
Pepuvac = Zn—o Yn€cpup. Where egpy,,, is a column vector of dimension I, x1 whose elements
are arranged according to the set {(n,m —L1,)); 0<n<K, 0< j< s5,0<1<m 0<m<
M} such that the elements corresponding to the set {(n,m—1,1,0); 0<n<K, 0<lI<m, 0<
m < M} are equal to one and the remaining elements are zero.

15. The mean number. E(Xj). of programs in the orbit is computed as
E(Xo) = Xi_i n¥e,wheree= [1,1,1,..., 1]7, ..
16. The mean number. E (X;y). of programs in the inner multiprocessor network is calculated by

K
E(Xy) = Z Yaen,
n=0

where e,y = [e;x0, €N 10 s €1y ...,em,M]FMx] with elements e;y,,, = m|[1,1,1,.. ,l]imxp
0<m<M.
17. The mean waiting time, E(Wj). of a program in the orbit is obtained as

_ B
E(WQ) - A(1=Pross) '
18. The mean number., E(X; o). of programs in the I/O queuc is determined as

E(Xi0) = Tr-o Yaer0.
where €;/0 = [€1/0,0, €1/0,1, 1 €1/0,m» - r €10 m] 1y, x1 With clements €170 m = [€1/0,m,,
€1/0my w1 €1/0mp w1 €1j0my) T M WhiCh €70 = (M =D [1,1,.., 1,1 1x. 0SS m,
0<m< M.
19. The mean number. E(X.py). of programs at the CPU queue is given by
E(Xcpy) = ZLG Yuecpu,
where  ecpy = [ecpu0, €cpu,iy - €cpum ---»ech.M]FMm with elements ecpy ;m = [€cpum,
€cpumys e €CPUmMp 1 €CPUmy] N WhICh €cpym, = I[1, 1,0, ](1)xa. 0SI<Sm 0<m<M.
20. The overall rate of retrial y; is obtained as
Vi =vIn_, n¥,er, x.
21. The rate of retrials that are successful y, is determined as
Ya=Vi— VZﬁ:l n¥e.
where e, =[0,0,0,..,0, 1,11, ... 1] ;.
N7}

-1 ¥m

22. The fraction of successful rate of retrials is given by F = :—j )

We now report a few numerical results of E(Xy). In our first study. we present the mean, E(X,),
of the number of programs in the orbit of FOC level dependent retrial queueing network system for
p = 0 (exhaustive service), p = 0.5 (Bernoulli scheduling service) and p =1 (1-limited service),
respectively, in Tables 1-3 as function of A for v=05, 8 =5, M =6, and K = 10, three levels of
feedback probabilities (py, p2). the service rates (i, i) and the number of service channels
(J1, J2) of the I/O and the CPU queues. It is observed from Tables 1-3 that the performance measure
E(Xgy) increases as A increases for p = 0,0.5 and 1 cases. It is perceptible that with the increase in
the arrival rate A of the primary programs, the inner multiprocessor network is fully occupied by M
programs and the blocked programs are going to the retrial orbit. thus E(X,) is to be increased.
Besides, Tables 1-3 indicate that E(X,) has the lowest value for the exhaustive service vacation system

than the other vacation systems. Moreover. Tables 1-3 indicate that E(Xy) increases for decreasing
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values of u; and increasing values of ;. On the other hand, E(Xy) increases for increasing values of
p; and decreasing values of p, for fixed value of A.

Table 1. E(X,) versus arrival rate A for v =5, 6 =5, p=0, M=6, K=10.
g=2 J,=2 J,=3 J,=2 dg,=2 =3 J,=2 g,=2 g,=
A I=2 J,=3 =2 J.=2 I=3 J.=2 J.=2 =3 =2
(, = 9, p, = 8) (i, = 8.5, u; =835) (e, =8B, u, =9
P, = 03, F,= 0.7
5 0.1885 03968 00627 0.2378 0.517 0.0729 03093 0.6832 00877
o 0.5496 0916 0.1809 0.6857 1.1588 02104 0875 1.4729 0.2526
7 1.2354 1.7131 04233 1.5003 20776 04905 1.8429 2.5088 0.5849
8 22085 2.6727 08355 2.5802 20965 09601 2.0191 35564 1.1291
o 3.2695 3.6174 1.4257 3.673 40307 1.6155 4114 44541 1.8625
10 4.2254 44359 21451 46027 48063 23884 49971 51772 2.6901
11 50068 51093 2.9079 53413 54361 31791 5.6859 57643 3.501
12 56326 5.6643 3635 59298 59584 3.9094 62364 6.257 4.2241
(P, = 0.5 P, =0.5)
5 0.5591 0.6429 02743 0.6419 0.7936 0,290 07616 0.9983 03178
() 13985 14434 07102 1.5781 1.713 0.7513 1.8218 2.0521 0.8191
7 2.5696 25163 1.4317 28212 28565 1.5076 3.1373 3.2498 1.6275
8 3745 3.6022 23509 40051 39376 24563 4.3128 4303 2.6154
o 47128 4,5222 32050 49469 4.817 3414 5216 5131 3.5852
10 54606 52524 41376 5.6666 55077 42537 59002 5.7804 44172
11 60488 58373 48365 62344 60651 49441 6447 6311 5.0935
12 65.531 6.3231 54089 6.7026 6.5329 55076 6.8991 6. 7609 5.6438
P, =0.7. P, =0.3)

5 1.0147 0.7755 0.6591 1.0725 08936 0.653 1.1721 1.0603 06668
o 22136 1.734 1.5161 23183 1.9348 15069 2. 4869 22021 1.5369
7 3.5351 29315 2.6308 3.657 21672 2.6218 38416 3462 2.6651
B 4.6327 40467 37226 4. 7454 4.2651 3.7157 4,.9097 4.5278 3.7624
9 5.4548 4934 46275 5.553 512 46221 5.6944 53411 4.6651
10 60795 56166 53358 6.1673 57769 53307 62932 59682 53682
11 65798 6.159 58963 66611 63031 5.8911 67775 6. 4764 59243
12 6.9083 6,61 6.3562 F.075 6.7439 5.3511 71844 69055 63816

Table 2. E(X,,) versus arrival rate A for v =5, =5, p=0.5, M=6, K=10.

7,=2 J, =3 J,=2 7, =2 =3 J,=2 7, =2 I, =3
A J.=3 J.=2 J,=3 =2 d,=2 J.=3 I=2
M, =9, u, =8 p, = 85, u, = 85 o= B, o, =9
P, =03, P, = 07
5 02119 039581 00782 0.2631 05176 0,089 0.3369 0.6E28 0. 10458
6 1.2119 0.9232 0.2251 0.7513 1.1644 0.2562 0.9434 1.4767 0.2008
7 22119 1.7301 0.5213 1.6165 200911 0.500°7 1.9536 2.5187 06883
3 22119 2.6985 1.01 2.7243 31162 1.1342 2.1432 35707 1.3031
E] 42119 2.6473 1.6794 2.8108 4.0529 1.8607 4.2234 4.4699 2.0969
10 52119 44657 2,455 47182 48281 2.6769 50848 5,193 2.9534
11 6.2119 5.1374 2.2386 5.4356 5.457 24764 5.7567 5.7797 27615
1z 7.2119 5.6907 2.9583 6, 0052 509782 41923 65,2962 62719 44651
P,= 05, P, = 05
E 0.7943 0.6964 0.4632 0.8758 0.8455 0.9969 1.0482 0.5021
53 1.8722 1.5643 1.1559 2.0284 1.8235 2.2463 2.1505 1.2438
7 218 2.6943 2.1657 2.2699 2.0083 2.6185 33747 22007
3 43375 379694 32586 45153 4095 47392 44264 24121
E] 5.2302 47046 4.23 5.2834 4962 5.5743 5.2433 4375
10 59138 54175 50198 60469 56391 62138 58832 5.1458
11 6.4596 5.0892 5.6536 6.579 6.1869 6.7298 6.4073 57611
1z 6913 G466 6.1731 T.0224 G645 7161 68523 65,2663
F,o= 07, F, = 03
E 1.805 0.9723 1.4045 1.8215 1.0823 1.3549 1.8872 1.242 1.3365
53 2.3926 21235 28304 2414 2,291 27563 34042 2.5234 27262
7 4.7151 2.4273 4.1792 4.7328 2.6005 4.1036 48005 38308 4.0701
3 5.6586 45314 52062 56702 4.6775 51374 57227 48689 51041
9 6.3521 53662 59668 6,359 54853 59035 64015 56422 58701
10 6.8963 6.0047 6.556 6.9006 6.106 64964 6.9373 6.2417 6.4633
11 T.3415 6.5192 T.0331 734406 66099 69772 T.ATIS 67329 6.9449
12 7.7118 6.9518 7.4298 7.7146 7.0355 73777 77444 7.1495 72473
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Table 3. E(X,) versus arrival rate A for v =5, §=5, p=1.0, M=6, K=10.

5=2 5=2 J,=3 5=2 5=2 7,=3 5=2 I=2 =3

3 =2 J.=3 =2 =2 J.=3 =2 =2 =3 =2
Gii= 9, jio= 8) (=85, 1, =8.5) (=8, ji2=9)
i (Pr= 03, P,= 07)
5 0.2465 0.4004 0.1021 0.2008 0.5188 0.1137 0.3766 0.6827 0.1308
6 0.7053 0.9339 0.2037 0.8464 1173 0.3264 1.0408 1.4829 03739
7 1.5245 1.7546 0.6708 1.7802 2111 0.7419 2.1077 2.5337 0.8424
8 2.5006 27357 1.266 2.9216 3.145 1.3873 33122 3.5017 1.5520
9 3.6501 3.6003 2.0334 3.9971 4.085 2.2004 43723 4493 2419
10 4.5693 45088 2.8666 48766 4.86 3.0598 52074 5.216 33024
11 5.2085 51784 3.6633 5.5608 54875 3.8613 5.8500 5.8023 41017
12 5.8852 57296 43689 6.1276 6.0076 4.5579 6.3876 6.204 47825
(P,=0.5,P,=0.5)
5 1.2196 0.7857 0.8350 1.2025 0.9315 0.838 1.4074 1.1306 0.8598
6 2.6121 1.7618 1.9315 27264 2.0033 1.9366 2.8962 23101 1.9763
7 40035 2.9744 3.2297 41185 3.2478 3.2367 42819 35725 32834
8 5.0872 4.0033 4382 5.1827 43392 43872 53173 46206 44285
9 5804 49833 5.2004 59717 5.1884 52013 6.0821 54227 5323
10 6.5204 56752 5.0002 6.5847 5.8405 5.0058 6.6789 6.0513 6.0189
11 7.0260 6.2327 6.5671 7.0823 6.3860 6.5608 7.1651 6.5682 6.5777
12 74466 6.6990 7.0343 74954 6.8405 7.0265 7.560 7.0071 7.0396
(P, =07,P,=03)

5 3.1755 1.3475 2.8401 31315 1.437 27376 3.1333 1.578 2.6603
6 4.8436 27924 4.5476 4.802 2.9 4.449 47977 3.0684 43791
7 5.0539 41802 57202 5.0151 42674 5.646 5.0047 44059 5.5843
8 6.7359 5.2223 6.5583 6.6986 5.2842 6.4852 6.6846 53869 6.4293
9 73303 5.0857 7.1823 7.2054 6.0308 7.117 7.2804 6.1107 7.0659
10 7.7963 6.5708 7.6692 7.765 6.6152 76115 77507 6.6822 7.5658
1 8.165 7.0666 8.0545 81376 7.0062 8.0043 81248 7.1549 7.9641
12 8.4576 7.4748 83613 8.434 7.5005 8318 84228 7.5520 82832

In the second set of numerical examples, the influence of the retrial rate v, by fixing A = 7,8 =5,
M =6, and K =10, on E(X,) for p=10,0.5, and 1. respectively, are shown in Tables 4-6.
Evidently. the numerical results show that E(X,) decreases with increasing values of v for all three
values of the vacation parameter p as is to be expected. Moreover. it can be observed from Tables 4-6
that E(Xq) is strongly influenced by the feedback probabilities (p;, p,). the service rates (pq, ;)
and the number of service channels (J;, /) of /O and CPU queues of level dependent retrial queueing
network system. As before. Tables 4-6 reveal that the exhaustive service vacation system (p = 0) has
the lowest expected value. E(Xg). of orbit size comparing with the Bernoulli vacation schedule
(p = 0.5) and 1-limited service vacation system (p = 1).

Now we come to the final set of numerical illustrations corresponding to the effect of the vacation
rate 6 on E(Xp). We show the behaviour of E(Xy) as a function of 6 for p =0, 0.5and 1,
respectively, in Tables 7-9. by choosing parameters A =7, v=5, M =6, and K = 10. It is clear
that as @ increases, E(Xy) decreases for all the three vacation service systems. As before. it can be
seen from Tables 7-9 that E(Xy) is strongly influenced by the feedback probabilities (pq, p2). the
service rates (144, [p) and the number of service channels (J;, /;) of the I/O and CPU queues.
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Table 4. E(X,) versus retrial rate y for A=7, 6=5, p=0, M=6, K=10.

=2 J,=2 J.=3 J,=2 J,=2 J.=3 J,=2 J,=2 J,=3
v J,=2 J.=3 J,=2 J.=2 J.=3 J,=2 J.=2 J=3 J.=2
(j; =9 = 8) (1, =85, p,=8.35) (j; =8, j-=9)
(7, =03 P, = 07)
1 2.3988 L5044 12114 2.7136 1.6939 1.3425 3.0899 2.014 1.5164
3 14738 0.79 0.573 1.7551 0.9651 0.6543 2.1125 1.2078 0.7669
5 1.2354 0.6405 0.4233 1.5003 0.7966 0.4905 1.8429 1.0163 0.5849
10 1.0326 0.5204 0.3027 1.2792 0.6596 0.3576 1.603 0.8582 0.4355
15 0.9543 04763 0.2595 1.1923 0.6088 03096 1.5069 0.799 0.3809
20 0.9113 0.4527 0.2369 11443 0.5815 0.2843 1.4533 0.7671 0.352
25 0.8839 04379 0.2228 1.1135 0.5644 0.2685 1.4189 0.7469 0.3339
30 0.8648 04277 0.2132 1.092 0.5525 0.2577 1.3947 0.733 0.3215
(P, =0.5,F,=0.5)
1 3.885 2.8631 2.842 41006 3.0967 2.9221 4.369 34021 3.0516
3 2.8742 1.8737 1.7493 31212 2.0958 1.8274 34311 23934 1.9522
5 2.5696 1.6159 1.4317 2.8212 1.8311 1.5076 3.1373 2.121 1.6275
10 2.2898 1.3972 1.1481 2,544 1.6044 1.2214 2.8575 1.8842 1.335
15 2.1762 13141 1.0387 24263 1.5175 L1107 2.7407 1.7924 1.2212
20 2.1128 1.2691 0.9795 23617 14703 1.0507 2.6747 1.7424 1.1594
25 2.0719 1.2407 09423 232 Lk 10128 2.6321 17106 1.1203
30 2.0434 1.221 0.9165 2.2909 14197 0.9867 2.6022 1.6887 1.0932
(P, =07, P,=03)
1 3.5351 3.6365 40341 4.7859 3.7699 4.0221 4.7859 3.9686 4.0576
3 3.8145 2.6363 2.9721 3.931 27814 2.9617 3.931 2.9959 3.0038
5 3.5351 2.3598 2.6308 3.657 2.5069 2.6218 3.657 27227 2.6651
10 3.2689 2.119 2.3088 3.3933 2.2662 23018 3.3933 24804 2.3458
15 3.1589 2.0261 2.1795 3.2836 2.1728 21737 3.2836 2.3856 2.2178
20 3.0973 19758 2.1086 3.2221 2.1221 2.1035 3.2221 23338 2.1476
25 3.0578 1.9439 2.0637 3.1826 2.09 2.059 3.1826 23011 2.1032
30 3.0302 1.922 2.0825 3.1549 2.0678 2.0282 3.1549 2.2784 2.0724
Table 5. E(X,;) versus retrial rate v for A =7, 6=5, p=0.5, M=6, K=10.
J=2 J;=2 J; =3 Jp=2 Jy=2 J;=3 Jy=2 J=2 J;=3
v J=2 1,=3 J=2 J=2 J,=3 J=2 J=2 J,=3 J=2
M =9, 4 =8 =85, =85 =8 =9
P, =03, P. =07
1 2.5717 1.5361 14335 2.8689 1.7782 1.5567 3.226 2.0958 1.7229
3 16097 0.8451 0.7007 1.8847 1.0224 0.7825 2.2333 1.2674 0.89%68
3 1.3545 0.6867 0.5213 1.6165 0.8457 0.5907 1.9536 1.0685 0.6883
10 1.1347 0.5588 0.3746 1.3800 07013 04326 1.7023 0.9037 0.5147
15 1.0493 0.5117 0.3216 1.2879 0.6477 0.375 1.6011 0.8417 04508
20 1.0024 04865 0.2938 1.2364 0.6188 03446 15445 0.8082 04169
25 0.9724 04707 0.2765 1.2034 0.6007 0.3256 1.5081 0.7871 03957
30 0.9515 0.4597 0.2647 1.1803 (.5881 0.3126 1.4827 07725 0.3811
P, =05, F =05
1 44801 3.1974 3.7133 4.6224 3.4039 3.7382 4.8163 3.6786 3.8089
3 3.5003 2177 2.5529 3.6795 2.3846 2.5911 3.9168 2.6645 2.6762
5 3.18 1.8991 2.1657 3.3699 2.1044 22106 3.6185 23812 23007
10 2.8696 1.6574 1.7934 3.0671 1.8587 1.8454 3.3226 2.1298 1.9397
15 2.86%0 1.5637 16433 2.939 1.7628 1.6979 3.1961 2.0308 1.7935
20 2.6659 1.5126 1.561 28664 1.7103 1.6169 31242 1.9764 1.7129
25 2.6184 14801 1.5088 2.8194 1.677 1.5653 3.0775 19418 lLe6l6
30 2.5851 1.4576 14726 2.7865 1.6538 1.5290 3.0:448 1.9177 1.6259
P,=07,P. =03
1 5.706 4.2356 53703 57082 4.3223 5.2986 57552 44683 5.2626
3 4.9749 3.2011 4.5026 4.9879 3.3913 44258 5.0505 3.5563 4.3901
3 47151 3.0131 4.1792 4.7328 3.1176 4.1036 4.8005 3.2867 4.0701
10 44429 2.7578 3.8365 44652 2.8658 3.7643 4.5374 3.037 3.7348
15 4.3234 2.6545 3.6874 4.3476 2.7637 3.6171 44215 2.9352 3.5897
20 4.2551 2.5972 3.6029 4.2804 2.7069 3.5339 4.3553 2.8786 3.5077
25 4.2108 2.5604 3.5485 4.2368 2.6706 34802 43124 2.8423 34548
30 4.1797 2.5349 3.5104 4.2061 2.6453 344827 4.2822 2.8171 34179
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Table 6. E(X,,) versus retrial rate v for 4=7, 6=5, p=1.0, M=6, K=10.

J,=2 J,=2 J.=3 J=2 J,=2 J.=3 J=2 J=2 J,=3
v J.=2 J.=3 J,=2 J,=2 J.=3 J,=2 J,=2 J.=3 J.=2
=9 = 8) (u; =85, 1, =8.5) (=8, j,=9)
(F,= 03, P,= 07)
1 2.8146 1.649 1.7557 3.0857 1.888 1.8653 34148 2.2011 2.0175
3 1.8038 0.9193 0.8943 2.0678 1.0988 0.9751 24021 1.3456 1.0893
5 1.5245 0.7491 0.6708 1.7802 0.9113 0.7419 2.1077 11372 0.8424
10 1.2799 0.6107 04846 1.5238 0.7571 0.546 1.83% 0.9635 0.6329
15 1.1843 0.5595 0.4169 14219 0.6995 0.4741 1.7311 0.8979 0.5552
20 1.1316 0.5321 0.3813 1.3654 0.6685 0.4361 1.6704 0.8624 0.5139
25 L0998 0.5148 0.3591 1.3291 0.649 0.4124 1.6313 0.84 0.488
30 1.0745 0.5029 0.3439 1.3038 0.6355 0.3961 1.6039 08245 04702
(P;=0.5 P, =0.5)
1 5.2817 3.60640 4.828 53438 3.8302 48019 5.4504 40589 4.8113
3 43417 2.6278 3.6746 44414 2.8076 3.660 4.5895 3.0549 3.7029
5 4.0035 2.3255 3.2297 4.1185 2.5001 3.2367 4.2819 2.7503 3.2834
io 3.6577 2.0515 2.7691 3.7866 22372 2.7905 3.9634 2.488 2.851
15 3.5089 1.9422 2.5757 3.643 2.1282 2.603 3.8248 23784 2.6689
20 34244 1.8819 2.4682 3.5612 2.0679 2.4986 3.7456 23176 2.5672
25 3.3697 1.8434 2.3996 3.5082 2.0293 24318 3.6042 2.2787 2.5021
30 3.3313 1.8166 23518 3471 2.0025 2.3853 3.6581 2.2516 2.4567
(P;=0.7,P,=03)
1 6.8825 5.1585 6.7701 6.8312 5.0825 6.6853 6.8062 5.1585 6.6189
3 6.2079 43573 6.0244 6.1658 42673 5.9409 6.1514 43573 58777
5 5.9539 4.0982 5.7292 5.9151 4.0024 5.646 5.9047 4.0982 5.5843
10 5.6806 3.8383 5.4048 5.6448 3.7368 53216 5.6383 3.8383 52615
15 5.56004 3.7262 52611 5.5257 3.6222 5.1778 5.5209 3.7262 5.1184
20 5492 3.66024 51794 54579 3.557 5.096 5454 3.6624 5.0369
25 54479 3.621 5.1266 54141 3.5147 5.0432 54108 3.621 4.9843
30 54169 3.592 5.0897 53835 3485 5.0062 53806 3.592 4.9474
Table 7. E(X,,) versus vacation rate & for A=7, V=35, p=0, M=6, K=10.
J=2 J=2 I=3 Ji=2 J=2 J=3 Ji=2 J=2 J=3
a J.=2 J.=3 J.=2 J.,=2 J.=3 J.,=2 J.,=2 J.=3 J.=2
=9 4= 8) (u; =85 pu,=8.5) (=8, 1,=9)
(F,=03 P, = 07)
1 3.301 24698 1.8288 3.0075 2.7806 1.9465 330 3.1372 2.0953
3 2.1075 1L.807 0.6183 1.7648 2.1631 0.6985 2.1075 2.5828 08080
5 1.8429 1.7131 0.4233 1.5003 2.0776 0.4905 1.8429 2.5088 0.5849
io 1.6537 1.6606 0.3059 1.3151 2.0316 0.3636 1.6537 24711 04456
15 1.5925 Ledod 0.2726 1.2562 2.0201 0.3271 1.5925 2.4623 04049
20 1.5621 Lod7 0.2569 1.227 2.0151 0.3098 1.5621 24586 0.3856
25 1.5439 1.6372 0.2478 1.2096 2.0123 0.2097 1.5439 2.4566 0.3743
(P, =0.5P,=05)
1 52726 42921 4.358 5.1214 44749 44121 5.2726 4.6883 44949
3 3.601 2.8482 20017 3.3868 3.1549 2.1703 3.601 3.5093 22924
5 3.1373 2.5163 L4317 2.8212 2.8565 1.5076 3.1373 3.2498 1.6275
io 2.7029 2.2903 0.958 2.3573 2.6558 1.027 2.7029 3.0782 1.1371
15 2.554 2.2225 0.8157 2.2003 2.5964 0.8812 2.554 3.0281 0.9864
20 2.4791 2.1902 0.7486 2.1219 2.5682 08122 2470 3.0046 0.9145
25 24339 2.1713 0.7097 2.0748 2.5518 0.7721 2.4339 2.991 0.8725
(P;=07,P,=03)
1 6.2406 53795 5.8208 6.1825 54531 58067 6.2406 5.5557 5.8158
3 4.5395 3.5289 3.5797 44005 3.7158 3.5608 4.5395 3.9537 3.6046
5 38416 2.9315 2.6308 3.657 3.1672 2.6218 38410 3462 2.6651
10 3.1712 24618 1.7827 2.9439 2.739 1.7752 3.1712 3.0828 1.8216
15 2.9241 2.3098 1.4986 2.6829 2.602 1.492 2.9241 2.9617 1.5378
20 27977 2.2356 1.3613 2.5501 2.535 1.355 2.7977 2.9029 1.4002
25 2.7212 21917 1.2812 247 2.4955 1.2751 2.7212 2.8682 1.3197
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Table 8. E(X) versus vacation rate & for A =7, v =5,p=05M=6,K=10.

J, = J=2 J,=3 J, =2 J=2 J,=3 J, =2 J,=2 J, =3
J=2 Jy= J= J.=2 J,=3 J,=2 Jy=2 J,=3 J.=
=9, j, =8 My =85, =85 M =8 p, =9
P, =03, P, =07
3.9424 3.081 3.2399 4.1148 3.3339 3.3282 43178 3.6246 34400
1.7935 1.8715 0.8956 2.0534 2.2189 0.9794 2.3787 2.6286 1.0947
13545 17301 0.5213 1.6165 2.0011 0.5907 1.9536 2.5187 0.6883
1.0928 1.6633 0.3319 1.3491 2.0333 0.3901 1.6861 24719 0.473
1.0204 Lods 0.2857 1.2737 2.0207 03404 L.e09z 24625 04186
0.9867 Lod14 0.2653 1.2383 2.0154 0.3183 1.5728 2.4587 03943
0.9671 1.6377 0.2539 1.2177 2.0125 0.3058 1.5516 24567 0.3805
Fr=05, P, =105
70754 5.8830 6.9102 70072 5.9491 6.9081 7.1323 6.0343 6.9169
42678 3.3028 3.5248 4.389 3.5513 3.5503 4.5517 3.84H4 3.6125
3.18 2.6943 2.1657 3.3699 3.0083 2.2106 3.6185 33747 2.3007
23109 2.3378 1.1953 2.5568 2.6949 1.2518 2.8761 3.1001 1.352
2.0498 2.2459 0.9405 23104 2.6152 0.9987 2.6491 3.0427 10981
1.9287 2.2049 0.8301 2.1955 2.58 0.8885 2.5424 3.0136 0.9868
1.8594 2.1818 0.7693 2.1293 2.5602 0.8277 2.4806 2.9973 0.925
P=07, P =03
8.3563 7.3847 8.3202 8.343 7.3801 8.2994 8.3359 7.3866 B8.2830
5.9607 4.5205 57001 5946 46064 56377 5.9599 47348 5.5985
47151 3.4273 4.1792 4.7328 3.6005 4.1036 4.8005 3.8308 40701
3.3581 2.6183 24767 34430 2.8724 2417 3.6039 3.1925 2.4155
2.86014 2.3905 1.8932 2.9785 2.6695 1.8509 3.1774 3.0166 1.8661
2.6206 2.2875 1.6261 2.7536 2.578 1.5937 2.9711 2.9375 1.6171
2.4809 22292 14771 2.6231 2.5263 1.4507 2.8511 2.8928 L4785

Table 9. E(X,,) versus vacation rate & for A=7, v =5, p=1.0, M=6, K=10.

T=2 T=2 J,=3 =2 T=2 7,=3 T=2 T=2 73
5=2 5,=3 J=2 5,=2 5,=3 J=2 1,=2 J,=3 5,=2
Gy =9 4 = 8) (=85, p.=8.5) G =8 1,=9)

(F,= 03, P,= 0.7)

5.1879 3.9228 47455 5.2996 4.1083 4.8059 54325 43233 4.8835
2.2298 1.9749 1.3394 24673 2,309 1.4231 2.7622 2.7036 1.5387
1.5245 1.7546 0.6708 17802 2.111 0.7419 21077 2.5337 0.8424
1.137 1.6666 03061 1.392 2.0354 04248 1.727 24729 0.5087
1042 1.6492 03018 129406 2.0213 0.3566 1.629 24626 0.4353
1.0002 1.6421 0.2752 1.2513 2.0158 0.3282 1.5851 24587 04044
0.9767 1.6382 0.2608 1.2269 2.0128 03128 1.5602 24567 0.3876
(F; =05 F.=03)

84332 73915 8.3934 8413 74112 8.3948 84543 T4 84001
55152 4.0072 51284 5.5579 4.1739 5.1191 5.6273 4.38 51322
4.0035 2.9744 3.2297 4.1185 3.2478 3.2367 4.2819 3.5725 3.2834
2.617 24028 1.5424 28202 2.7485 1.5807 3.1124 3.1514 1.6651
2.2002 2.2753 1.1084 24514 2.639 1.1565 2.7706 3.0611 1.248
2.0308 22225 0.9333 22853 3.1129 0.9851 2.6195 3.0243 1.0783
1.9328 2.194 08417 2.1937 2.5698 0.8952 2.5358 3.0046 0.9889
(F,=07,F,=03)

9.309 8.7315 93044 9.3063 8.7261 9.3004 9.305 8.7238 92978
7.3931 57649 7.3203 7.358 57674 7.271 7.3348 5.79% 7.231
5.9539 4.1802 57292 59151 42674 5.646 59047 44059 55843
4.0829 2.8453 34192 4.099 3.065 3.3125 41813 33514 3.2583
3.2945 2.498 24297 3.361 27592 2.3461 3.5076 3.0894 2.3225
29112 23528 19719 3.0074 2.6319 1.908 3.1882 2.9808 1.9039
2.6942 22746 1.7236 2.8081 2.5635 1.6728 3.0086 29226 1.68

47



© Kumar, Krishnan, Sankar, Rukmani

5. Optimal Retrial Rate

In this section, we use some probabilistic descriptors of the multiprogramming-multiprocessor
computer retrial queueing network system where the service channels are under Bernoulli vacation
schedule at CPU queue. in order to identify the optimal value of the retrial rate v for chosen parametric
values of 4, 8, p1, P2, P, M1, Mo J1, J2, M and K. This will help us to find the retrial rate as the
total utilization of the inner multiprocessor network (main memory) of the system. We now study the
two extreme cases of retrials, namely, ideal retrial and vain retrial for FOC as discussed by Artalejo et al.
[6] and Krishna Kumar and Raja [27].

3.1. ldeal Retrials

An ideal retrial results in M — 1 programs (packets) in the multiprocessor network becoming M
programs after a retrial attempt made by a program from the orbit. Following an ideal retrial. the inner
multiprocessor network is fully occupied by M programs. Moreover, the ideal retrial avoids the
possibility of an unsuccessful repeat attempt and it represents the best possible choice for a repeated
attempt.

The steady-state conditional probability, Pjg. that a retrial is ideal given that retrial occurs is
defined as

_ Iy I B Y M = 1= 1,L)) _ YK | nY,e;
Eﬁ:] nv Zﬂ:o Z?;a E?:O Y(n,m—=11)) Z§=1 nYne’
where e; =[0,0,0,..,0,1,1,..,10,0,..,0]F, ..

a2 ¥Ym-1 ¥

PIR

3.2. Vain Retrials

A vain retrial is an unsuccessful retrial when the inner multiprocessor network is fully occupied by
M programs. Such a retrial of the orbiting programs does not change the status of the number of
programs in the inner multiprocessor network.

The steady-state probability. Py, of vain retrial is obtained as

21!5:1 nv 2?10 z?:o Y(m,M - L1L,j) _ 21!5:1 nY,e,

ne1 WV EN_o 2o Zjio Y(n,m—=117)) a E§=1 nY,e’

where e, =[0,0,0,..,0,1,1, .., 1]f ;.
¥m

-1
We now present some numerical results on the behaviour of the probability descriptors Pjr and Py
for the level-dependent retrial queueing network system. We plot P versus the retrial rate v for three
levels of service rates (pq, p) of the service channels of 1/O and CPU queues and for three different
values of the vacation parameter p. respectively. in Figures 2 and 3. Figure 2 shows that P,
increases rapidly and then decreases monotonically for increasing values of v. It should be pointed out
that a proper value of v maximizing P, always exists for chosen parametric values p = p; = p,= 0.5,
h1=2,/,=3,1=7, 6=5 M=6 and K = 10. Moreover. it can be seen from Figure 2 that the
retrial rate attains its optimal value early in the case of y; = 8 and p, = 9. whereas there is an onset of
delay in the attainment of the optimal retrial rate in other cases. In Figure 3, we display P;; against the
retrial rate v for three different values of the vacation parameter p for chosen values p; = p, = 0.5,
h=21,=3,1=76=5,1,=9, u, =8 M=6 and K =10. In this illustration also. P
increases rapidly and then decreases monotonically for increasing values of v. Further, by considering
higher vacation rate 6 (of order 10*) in the vacation system under investigation, we obtain
approximate results for corresponding non-vacation model. For the systems with and without vacation,

Pyp =
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the curves in Figure 3 reveal that a proper value of v maximizing P, always exists. An interesting
observation from the plot is that P, attains its highest maximum in the case of I-limited service
disciple vacation system. i.e.. when p = 1, as compared to the other systems under investigation. It is
also worth noting that under the non-vacation system. the descriptor Pj; has lower value when
compared to the exhaustive service vacation (p = 0) system. This phenomenon can be explained as
follows.

016 T T 017

015}
014}
anl fIf

IlE oz}
ot f

ol

omt E

0.08 ot
2 3 ¢ 5 5 7 8 9 1 0 1 2 3 4 .5 E 7 B 9w
Figure 2. Py, versus v for A = 7, # =5, M=6, K=10, Figure 3. Py versus v for A = 7,6 =5, M=6, K=10,
pj: p2=p=0 5, J}=2, and J2=3 p;: p2=0 5, ,a1=9, ,M2=8, J;:Q, and J_s:3

In the non-vacation system. the service channels are always available even when there is no
program in the CPU queue. Thus, the arriving programs to the CPU queue are immediately served
without any additional delay. As a result. there is less chance that the inner network is occupied by
M — 1 programs. On the other hand. in the exhaustive service vacation system, the service channel can
avail multiple vacations when there is no program in the CPU queue. In this situation, the arriving
programs during the vacation periods most likely have to wait for the remaining vacation time in the
CPU queue buffer. Consequently, there is more chance that the inner network is occupied by M —1
programs. Hence. under the exhaustive service vacation system. the ideal probability Pz has attained
higer value for the proper value of v than that of the non-vacation system.

On the other hand. Figures 4 and 5 illustrate the trends of the vain retrial probability Pyg
against v, respectively, for three levels of service rates (i, iy) of the service channels of 1/O and
CPU queues and three different values of the vacation parameter p. By taking p = p; = p, = 0.5,
J1=2,),=3,1=7,06=5 M=6 and K =10 and for three different levels of service rates
(i1, i) of the service channels of /O and CPU queues, Figure 4 exhibits the increasing trends of P,y
for increasing values of v before attaining a limiting value. In Figure 5. we display the behaviour of
Pyr versus v for three different values of the vacation parameter p. By fixing p; =p, = 0.5,
h=25,=31=708=5 1,=9, 4, =8 M=6 and K =10, Figure 5 reveals the trends of
Pyr versus v for both vacation and non-vacation systems. As before. Pyy is the increasing function of
v before attaining a limiting value. The descriptor Py, approaches the limiting value much faster in
1-limited service case than in the other cases.

Also. our numerical experience indicates that the two descriptors. the ideal retrial probability Pg
and vain retrial probability Pyr versus v for the three levels of the feedback probabilities (py, p2)
behave very similar to Pz and Py, against v for the three levels of the service rates (uq, ) for
other chosen parametric values of the system under discussion.
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o7

Figure 4. Py versus ¥ for A =7, 0=5, M=6, K=10,
pe=p=p=0.5, J;=2, and J,=3.

6. Busy Period Analysis

/ -l:— o Vacation

0 1 2 3 4 vbh E i L] g 10

Figure 5. Py versus ¥ for =7, 6=5, M=6, K=10,

pj=p2=O. 5, ,u;=9, ,u2:8, J|=2, and J2=3

Another relevant piece of information on the behaviour of our retrial queueing network system is
the busy period. The busy period, L. of our system is defined as the period that starts at the epoch when
an arriving primary program (packet) finds an empty system (no program in both the inner
multiprocessor network and the orbit) and ends at the departure epoch when the system is empty again.
Thus, the busy period is the first passage time from state (0,1,0,0) to (0,0,0,0). For the derivation of
k™" order moments. E(L¥), of the busy period for our FOC retrial queueing system with classical
retrial policy, we develop algorithmic schemes for the computation of the Laplace-Sticltjes transform

(LST) of the busy period L.

Let us consider again the process {X(t); t = 0} = {(N(¢),1(t), C(t),J(t)); t = 0} which is a

CTMC with state space given as

Q={mm=0LL);0<n<K, 0<j<s,0<I<m 0<m< ML

We partition (0 as follows:

0* =(0,0.0.0).
0={(0m—=100j);0<j<s5,0<l<ml<m<M]},
n={nm-=04L0Lj31<n<K 0<j<s5,0<1I<m, 0<m< M}

The above states are again partitioned as

0= (01, 02, 03, e

where, for m=1,2,3,..., M,

» Oy vevs On)

0,, = {(0,m,0,0),(0,m —1,1,0), (0,m — 1,1,1), (0,m — 2,2,0), (0,m — 2,2,1),
(Orm - 2J2r2)r ey (OJlrm - 1r0)r (Orlrm - 1r1)r (Orlrm - 1r2)J ey
(0,1,m —1,5,,_,), (0,0,m,0), (0,0,m, 1), (0,0,m,2), ..., (0,0,m,5,)},

and

n = (ng,ny,n,,..

with ny = (n,0,0,0) ,and. for m =1,2,3,..., M.

1] nm; ey nM)!

n, ={nm00),n,m-110),nm-111),(nm-22,0),nm-221)
nm-=222),..,(n,1,m—-10),(n,1,m—-11),(n,1,m—-1,2), ...,
(n,1,m=1,5,_4),(0m,0),(n0m1),n0m?2),..,h 10ms,)k
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Here both 0,, and n,, are, respectively. row vectors of dimension w for m=1,2,3,...,/,

EntDCnD 4 (m = $)(5m + 1) for m=J + 1L,/ +2,..., M.
The busy period of our queueing system is the duration commencing while an arriving primary
program finds the system in state 0° and ends when the system visits state 0° again at a service
completion epoch.
Let Tgnm-11,;) be the first passage time to state 0° (absorbing state) given that the initial state of
the system is (n,m —1LLj) and ¢pm—r1j(s) = E[e STmum-ti)], Re(s) = 0. (n,m—1,1,j) € Q.
be the corresponding LST of Ty 114,y

and of dimension

We introduce the following micro vectors which comprise the LSTs partitioned according to the
orbit level: For m = 1,2,3,..., M,

¢om (s)= [¢(o.m.0,0) (), ¢(0.m—1,1,o) (s), ¢(o,m—1,1,1) (s), ¢(0,m—2,2,o) (s), ¢(O.m—2,2,1)(S)J
¢(0,m—2,2,2)(5)- v P0,1m-1,008), Po1,m-1,1) (s) b0,1,m-1,2)(5), )
¢(0,1,m— 1,sm_1}(5)r (P[D,D,m,(]) (s), ¢(0,0,m,1)(5)r ff’{o,o,m,z) (S)r ey ¢{0,0,m,sm) (S )]T’

1s a column vector whose dimension is the same as the dimension of 0,,. and. for m = 0,1,2,3, ..., M.
‘an (s) = [Gb(n,m.o,o) (s), Qb(n,m—l,l,(])(s): ¢(n,m—1,1,1) (), ¢(n.m—2,2,0) (s), ¢(n.m—2,2,1)(5).
¢(n,m—2,2,2) (s), ) ¢(n,1,m—1,0)(5)r ¢(n,1,m—1,1) (), ¢(n,1,m—1,2) (s)) s
Dnim-15m16) D0mn ) Dnom 1) Dnom 25 s Pnoms,y (7

is also a column vector whose dimension is the same as the dimensionof n,,, 1<n <K.
Further, we generate the macro vectors

¢0(S) = [¢01 (S)r ¢02 (S), ¢03 (S), ey ¢0m (S), ey ¢0M (S)]-{]"M—l)x 1

Du(5) = [Pu (), Puy (), Py (), s Py (), e, Py ()]s,
and

¢(S) = [¢0(S), ¢1 (S), ¢2 (S)r ey ¢I‘I (S), ey ¢K(S)]E‘\M—1)X1'

Moreover, we have ¢y (s) = 1.
Theorem 1. The LSTS {@mm-1,1,5(s); (um — 1L Lj) € Q} satisfy the following tri-diagonal block
system:

T (s)p(s)=F (11)
where T (s) = E—SI(AM_I} and F =[—F,,0,0,0, ...,O]E.,M_l)xl with Fo=[(1—piy, 0,
(1-pdu,, 0,0,0,.. 'O]E'FM_I)XI and 0s' are zero column vectors of order Ty x1.
The square matrix

_Zl,(] Z(],(]
A2,1 Al,l AD,]

A 2,2 A 1,2 A 0,2

(12)

Ql
1l
.
M
"
=
e
2=
=
S

Ajr Ajgy Agg
Ay Agg + Ak

T(AM-1)x(Ay—1)

th
Juy
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is obtained from Q by removing the first row and first column. In other words, El_o is obtained from
A, by removing the first row and first column, Ko,o is obtained from Aqq by removing its first row

and Hz’l is obtained from A, by removing its first column.

Proof. By employing the first-step principle. we get the following equations:

When n=0. j<lI,
AL = 6,m)
Pom-1n(s) = (s + A+ Uy =)0 + Ttity + ity
Abmm
NO + iy + jit,
Uz —))8
=)0 + 1y + iy

+(5 Tm—1P1{
+A+ (= DO+ 1y iy

+
(S+)L+Uz

+
(S+)L+Uz

+(5 Tm—1(1 — P
+ A+ = DNO+ 1ty + ity

)
)
)
)
)
)
)

+( :
s+HA+U, = N0+ 1y + 1y

+(5 J( = ppau,

+A+(, — N0+ 1y + i
( Jp(1—=pi,
s+A+ U, = N0+ 1y + 1,
( JA=p)A - pu,

S+ A+ Uz =)0+ vy +ju,

Pam-iLj) (s)

) b om-141,1,)(S)

Pom-t1j+1) (s)
Pom-t1-1141,) (s)
¢(o,m—t—1.t.j) (s)

D 0m-141,1-1,j-1)(S)
Pom-t+11-1,) (s)

b om-t11-1,j-1)(5)

¢{o,m—£,£—1,j}(~9)

for 0<j<s5,0<l<m, 1<m<M.

When n=0. j=1,

A m
P om-11)(S) = ( M)

S+ A+ 1y + 1y,

( Ay
S+ A+ 1y +lp,

¢’(1,m—£,£,£)(5)

i (5 Tm—1P1la
+ A+ iy + iy

)
)
+( Tm—1(1 — Ptk )
)
)

S+ A+ Ty + lp,

( lpauty
S+ A+ Ty + lp,

" [(1—py)u,
S+ A+ 1y + i,

bom-t+1,L0(S)

¢(o,m—t—1,t+ 1,1)(5)
¢(o,m—t—1,t,t) (s)
Dom-141,1-1,1-1)(5)

¢{0.m—1,1—1.1—1)(5)-

for0<li<m, 1<m<M.

(13)

(14
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When n=1,2,3,..., K—1. j <.

)¢(n,en—z+ 1,L7) (s)

’1(1 _5mM)
banm-11) (s) = ( — — :
s+ A+ (o =N +nv(l = 8y + Tiits + il
+ Ab‘mM
S+HA+ (= DO +nv(1 = Spmp) + Tiits + itz
Uz —j)B

Pn+1m-11,/(S)

+

S+A+ (= DO +nv(1 = Spp) + Tpghty + 1t

2

nv(l — &)

+

) Dnm-1j+1y(S)

S+HA+ U, = DO+ V(1= 8p) + Tty 1L,

Tm-1P1#

) Pin—1,m-1+1,1)(S)

+

S+A+ U, =D +nv(l —6p) + 1ty + K,
Tt (1 — Py

+

bnm-1-1141.5(S)

S+HA+ (= DO +nv(1 = Spmp) + Tiits + itz
Jpp2its

+

Penm-t-1.1) (s)

s+21+ UZ _f)e + nv(l - SmM) + Vit +j:u2
J(1 = pIp2itz

¢(n.m—!+1.i—1.j—1) (S)

(
(
(
(
(
(
(

T SF T U =00 + (= 6y) + et + 1

Jp(1 —p2)itz
_J)B + nv(l - SmM) + Yim—ilq +fﬂz

JjA=-p)A—pu,

+(5+A+Uz

)
)
)
)

Dnm-t1+1,1-1,7(S)

) Pm-ti-1,j-1y(5)

g

s+a1+ 02 _)')9 + nv(l - amM) + Tm—1# +j1u

2

)¢{n,m—£,£—1,j) (),

for0<j<s,0<l<m 0<m<M. (15
When n=1,2,...,.K—1. j =1,
¢(n,m—£,£,£)(5) = (s T+ nv(llila)_n:))ni)rm_ml T qu) ¢(n,m—£+1,£,£)(5)
+(¢ +1+nv(1 —)c;‘i::; + Tty + I,uz) Porrim-110()
* (S +1+ nv(rlw—(t?;:)mrz'm_,ul + 3#2) P-1m-t3110(5)
* (s +2+nv(1 zmc‘;,f:)u-ll- Tottly + I,uz) Pm-t-1141.0(5)
* (s +A1+ nv?(‘);_—i((;n;;af;:‘;_,ul + I,uz) Poum-1-1.0()
* (5 +A+nv(l - g:i; + Tttty + Lty Povm-t1i-11-0(5)
’ (s +2+ nv(ll(—la_mzz))izrm_iul + wz) Perm-ti-14-2)(S)
for 0 <l <mO0<m< M (16
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When n=K. j <l
AL = 8my)

— nlsS) = - - _ N
im0 = (ST Gy 0 0 KT Sy s i) Pnto149/)
Kv(l—&,)
+(5 , . ) (s
T ) Uz — D0 + KV~ Byyg) + gt + J11y) L1410 )
U2 =N
+(5 : . ) (s
T Byan) Uz = DO+ KV = Byag) T s +J11g) Lm0
Pm—1P1H
+( : e
SH A= Bpar) Uz = O + KV (= Sy F ity 1) PCm 111010 ()
Tm—t(1 = pi iy )
+ . . ~-11)(s
(5 + AL = 8pp) + Uy — DO + Kv(1 = 8pg) + Toihty + jlty Pekm-1-11))(5)
jppaits
o | -
STAA =0, ¥ Us =10 + Kv(L =) T 1o + ) P6m-t4121j-0)()
n ( J(1 = p)paity )¢ )
§ + AL = 8y) + Uz =0 + KV(L = Eyp) + Tty +jpip) 77D
jp(1 = P2ty
o _ e
S+ AL = Gpp) + Uz = DO + Kv(1 = 8py) + 1ty + 1ty Pkmett-2j-1)()
+( JA=p)A =Py ) " )
s+ AL = 8yp) + Uz =)0 + KV(L = 8yp) + Tyity + i)~ M THTEDED

for 0<j<s5,0<I<m 0<m<M (17)

When n=K. j=1

Bremn® = 5 o ) ©
Km=LLD) + ’1(1 - 5mM) + Kl’(l - 6mM) + Tin—1t + fﬂz Km=L+1LL)
Kv(L = 8p)
+(5 AL = B + KV = 8y + gty + lpiy) P11 (5)

Dk m-t-1,141,0 (s)

+( Tm-1P1th
S+ A1 = 8pp) + Kv(1 = Eipg) + Tty + Ly

)
)
Tm-t(1 — P )
)
)

¢(K,m—t—1,t,t) (s)

+(5
+ ’1(1 - 6mM) + Kl’(l - 6mM) + Vit + fﬂz

oy,

5 L= By + KV (L= Oyuag) sty  Tiy) Pm-1224-24-(5)

I(1 = p)iy

+(5 + A1 = 8p) + KV(L = 8pg) + T ity + Lty b m-1,1-1,1-1y()

for0<l<m 0<m<M (18

After routine block identification, we can express the system of equations (13)-(18) in matrix form as
in (11).
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As the busy period of our retrial queueing system starts by visiting the state (0,1,0,0). the first
component of the vector 0 ={(0om—1L1j); 0<j<s,0=0l<m, 1=<m= M}, we define the
unconditional version of LST as

L(s) = [1,0,0, ...,0]1 x(ap-1y@ (5)- (19)
Let fi(x) denote the unconditional density associated with L(s). Owing to the Tauberian result,
the value of f;(x) at x =0 is
£.(0) = limsL(s).

Since
11 (1 —p1) it (mm-141j))=(0100)
}i_)nsosgb(n.m—l,l,j) (s) = [ﬂz 1-p2) if (mm-141j)=(0,011)
0, otherwise,
we have

£(0) = limsL(s) = [1,0,0, . O ixcay-nlim s $(s) = i (1 = p).
We focus our attention on computing the k™™ order moment Mgy ,—y; (k) = E[T(;:l,m—l,l,j}] of

T nm-11jy(s) for k =0,1,2,... Differentiating (11) k-times with respectto s on both sides. we get
dk—l

TL(S) () — ko p(s) = 0 for k= 123,... 20)

dgk—1
Let m(k) be the vector of moments partitioned in accordance with the orbit levels. In the partitioned
form. we have

m,(k) = [my,, (k),m,,(k),..,m,, (k),.. .ﬁ‘aoM(k)]}}M_1)x1 for k =0,12, ..,
where
my (k) = [Mm0,0) K Mo m-11,0) ) Mgom—1,1,1) ) M(om—2.2,0) k), Mg m—221),
M0,m—2,2,2)(K)s s M0,1,m—1,00(K), Mo,1,m—-1,1) (5D, o, M0, 1,m-1,5,_,) (),
0,0m,0)(K), T(0,0m,1y ), oo s (0, 0,m5,) (K]}, 1 for m=1,2,3,.., M.
When n=1,2,3,...,K,
7t (k) = [Ty (), Ty, (), e, T (), e, Ty (O
where
My, (k) = [Maym,0,0) (k) Maym—1,1,0)(K) M m—1,1,1) ), Mnm—2,2,0y(k), Maym—2,2,1y (),
ﬁ(?‘1.?‘.'1—2,2,2) (k), ey ﬁ(?‘1.1.?‘.'1— 1,0) (k), ﬁ(ﬂ,l.m—l,l) (k), s r"_”l(in,l.m—1,sm_1) (:I(),
T ,0,m,0) (s Tign0,m 1) (), ooy T 0.5, U]}, 10 m=0,1,2,..., M,
and for k=0,1,2, ...,
m(k) = [m,(k), m, (k), '"-ﬁk(k)]z'\m—l)xl'
Making use of (k) = (_1)k:T,(:c¢(5)|s=0 and T,(0) = Q in (20) vields
Qm(k)+km(k—1)=0 for k=1,2,3,...,
with m(0) = [1,1,1,...,1]{s,,—1)x1-
Thus, the k'™ order conditional moments, m(k). k =1,2,3,.., of the busy period satisfy the
following recurrence block tri-diagonal system:
om(k) = —km(k—-1), k=1,273,.., 1)
whence
mk)=—-k(@Q) 'mk-1), k=1,2,3,...
Hence the unconditional k** order moments are obtained as

L}

th
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E(LF) =[1,0,0, ... 0]1x(ap-nm), k=1,2,3,... . (22)
The first two unconditional moments of the busy period of our retrial queueing network system are
obtained as
E(L) = ﬁ(l) = _[L 0: Or rO]lx(AM—l)(Q)_l [1r 1r 1r Jl](AM—l)Xl"
and
E(L*) =[1,0,0,...,0]1x(a-1M(2)
= 2[1J OJ Or v »OJ(Q)_Z [1J 1r v rl]j;M—lxl
where we have used m(2) =2 (Q)™? [1,1,... ,1]KM_1XI.
Thus the variance. Var(L). of the busy period L is obtained as Var(L) = E(L?) — (E(L))%.
We now demonstrate a variety of numerical examples to illustrate the trend of E(L) and Var(L).
In Figures 6 and 7. respectively, E(L) and Var(L) are sketched versus A for different values of p
and fixed parametric values v=>5, 6 =5, iy =9, u, =8, py=p, =05, ); =2, J, =3, M=6
and K = 10. Figures 6 and 7 show that both E(L) and Var(L) are increasing functions of A. On the
other hand, for A=7, 6 =5, 1y, =9, u, =8, p;=p, =05, J; =2, J, =3, M =6 and K =10,
the opposite trends are seen in both E(L) and Var(L) versus v as displayed. respectively. in Figures

8 and 9. In the case of non-vacation system, it is evident that, both E(L) and Var(L) are seen to be
less than any of the vacation service systems under discussion.

10 T T T 2

= g
w £
1afF
5 5.5 él 6."5 ?: ?IS i
Figure 6. E(L) versus A for v =5, =5, M=6, K=10, Figure 7. Var(L) versus A for v =5, 0 =5, M=6,
pi=p-=0.5, p,=9, u=8, J,=2, and J,=3. K=10, p=p.=0.5, u=9, p=8, J=2, and
J=3.
250 1200
100
.
soof °
% p=05
T sof
= “ p=0
400 & .\~ Mo Wacation
20} T
o OI? 1‘3 ) _lll_ . _I.I'S . 1‘_5\«- ll?__ I.IS_ 1‘_9__ _2
Figure 8. E(L) versus v for A =7, 6=5, M=6, K=10, Figure 9. Var(L) versus v for A =7, #=5, M=6,
p=p>=0.5, };=9, =8, J,=2, and J,=3. K=10, py=p=0.5, u=9, u-=8, J,=2, and
J=3.
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Now we show, in Figures 10 and 11, the effects of 2 and v on E(L) for varying orbit size

K = 5,10 and 15. From Figure 10, it is clear that E(L) increases for increasing values of A and K.
The trend of E(L) versus v is depicted in Figure 11 and we notice that the curves corresponding to
K = 5,10 and 15 are graphically indistinguishable in the displayed domain. However. E(L)
decreases sharply before attaining its equilibrium for large values of v. We have also observed from our
numerical experience. though it is not being reported here. that the trends of Var(L) versus A, and v,
respectively, behave very similar to E(L) against A and v for K = 5,10 and 15. We depict, in
Figures 12 and 13. the trends of E(L) and Var(L) versus @ for A=7, v=5, 4y =9, u, =8,
pi=p,=p=05 J,=2,J,=3 and M =6 for varying orbit size K= 5,10 and 15. As is
evident from the figures. all three curves corresponding to K = 5,10 and 15 are decreasing sharply
before attaining their equilibrium for large values of 8.

o T T T T T 10

=]

EiLi
EIL)

19 9:'5 1’0 Py ‘0"5 "‘ 11’.5 2 EI.] l].I12 D.I‘I-I l].llﬁ U“I‘IS EI.I:Z U.IZZ U.I24 0.3
Figure 10. E(L) versus A for v =5, 6=5 M=6, p= Figure 11. E(L) versus v for . =7, 6 =5, M=6, p,=p,
p=p=0.5, 4/=9, u,=8, J;=2,and J,=3. =p=05, p;=9, p,=8, J,=2, and J,;=3.
20 1200

ElL)

1 L L L L 1 1 L L
1 1.2 14 16 18 g 2 22 24 26 28 3

Figure 12. E(L) versus & for A=7, v =5, M=6, p= Figure 13. Var(L) versus @ for A =7, v =5, M=6,
p=p=0.5, u;=9, u,=8, J,=2, and J,=3. P1=p.=p=0.5, u,=9, =8, J,=2, and J,=3.

Next, we display the behaviour of the mean, E(L). and the variance, Var(L). of the busy period
for the system under discussion in Figures 14-17 for several choices of the number of servers (J;, J»)
of 1/O and CPU queues with orbit capacity K = 10. Figures 14 and 16 exhibit that both E(L) and
Var(L) increase with increasing values of A as is to be expected. In Figures 15 and 17. it can be
observed that both measures E'(L) and Var(L) decrease for increasing values of v.
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Finally. we have also observed from our numerical experience that the trends of two descriptors
E(L) and Var(L) versus 4,6 and v for three different levels of the service rates (i, py) behave
very similar to E(L) and Var(L) for the several choice of the number of servers (J;, j;) of I/O and
CPU queues with orbit capacity K = 10.

E(Ly

4 5 B JL?I El 9 10 B ___1__ 1_5_ ) 2_ ) _2.5 ap A __3_5 . 4 ) _4_5_ 5_
Figure 14. E(L) versus A for v =35, 0=5, M=6, Figure 15. E(L) versus v for A =7, 0 =5, M=6, K=10,
K=10, p=p,=p=0.5, 1,;=9, and p,=8, P=p=p=0.5, u,=9, and p,=8.
45 el
a0 A A 2
sl /] 1wl -
] _,f N
L / N
= = h=2=2
Sl SN
18} ?
1o}
st
W ous =& a8 i_ B5 7 75 8 &5 3@ % 3 10 ERT! 6 0 0
Figure 16.Var(L) versus A for v =5, 6 =5, M=6, K=10, Figure 17. Var(L) versus v for A =7, 0 =5, M=6,
Pr=p=p=0.5, 11,=9, and p,=8. K=10, p,=p,=p=0.5, 11,=9, and p,=8.

7. Waiting Time Analysis

In this section. we analyze the waiting time of a tagged program (packets) for our retrial queueing
system. The waiting time W is defined as the sojourn time of a tagged program in the finite orbit/retrial
group. In the classical retrial queues, it is typically assumed that the programs in the retrial group
operate under a random order policy. This assumption makes the analysis intractable because we have to
consider not only the system state at the arrival epoch of the tagged program. but also the possibility that
the programs arriving at a later time will compete for entering into the inner multiprocessor network. In
general, the stationary distribution of W is analytically intractable. However, we develop an
algorithmic procedure for the recursive computation of the LSTs and moments of the waiting time, W,
of a tagged orbit program for the FOC retrial queueing network system.

In our model. it is clear that if the number of programs in the inner multiprocessor network is less
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than M. an arriving primary program enters into the I/O queue. On the other hand, if the number of
programs in the inner multiprocessor network is equal to M and the number of programs in the orbit is
less than K. an arriving primary program joins the group of orbiting programs. In order to study the
waiting time of the tagged program in the orbit, we must observe the time duration starting from the
arrival epoch of the tagged program upto the time when it enters into the inner multiprocessor network.

First. we derive the LST of the conditional waiting time distribution of the tagged program given
the system state and the status of the tagged program immediately on its arrival. For this purpose, we
introduce the following definitions and notations:

Wnm—1,1,jy: the residual waiting time of the tagged program given that the system is in state
mm-LL)1<n<K.
W(n,m_i_[_j)(s) = E[e”SWmm-11p], Re(s) =0, ¥ (n,m—1,1,j) € Q: the conditional LST of the
random variable W, 1,y giventhat (n,m —1,1,j) € Q.
W(s) = E(e™*")., Re(s) = 0: the LST of the random variable W.
The following vectors comprise the above transforms according to the orbit levels:
For n=1,2,3,..,K,
Wn(s) = [W(n.o,o,o) (s), I7'7(*:1.1.0.0) (s), W(n.(].l.(])(s)l I7'7(*:1.0.1.1)(3)- Ry W(n.o.M.sM)(S)]EMm
and
W(s) = [W1(s), Wy(s), ..., Wy (5), ..., Wy (S)EFMM-
The following theorem gives a system of linear equations for the LSTs W{n,m—l,l, H(s).
Theorem 2. The LSTs {W(n,m_i’;’ Ny mm—=LL)) € 0, 1<n <K} satisfy the following block
tri-diagonal system:

Ty (SYW(s) = Dgryx1 (23)
where
Tw(s) = Q — slgryxxry, 24
Agr,x1 = —Vv[(1,1,..,1,0,0,..,0), 2@ l M, ... K(1, l 3].!(er1
Fp—y ¥m
with
(A Agy
22.2 A, Ay,

22.3 A1.3 A0.3
W 25)

)
I

A1 Ark-r Aok
ﬁz,x Ao + Ak

TR XK Ty

inwhich Ry =" A, forn=2,34,..K.

Proof. Employing the first-step analysis, we obtain the following system of equations:
When n=1,2,...,. K -1, j<l,

AL = Sm)

W(n,m—l,l,j)(s) = ( o

s+A+ (=D + vy +j1, +nv(l—8,)

) W(n,m—£+1,£,j)(5)
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+ ( - e - ) W(n+ 1m-1,7)(S)
s+A+ Uy =0+ rigity + iy +nv(1 = )

+(Frrg e gj;—uj)i T gy) Tom-ss )

* (s +A+(,— O + :::iziu-:- ji, +nv(l — 5mM)) Wonm-1-1,001,)(S)

+ (s +A+({, - j)Br: Ifnfl,;lpj-)jtz +nv(l— mM)) W, (nm—t-1,1,j)(S)

+ (s +1+{,— e+ rf_}::;tli juy, +nv(l — 5mM)) W(“m t+14-1,j-1)(5)

* (s + A+, — O i(,l,m__i)lpf?uz e Wnm-r41,-1,(5)

( Jp(1—p)uy
S+A+{, =N+ vty + iy +v(l = 8,)

)
)
(S JA =)A=k, )
5)

W(nm Li-1,j- 1)(5)

+

%m

+

T2+ Uy = DO+ Tty + iy + nv(1— 6 nm=ti-1))(5)

Ea

+

M)
n—1m- I+1U)(5)
M’

m
L (n—Dv(1 — &)
+ A+ Uy = N0+ 1ty + iy +v(1 =6,y

+( V(1= &) )
s+A+ (= N0+ 1 iy +juy +nv(l = 6,y)

for0<j<s5,0<l=m 0=sm=M. (206)

W(n,m—i,i,i)(s) (S+/1+Tm m +Iﬂ2 +nv(1—6 ) (n,m— £+1H)(5)

+( A8mm
S+ A+ 1y + Ly, +nv(l = 8,)

When n=1,2,3,...,K—1, j=1
;{(1_ mM) )
) m+1m-110(S)

+(‘; Tm—1P1t
+ A+ iy + Ly + V(1 = S)

+( m-1(1 = pia
S+ A+ 1y + 1l +nv(l —6,,)

)
)
lp,uy )
)
)7

Wnm-1-1141.)(S)

Et

(nm—I-1,L,0) (s)

+ W(nm +1,0-1,1— 1)(5)

S+ A+ 1y + 1l +nv(l —6,,,)

+ W(nm Li-1,0— 1)(5)

S+ A+ 1y + 1l +nv(l —6,,,)
(n —Dv(A = 8nu)
S+ A+ 1y + 1l +nv(l —6,,,)

(
( L1 = pa)pz
(

+ (n—1,m— £+1u)(5)

60
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v(l - 6mM)

i
S+ A+ 1oy g, +nv(l—

When n=K,j <,

)

for0<li<m 0<m<M. (27

A1 = 8inm)

W(K,m— Ll j)(s) =

(S + AL = 6pp) + (s

- - Wik m—121.055(s
_1)9 +Tm—!#1 +'”12 + KV(l _ Smm)) (Km £+1,£.})( )

— e
J—1) )W(K,m—l,l.j+1)(s)

+(s+/1(1—

5mM) + UZ _DB + ol +j:u2 + Kv(l - ‘SmM)

Tm—-1P1H

+

w, s
)e_l_rm [,u-]_ +j#2+ll{v(l_ i ) (K,m—I- 1£+1})()

Tm—1(1 = Py
Wk m-1-1.1,7(5)

t\sraao

(s +2A =8+, —
(

Som) + U = DO + 1ty + j1ty + Kv(1 — 68,

+( opats )W(Km 1+1,0-1,j-1)(8)
S+ A = 8pn) + Uz = DO + 1ty + ity + Kv(1 — 8ppy) J-

* (s + 21 =8 + U j()16_+p3:2ftl +ju, + Kv(1l— mM)) Waem—rs1.1-1,(5)
* (s + 21 =) + U —j ?)(; J: fifﬁl +jip, + Kv(1 — 5mM)) Waem-11-1,/-2/)
+ (s + A1 = 8,) + Ui(:)g)fﬁ_,_:zi Jju, + Kv(1 — )) w km-t1-1(S)

+ (A= U(ZK—;)?T: ;;’:Mjmz TR a) e imnn©

v(1—&puy)

+

(s +AA =8 + U,

_j)e + Tm—1#1 +j1u2 + KV(]- - 6mM))

for0<j<s5,0sl=sm msM. (28)

When n =K, j =1,
Wim-1.0(5) = (5 + (1= 6,0) +Ar$_;f’imzlz + Kv(1 — 5mM)) Wacm-1411.)
* (s + A1 = 6py) + ;m iililmz + Kv(l - mM)) Waem=r-1.001(5)
’ (S + A1 = mm) T;,(_l;;; Tiﬁ; +Kv(l - 5mM)) Wicim-1-11()
!
* (¢ + 21 = ) + T T;Ti L, + Kv(1 — mM)) Waem-t+11-1,1-1 ()
* (s + 21— ) +£:,:_T;:23-ﬁ;ﬂ2 +Kv(1 - 5mM)) ®m-ti-1-1)(5)
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+ (‘; (K B 1)1’(1 - ‘SmM)
+ ’1(1 - 6mM) + ot + fﬂz + KV(]- - 5mM)

+ ( v(l-— 6mM) )
S+ A1 = 8mp) + Tty + gy + Kv(1 = 8y)

)W(K—l.m—Hl,l,l)(s)

for 0<i<m, 0<m<M. (29

The contribution of repeated attempts made by programs from the orbit is explained as follows: In
(26)-(29). the last terms on the right-hand side correspond to the case where the tagged program from
the orbit should immediately enter into the inner multiprocessor network. In contrast, if any non-tagged
program from the orbit applies for entry into the inner multiprocessor network and succeeds. we obtain
the last but one term on the right-hand side according to the random order re-attempt. By expressing the
system of equations (26)-(29) in matrix form, we obtain the expression (23).

Note that, if upon arrival, the tagged primary program should join the orbital programs and wait in
the orbit if it finds the system at any state in the set Ey, = {(n,M = [,j); 0<n<K-1,0<j<s5,
0 <1 < M}. The steady state probability vector Il of dimension 1XKT), is defined as

My = My, My e, My oo My iy (30)
where
"Wn = [9' 0, e l{_),ll,(nl M- 0!0)!Y(nlM - 111'0)'Y(n'M - 1‘1‘1)' " Y(n’ 0‘ M‘ SM)]IKPM'
-1 ¥m

forn=0,1,2,..,K -1

According to the PASTA property. we obtain the unconditional version of the LST of the waiting
time W as

W(s) =1-Myey + M, W(s), 31
where ey, = [1,1,1, ..., 1]kr, <1
It is noticed that the contribution
PIW=0)=1-TIlyey.
represents the steady-state probability of no waiting time which occurs either when the arriving tagged
primary program with rate A finds the number of programs in the inner multiprocessor network is less
than M or when it finds the number of programs in the system (i.e.. in both orbit and inner
multiprocessor network) is K + M and becomes a lost program. The contribution [T, W (s) represents
the LST of the waiting time of the tagged program with density function w,(t) given W > 0 such
that
[ we(tydt = yef,.
We have that
ifl<n< < i< <l< <m<M-—
W Fonin@ ={ orherwise, o CETENTE

We now focus on the moments of the waiting time. W, of the tagged program in the orbit. To this
end, let W(n’m_l,l,j)(k) = E[W(S%-:,:,j)]: be the k™ order moment of Wyym—y1jy. kK =0,1,2,...
and W (k) = E(W¥) be the k" order moments of W.

The following vectors comprise the above moments partitioned according to the orbit levels:
For k=0,1,2, ..,

wn (k) = [W(n,D,D,(])(k)r W(n,l,l),l)) (k), W(n,D,l,D) (k)r W(n,D,l,l) (k), ey W(n,D,M,sM) (k)]FM %1

and

W (k) = W), W, (K), ... Wy (), .., Wi (k)] Rry 1
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Differentiating the expression (23) .‘c-times with respect to s. we find that

Tw(S) W( ) — k W(S) =

Making use of W(k) = (—1)" W(s)|5 o and TW(O) = in the above vields the conditional k™

order vector of moments W(k)ﬁ k =0,1,2,.... of the waiting time of the tagged program in the orbit
as the solution of the following block tri-diagonal system:

OW() =—-kW(k —1) for k=1,2,3,..., (32)

with
W) = [1,1,1, .. 1y

The unconditional k** order moments E(W*) = W(k), k =1,2,3, ..., of the waiting time of the
tagged program are determined as

W(k) = EWY =M, W(k), k=0,1,2, ... 33)
In particular, the first two unconditional moments of waiting time of the tagged program for FOC can be
obtained by using the block recurrent system (32) and the probability vector (30) as

EW) =1, W(1)
EW) =-My@7'[L 11, Jkryp

E(W?) =Ty W(2) = 2My (@ *[L 1,1, .., [kry 1.

Finally, the variance, Var(W), of the waiting time W is obtained as Var(W) = E(W?) — E(W)Z.

We now examine the impact of the primary program arrival rate A, the vacation rate &, the retrial
rate v. the vacation parameter p, orbit capacity K and the number of service channels (J,, /,) on two
measures E(W) and Var(W). In all our numerical examples. we take p; =p, =05, py =9,4, =8
and M = 6. Figures 18 and 19, respectively, reveal the trends of E(W) and Var(W) agamst A for
p=20051. v=56=5J,=2,/,=3 and K=10. It is observed that both E(W) and
Var(W) initially increase rapidly and then start decreasing monotonically with increasing values of 1.
Moreover. both measures E(W) and Var(W) demonstrate a surprising phenomenon of possessing a
maximum as a function of A for all three vacation scheduling service systems and non-vacation system.
Such a phenomenon is also noticed in Falin and Artalejo [15]. Almasi et al. [3] and Dragieva [12] for
non-vacation retrial queueing systems. Besides, it can be seen that both descriptors E(W) and
Var(W) possess the highest maximum in the case of 1-limited service vacation system.
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Figure 18. E(W) versus A forv =5, 6 =5, M=0, Figure 19. Var(W) versus A for v =5, 8 =5, M=6,
K=10, p=p=0.5, j,=9, u,=8. J,=2, and K=10, p\=p=0.5, },=9, p,=8, J,=2, and
J=3. J=3.
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Next, we depict E(W) and Var(W), respectively, in Figures 20 and 21 as a function of v. These
figures show the effect of not only the retrial rate v but also the vacation parameter p. For 1 =7,
=9 4;=8,0=5 p=p,=05p=0,051,},,=2,/,=3. M=6 and K =10, the
figures reveal that E(W) and Var(W) are monotonically decreasing rapidly to zero as v tends to a
large value. However, for fixed value of v. the measures E(W) and Var(W) increase when the value
of vacation parameter p increases. Further, for the non-vacation system. both E(W) and Var(W)
have lower values than any of the vacation service systems under investigation.

We analyze the behaviour of E(W) and Var(W) for p=p, =p, =05, 14, =9, u, =8, v=
5 6=5,];=2,J,=3.M =06 and three different orbit capacity K =5, 10 and 15. In Figures 22
and 23, we plot E(W) and Var(W) versus 1. As before, the figures display the same surprising
phenomenon of possessing a maximum as a function of A. Further, it is also noticed that both E{(W)
and Var(W) possess the highest maximum for the largest orbit capacity. Figures 24 and 25 reveal the
trend of E(W) and Var(W) versus 8 forp=p, =p, =05 A=7,v=5 1y =9, i, =8, J; =
2, J, =3, M = 6 and for three different orbit capacity K = 5,10 and 15. It is seen from the figures
that both E(W) and Var(W) are decreasing for increasing values of @ as is to be expected. However.
for fixed value of 8. the descriptors E(W) and Var(W) increase when the orbit capacity K
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Figure 20.E(W) versus v for A =7, 0=5, M=6, K=10, Figure 21.Var(W) versus ¥ for A =7, 6 =5, M=6,
p1=p3=0,5, }11:9, }12:8, J|:2, and J2:3 K:].O, p|=p3=0,5, }llzg, FZ:S’ Jl :2, and
JQ:B,
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Figure 22. E(W) versus A forv =5, 6=5, M=6, Figure 23.Var(W) versus A for v =5, 6 =5, M=6,
pr=p,=p=0.5, j,=9, 4,=8, J,=2, and J,=3. Pr=p=p=0.5, 11,=9, =8, J,=2, and J,=3.
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Figure 24. E(W) versus f for A =7, v =5, M=6, p, ) FlgureZS i?ar(W) versus @ for 1. 27,- Y =5, MzG, pl.
=p,=p=0.5, 34;=9, u,=8, J,=2, and J,=3. =p=p=0.5, p;=9, 1,=8, J,=2, and J,=3.

increases. We have also examined the behaviour of E(W) and Var(W) against v for p=p; =
pz=05 1=7,0=5 15y=9, u,=8,/,=2,,=3, M=6 and K =5,10 and 15. From our
numerical experience. not reported here, similar conclusions can be inferred for both descriptors. i.ec.,
E(W) and Var(W) decrease with increasing retrial rate v but increase with increasing values of K.

Finally, we investigate the behaviour of E(W) and Var(W) against A, 6 and v for different
combinations of the number of service channels (J;, /,) in the /O and CPU queues. By taking
v=56=5p=p,=p, =05 1, =9, u, =8, M=6 and K =10, We depict E(W) and
Var(W). respectively. in Figures 26 and 27 as a function of A for different combinations of the number
of service channels (/;, /) in the I/O and CPU queue. From the figures. we infer that both measures
E(W) and Var(W) attain a maximum as a function of A. Further, it is interesting to observe that both
E(W) and Var(W) possess the highest maximum when the total number of service channels (J4, J5)
are small in the 1/O and CPU queues. We also examined the behaviour of £(W) and Var(W) versus
8. Our numerical results. though it is not being presented here. indicated that both descriptors E (W)
and Var(W) decrease before attaining their limiting values for increasing values of 8 and for fixed 8.
they decrease when we increase the total number of service channels (J;, J;) in the I/O and CPU
queues. Similar behaviours can also be noticed for E(W) and Var(W) versus v for different
combinations of the number of service channels (/;, /) in the I/O and CPU queues.
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Figure 26. E(W) versus A for v =5, =5, M=6, Figure 27. Var(W) versus A for v=5, 0 =5, M=6,
K=10, p=p,=p=0.5, u,;=9, and p,=8. K=10, pj=p.=p =0.5, 11,=9, and p,=8.
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8. Number of Retrials

In this section, we consider the random variable, . of the number of retrials made by the tagged
program from the orbit until it enters into the inner multiprocessor network. This descriptor is the
discrete counter part of the waiting time. W, of a tagged program studied in the previous section and
complements the present analysis. The number of retrials 1 is an important quantity in itself because in
real multiprogramming computer system, it determines the additional load on the control devices. In this
sense both W and 1 are excellent performance measures for the multiprogramming-multiprocessor
retrial queueing system. In order to discuss the number of retrials made by a tagged program for our
queueing network system. we introduce the following definitions and notations:

Yinm-11,jy: the number of retrials that a tagged program will make from the orbit given that the system
stateis (n,m—=LLj)eEN . 1<n<K.
Pnm-11j)(@) = E[z¥0m=tid] = ¥ P@um-11) = k) 2. |z| < 1,
: the conditional probability generating function of the random variable ¥ m—1,jy-
P(2)=E (z¥). |z| < 1: the probability generating functions of the random variable .

Next we introduce the vectors which comprise the above generating functions partitioned according to
the orbit levels : For n=1,2,3,...,K.

'];n(z) = [4"-(:1,0,0,0} (2), 4"-(:1,1,0,0) (2), 4"'(:1,0,1,0) (2), 4"-(:1,0,1,1) (), s ’i"”(n,D,M,sm (Z)]mel
and
P(2) = [:1(2), $2(2), P3(2), ., P (D]iry -
The following theorem establishes a relationship for the generating functions lﬁ(n,m_ (@)
Theorem 3. The generating functions {‘jj(n,m—t,t, n@Ey mm-1L1Lj) € 2, 1=sn<K,
0<j<s, 0=1<m, 0 <m < M} satisfv the following block recurrent system:

Ty(2) P(2) = A@) 34
where
Ty(2) =0+ (1 -2V, A@) =zAkr,x 35)
with
V. = —v diag[lys, Loz, Loz, - Dok kryxkry (36)
in which
0 0
I, =n 5”'1"“"‘ ;M'“y”] for n=1,2,..,K.
Ymx -1 YMx¥M Ay <y

Proof. Adopting the first-step argument, we have the following system of equations for mm-11,j)(2):
When n=1,2,3,..,K—1, j <l

J’(n,m—z,z.j)(z) = L1+ UJ,— e+ ?'m_;i(i;uimrlv(l —8,m) + V5mM) J’(n,m—uu,j) (z)
o Vet s jfu: Ty T ey P im @
* (;t + U, — O+ rm_,nla-i ,;:?f (1 — 8, + vSmM) Poum-taj+n (@
* (/1 +U,—No+ rm—:#:’i_;ij: nv(l— 8,y) + V5mm) lp“("’m_l_l’ul’j)(z)
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+ LI Tt (1 — Py 7 (@)
+ = DO + ity + ity +nV(1 = Eppy) + V6 T TITHD

i (l jpp2it,
+ oy = O + gty + jpy +nv(1 = ) + VO

Y mm-1+11-1,j-1)(2)

4 (,1 J( = plpa2tta @
+ (= DO + ity + ity + nV(1 = Sppy) + V8 T TITELD

+L1 Jp(1 — pa)its @
+ (= DO + ity + ity + nV(L = Spy) + Vi) T T

)
)
)
)
+(/1+ - JA =p)A =pliz )
)
)
)

- j)ﬂ + Vipotty + fﬂz + nv(l - ‘SmM) + V5mM

+(l (n - 1)1"'(1 - 5mM)
+ oy = O + gty + jpy +nv(1 = ) + VO

m-1m-1+1,1,j)(Z)

+(A zv(l = 6mm)
+ (o = N0+ 1y +jpy +nv(l = Gpy) +VOiy
ZV8im -

Y
1z
J)(n,m—t,t—l.j)(z)
¥

* Ll + Uy = DO+ vty + ity +nv(1 = 8py) + vy 4

(nm—LLj) (Z )

for 0<j<s,0<l<m 0<m<M. G0

When n=1,2,...,.K—-1, j=1
AL = 8p)
P nm-111)(2) =( =

A+ 1ty F iy +nv(1 = Gpp) + VO

) Ynm-t141,01)(2)

+(5 2o )7 @
F 1ty + Uty + V(L= Sppy) + V8 T D
Tm-1P1Hh -
+ (2 + gty + Lty + V(1 — 8ppy) + vSmM)w("’m't'l'“l'[)(z)
Tm—t(1 = p1)iy )
* (/1 + Tty + Lty + nv(L = 8py) + VEiy Penm--11.@)
Ip, 1t -
+ (2 + gty + Lty + V(1 — 8ppy) + v5mM)w("’m'*”'['l'i'l)(z)
L1 = p)i, )
* (/1 F Ty ghty + Lty + nv(1 = 8p) + VB Pom-ti-11-0()
(n—Dv(1 = bmu)
+ (l + Vo gity + Lty + V(1 = 8pp) + vSmM)lp("'l’m'“l'i'[)(z)
" (/1 zv(1 — 8pp) )
+ gty + Lty + V(1= 8ppg) + VO

_l_()L Zv8um
+ vty + ey vl = 8, + Vi

)wu(n,m—l.l.l)(z)

for 0<l<m 0<m<M. (38
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When n =K. j<I,
A — Emm)

Dew 11 n(2) = - -
Toon-110® = a5y TGP T T rei b I TRV 5 TV

)lp(.’(.m—!,l,j+ n(@)

n (=)o
AL = 8pp) + U = DO + ripgity + jtty + Kv(1 = Gppg) + vy
Tm—1P1H1
;{(1 - ‘SmM) + UZ )9 + Vil +f:u2 + Kv(l - mM) + V5
Tm-1(1 — Py
AL = Epp) + Uz =0 + ity +jity + Kv(1 = 8pp) + Vi

(
(
(
( JPpaly
(
(
(

+

+

+

;{(1 mM)"'UZ _J)9+rm 1y +)'1u2+'l{v(l_ mM)+v5mM
J(L = p)paity

+

Jp(1 —puy
AL = 8pp) + Uz = DO + ripgity + jitty + Kv(1 = Gppg) + Vi
JA—=p)A —plu,
AL = 8pp) + U2 = DO + ripgity + jitty + Kv(1 = Gypg) + Vi
( (K —=1)v(1 = 6pm)
;{(1_ mM)"'UZ _J)9+rm 1 +)'1u2+'l{v(l_ mM)+v5mM

+

+

_l_(;'L zv(1 = Gpp)
(1_6mM)+Uz_j)9+rm—I“1+jfi2+KV(1 mM)+v

AV

)
)7
)7
T (A S Ty T T e
)7
)7
)7
)

)J’(K,m—Hl,t,j)(z)

J)(Km I- 11+1;)(Z)

Yk m—z—l,z,j)(z)
Yikm—t41,1-1,j- 1)(2)
(K, m—!+1,l—1.j)(z)

(K m—!,l—l,j—l)(z)

Yk m-1i-1,7(2)

Yk-1m-1+1 U)(Z)

* (1(1 = S + Uz = NO + Tmapts + bty + KV (L= 8yupe) + vamm) wmtan(@)

for 0<j<s,0<l<m 0<m<M 39

When n=K. j=1

b A1 -8,
Yum-11n(2) = ( ( M)

;{(1 - 5mM) + Tm-1#1 + lluz + Kl’(l - 6mM) + VamM

n (/‘ Tm—t1P1
(1 - 5mM) e I#Z + Kv(l - ‘SmM) + 1""SmM'

+() Tm-1(1 — Py
(1 - 5mM) + Vipalty + 3#2 + Kv(l - ‘SmM) + V‘SmM

)i
)7
e )
)7
)i

+(3
(1 - 5mM) + Pty + 1#2 + Kl’(l - 6mM) + 1"'6mM'

n () (1= pu,
(1 - 5mM) e I#Z + Kv(l - ‘SmM) + 1""SmM'

4 (/‘ (K = 1)v(1 = 8p)
(1 - 5mM) e I#Z + Kv(l - ‘SmM) + 1""SmM'

68

)@(K,m—t+l,£,£) (2)

wm-1-1,1+1,1)(2)

(Km - 1;;)(2)
II"'Km 141,1-1,1-1)(2)

(Km Li-1,0—- 1)(2)

K-1m-1+1,,0)(2)
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+ () zv(l— mM) )
1- 5mM) + T + 3#2 + Kv(l - ‘SmM) + V‘SmM
AL
* (A(]- - 5mM) + oty + lluz + Kl’(l - 6mM) + VamM

for0<l<m, 0<m<M. (@0

)Iﬁ(x.m—t.t.t)(z)

In the above equations (37)-(40). the last three terms of the right-hand side correspond to retrials
made by the orbital programs. The incidence of a retrial may be made either by a non-tagged program or
by the tagged program. Due to the random order repeated attempt, the terms containing (n — 1)v(1 —
Sy and zv(1l — 6,,,,). respectively. correspond to the retrials made by the non-tagged program and
by the tagged program, provided the number of programs in the inner multiprocessor network is less
than its maximum capacity M. On the other hand, if the inner multiprocessor network is fully occupied
by M programs, the retrials made by the orbit programs will be vain retrials. Hence the vain retrial
made by a non-tagged program neither affects the event under study nor modifies the current system
state. but we have to count the vain retrials made by the tagged program. Thus the term with zvé§,,y
corresponds to the vain retrial made by the tagged program.

It is to be noted that by setting s = 0 in (26)-(29), the left-hand sides of waiting time equations
agree with (37)-(40) except the term containing —v(1 — z) which should be added due to vain
retrials at the main diagonal elements of @ when the inner multiprocessor network is fully occupied by
M programs. After the routine matrix formulation, the system of equations (37)-(40) leads to (34).

The unconditional version of the probability generating function 1(z) of the number of repeated
attempts made by the tagged program from the orbit is given as

¥(2) = 1 - Myexr, + My P(2),
where 1 — Iy ekr,, represents the probability that the tagged program upon arrival enters immediately
into the inner multiprocessor network.

We now compute recursively, the k™ order factorial moment of the random variable . the
number of retrials made by the tagged program.

Let E(n’yn_g’g’j)(k) = Emm-i1j) @mm-11p) — D @@m-ip—k+1D ] k=123,..,
be the k™™ factorial moment of the random variable Ynm-11,) and Iﬁ(«n’m-[_[_ »(0) =1.
The moments are partitioned according to the orbit levelsas, k =0,1,2, ...,
V() = [¥ 00,00 Y in1.000 Pino,1,0y Yoy ""‘p(n,o_m_sM)]FMxl, l<sn<K,
and
D) = [, (), P, (), e B, (), e, B () ey

Differentiating the expression (3 4) k-times with respect to z. we get

dk 1
Tw(z) ']3(2) k Vd o1 $(Z) = Op1Bkryx1
By setting z = 1 and making use of P(k) = @ﬁ(zﬂz:l. k=1,2,3,.., in the above equation, we
get the following block recurrent system:
QY (k) = 8y Bxry x1 + k V p(k — 1), with P(0) = ek, for k =1,2,3, ... 1)

Hence, the unconditional k** order factorial moments E[yp (¢ — 1) —2) - (¥ — k + 1)] of the
random variable 1 are determined as

E[pGp — D@ —2) @ —k+ D] =Myup(k), k=1,2,3,..., 42)

where Il is given in (30).
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In particular, by using the block recurrent relation (41) and the probability (30), the first two
unconditional moments, E (). and, E()?). of the number of retrials made by the tagged program can
be obtained as

E@) =My (1) = My (@) [Akrya + V €kry,]
and

EQ?) =My [[+2@7V]IPD.

We now present the numerical results of the mean. E (). and the variance. Var(}). of the number of
retrials ¥ made by the tagged program from the orbit. For all our numerical investigation. we have
fixed p =p, =05, gy =9, u, =8 and M = 6. Figures 28 and 29. respectively, demonstrate the
behaviour of E(y) and Var(y) versus 4 for p=20, 0.5, 1, v=5,6=5, ; =2, J, =3, and
K = 10. Here also. the figures exhibit a similar surprising phenomenon of our retrial queueing network
system attaining a maximum of E(y) and Var(y) as a function of A as noticed earlier in the
analysis of waiting time. Moreover, it is observed that both measures E(y) and Var(y) possess the
highest maximum in the case of 1-limited service vacation system.

We next plot E(¥) and Var(y), respectively, in Figures 30 and 31 as a function of v for
A=7,68=5p=0, 05,1, J; =2, J, =3, and K =10. As a result. both descriptors E(3) and
Var(y) increase monotonically with increasing values of v and the curve corresponding to
non-vacation system is lower than the curves of the exhaustive. Bernoulli scheduling and 1-limited
service vacation systems.

Figures 32 and 33 report numerical examples. respectively, to show the influence of A on E()
and Var(y) for v=5, 8 =5, p=05, /y; =2, J, =3, and for three different orbit capacities
K =5, 10, 15. As in the case of waiting time analysis. the maximum attainment of E(3) and
Var(y) as a function of A are addressed in Figures 32 and 33. Further, our numerical experience, not
reported here, indicated that, for fixed A and @, the measures E(y) and Var(y) always increase for
increasing values of v and they increase further when the orbit capacity K increases. This fact 1s as
expected since increase in both v and K causes more congestion and consequently more reattempts.
Next, we study the behaviour of E(y) and Var(y) asa function of & by fixing A =7, v=75, p; =
9, u, =8 py=p,=p=05, J; =2, J, =3, and M =6 for three different orbit capacity K =3, 10
and 15. In Figures 34 and 35, it is observed that both descriptors E(y) and Var(y) decrease for
increasing values of 8 whereas they increase when the orbit size K increases for fixed values of 8. It
can also be seen that E(3p) and Var(y) behave very similar to E(W) and Var(W) against 8 for
different orbit size K.

Finally. we plot E(y) and Var(y). respectively. in Figures 36 and 37 as a function of A for the
different combinations of the number of service channels (J;, J;) in the I/O and CPU queues. For
v=5,0=05 p=0.5 and K =10. Figures 36 and 37 exhibit that the descriptors E(y) and
Var(y) behave very similar to E(W) and Var(W) versus A as reported in Figures 26 and 27. We
have also performed some numerical illustrations for the descriptors E(y) and Var(y) as functions
of v and @ for the different combinations of the number of service channels (J;, /,) in the I/O and
CPU queues. From our numerical results. though it is not being reported here, it can be concluded that
the trends of E(y¥) and Var(y) are very similar to E(W) and Var(W) versus v and @,
respectively, as stated in the waiting time analysis.
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Figure 28. E(y) versus A for v =35, =5, M=6, K=10,
pi=p-=0.5, 1,=9, u,=8, J,=2, and J,=3.

18
16} 1
141 )
1.2f
p=1
1+ 4
E =
s p=05
“oafb .
p=0 /
OB g vacation / b
0.4/ _
02 B
0 L L L L L L L
2 3 4 5 [ 7 g 9 0

Figure 30. E(y) versus v for A =7, £ =5, M=6, K=10,
pi=p-=0.5, 1,=9, u,=8, J,=2, and J,=3.

Figure 32. E(y) versus A for v =5, 0 =5, M=6,
=p=0.5, 1;=9, u,=8, J,=2, and J,=3.
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Figure 29, Var(y) versus A for v =5, =5, M=6,
k=10, p;=p,=0.5, u,=9, u,=8, J,=2, and
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Figure 31. Var(y) versus v for A =7, =5, M=6,
K=10, p,=p,=0.5, 1,=9, u,=8, J,=2, and
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Figure 33. Var(y) versus A forv =5, =5, M=6,
pi=ps=p=0.5, 1;=9, u,=8,J,=2, and J,=3.
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Figure 34. E(y) versus @ for A =7, v =5, M=6, p=p, Figure 35. Var(y) versus  for A =7, v =5, M=6,
=p=0.5, ;,=9, u,=8, J,=2, and J,=3. pr=p,=p=0.5, =9, 4,=8,J,=2, and J,=3.
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Figure 36. E(y) versus A for v =5, =5, M=6, K=10, Figure 37. Var(y) versus A for v =5, 6 =35, M=6,
P1=p=p=0.5, =9, and p,=8. K=10, p=p,=p=0.5, p,;=9, and t,=8.

9, Conclusion and Future Work

In this article, we have analyzed numerically a Markovian retrial queue with finite orbit capacity
for a multiprogramming-multiprocessor computer network system in which the service channels of CPU
queue avail vacations under Bernoulli schedule. The system is formulated as a level-dependent QBD
process and the stationary distribution of the number of programs has been obtained. Using the matrix
analytical methods, various system performance measures such as the mean and variance of the number
of programs in the retrial group. the system busy period, waiting time and the number of retrial made by
a tagged program from the orbit are determined. We have also identified the optimal retrial rate for
chosen parametric values for specific probability descriptor of the system. Extensive numerical
illustrations have been presented to show insight into the performance of the retrial queuing system
under discussion. For further work. we plan to study an algorithmic analysis of the classical retrial
queue with unlimited orbit capacity for a multiprogramming-multiprocessor computer networks and
investigate the ergodic condition of the system. Further. we will also pay our attention to obtain the
numerical solution for the stationary distribution of the number of programs in the system using the
direct-truncation method. By numerical illustration. the behavior of the various system performance
measures and the quantities of interest will be discussed.
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