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Abstract: In this paper we develop a queueing model useful in service industries dealing with 
automatic teller machines (ATMs) that are commonly used by people all over the world. We assume that 
these service systems are subject to failures due to catastrophic events such as power outage, mechanical 
or electrical problems. Arrivals of customers are modeled using a Markovian arrival process and the 
service times are assumed to be of phase type. Individual customer cash requirements are modeled using 
a probabilistic rule and the machine has a finite capacity for holding the cash. Assuming the failure 
times, repair times, and cash replenishment times to be exponential, we analyze the model using matrix-
analytic methods, and present two illustrative examples to bring out the salient features. Some well-
known queueing-inventory models are shown to be special cases and in some of these cases we derive 
explicit expressions for the steady-state probability vectors. The model studied is generic in that it can 
be applied in the context of queueing-inventory situations. 

Keywords: Catastrophes, GI/M/1-type process, inventory, Markovian arrival process, matrix-analytic 
method, phase type distribution, queueing. 

 

1. Introduction 
Queueing models play a major role in service industries such as healthcare, telecommunications, 

food industry, banking, supply chain management, and other businesses that serve people directly or 
indirectly. In this paper we consider a useful queueing model in banking sector related to automatic 
teller machine (ATM). Although this paper discusses the model in the context of ATMs, this is applicable 
to a variety of other service models such as vending machines or electronic gadgets and possibly in self-
service technologies. We refer the reader to [2] for details on self-service technologies that include ATM 
usage. ATMs are used worldwide by people on a daily basis, and are subject to failures in the form of (a) 
running out of money to dispense to the customers; and (b) catastrophic events such as power outage, 
mechanical failures, etc. Thus, to model an ATM service system, one has to incorporate both 
catastrophic and inventory-type situations. 

Queueing models in which customers are removed from the system due to catastrophic events have 
been studied extensively in the literature. We refer the reader to a recent paper [6] dealing with a new 
type of catastrophic model and this paper contains some key references on queueing models with 
catastrophic as well as on negative arrivals. Also, there is a huge literature on queue-inventory models 
with applications in many service sectors such as hospitals, restaurants, and servicing automobiles. For a 
recent study on queue-inventory and for some references on queue-inventory type modeling we refer the 
reader to [5, 7, 11, 12, 13, 14, 24, 25, 28] and the references therein. 

Motivated by the study performed by authors in [27] to build a model to predict the probability of 
ATM failure occurring within a specified time frame, this paper studies the efficiency and the 
availability of an ATM system under failures, repairs, and (cash) replenishment. By incorporating the 
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ATM availability information into the bank's software or on the bank's mobile application, the customers 
can check the availability of ATMs and plan their trip accordingly. Further, this will help the banks to 
provide a better service to their customers. 

The rest of the paper is organized as follows. In Section 2 we describe the model under study in 
detail and the steady-state analysis of the model is presented in Section 3. A few special cases of the 
model are presented in Section 4. A few illustrative numerical examples to bring out the qualitative 
nature of the model are discussed in Section 5. Finally, in Section 6 we present some concluding 
remarks and future research work. 

2.  Model Description 
In this paper we look at a queueing model of the type MAP/PH/1 useful in service industry related 

to ATM. Customers needing to withdraw cash arrive at an ATM machine according to a Markovian 
arrival process (MAP) with representation (D0, D1) of order m. A customer finding the machine down 
will be considered lost. The ATM can be down either due to shocks or due to no cash. The maximum 
cash the machine can hold is assumed to be S. An arriving customer withdraws cash in multiple of units 
of local currency depending on the location of the machine. For example, the units could be rupees if in 
India or in dollars if in USA. We assume that the customer withdraws money according to the following 
probabilistic rule. With probability 𝑝𝑝! , 1   ≤ 𝑟𝑟 ≤ 𝑁𝑁, the customer withdraws r units of cash. The upper 
limit, N, is imposed by the regulating agency governing the ATM usage. For example, recently due to 
demonetization in India, the upper limit is specified as Rs.4,500. Note that in this example, N will not be 
set as 4,500 but rather the multiples of the units of currencies that are dispensed. Thus, if the dispensing 
units are in Rs.500 notes, then N = 9. Also, the dispensing currency could be in different denominations 
reducing the value of N. However, in this paper we will simply assume that the customers are given cash 
in some units but not exceeding N. Further we assume that S is some multiple of N. That is, S = KN, for 
some finite K. This assumption is only for convenience and is not a restriction as we allow the 
possibility of the customers to withdraw the needed amount subject to the maximum cash allowed to 
withdraw and the cash available in the machine at that moment. Also observe that 𝑝𝑝! = 1.!

!!!   
The machine can be down due to (i) cash depleting to zero or (ii) catastrophic event caused by 

shocks. The shocks, which are independent of the arrival process, are assumed to occur according to a 
Poisson process with rate θ. An arriving shock will instantaneously cause the machine to fail unless the 
machine is already down in which case the shocks will have no bearing. The cash replenishment times 
and the repair times of the machine are assumed to follow exponential distribution with parameters, 
respectively, given by δ 1  and δ 2 . The service times of the customers are assumed to be of phase type 
with representation (𝜷𝜷,𝑇𝑇) of order n. The mean service time is given by !

!
= 𝜷𝜷(−𝑇𝑇)!!𝒆𝒆 (see, e.g., [20]). 

The model studied in this paper incorporates of catastrophic events and (s, S)-type inventory in the 
context of MAP/PH/1-type queueing model. That is, our model falls in the category of queueing-
inventory system in the sense that the classical MAP/PH/1-type queueing model studied here is subject 
to (a) catastrophic events resulting in the system needing a repair after removing all customers from the 
system; (b) every customer is to be served with a finite number of inventory ranging from 1 to N with a 
certain probability; and (c) when the inventory becomes empty upon completion of a service, all waiting 
customers are removed from the system and new arrivals are accepted only after a replenishment of 
inventory occurs. Thus, our queueing model in this paper falls under the topic of queueing-inventory. 
However, to our knowledge there is no queueing-inventory model in which demands (both waiting and 
future ones) are lost when there is no inventory. The closest ones that consider modeling the lost 
demands are in [24, 25], wherein the authors consider M/M/1-type queueing-inventory models with all 
new arrivals lost during the time the system waiting is for replenishment; however, all those customers 
in the queue at the time the inventory becomes zero will be kept and served after replenishment occurs. 
That is, in these papers the authors assume that only future demands that arrive during the replenishment 
times are lost and that those waiting in the queue at the time of stock outs will be met and served. Also, 
note that in the above referenced papers each customer requires only one inventory. 

For use in sequel we need the following notation. (a) e will denote a column vector (of appropriate 
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dimension) of 1's; (b) ei will denote a unit column vector (of appropriate dimension) with 1 in the ith 
position and 0 elsewhere; (c) I an identity matrix (of appropriate dimension); (d) The notation “ꞌ” 
appearing as superscript on a vector or a matrix denotes the transpose of a matrix; (e) T 0 is such that Te + 
T 0 = 0; (f) The symbols, ⊗ and ⊕, respectively, will stand for the Kronecker product and sum of matrices. 
For details on Kronecker products and sums, we refer the reader to [9, 18, 26] for details and properties on 
Kronecker products and Kronecker sums. Note that when there is a need to emphasize the dimension of a 
vector or a matrix we will do so. As an example, a unit vector of dimension S will be denoted as 𝒆𝒆!(𝑆𝑆) 
rather than 𝒆𝒆!. 
MAP, a rich class of point processes that includes many well-known processes such as Poisson, PH-
renewal processes, and Markov-modulated Poisson process, was first introduced as a versatile 
Markovian point process by Neuts [19]. Since then, this versatile process has been studied extensively 
in different contexts by many authors. For further details on MAP and their usefulness in stochastic 
modeling, we refer to [16, 17, 21, 22, 23] and for a review and recent work on MAP we refer the reader 
to [1, 3, 4]. 

Let η be the stationary probability vector of the Markov process with irreducible generator D = D0 
+ D1. That is, η is the unique (positive) probability vector satisfying 

𝜼𝜼𝐷𝐷 = 0,𝜼𝜼𝜼𝜼 = 1.   (1) 
Verify that the arrival rate, λ, also known as the fundamental rate giving the expected number of arrivals per unit of 
time in the stationary version of the MAP, is given by 𝜆𝜆 = 𝜼𝜼𝐷𝐷!𝒆𝒆. 

3. The Steady-State Analysis 
The steady-state analysis of the queueing model described in Section 2 will be described in this 

section. First we need to define a few notation. Let J1(t), J2(t), J3(t), and J4(t) denote, respectively, the 
number of customers in the system, the cash level in the machine, the phase of the service (if any), and 
the phase of the arrival process, at time t. The process {(J1(t), J2(t), J3(t), J4(t)): t ≥ 0} is a continuous-
time Markov chain (CTMC) with state space in grouped form given by 

𝛀𝛀 =   ∗   ∪ ∗ ∪   𝟎𝟎   ∪   𝒊𝒊, 𝑖𝑖   ≥ 1 , 

where the set of states and their definitions are as follows: 
• The set of states, ∗  = {𝑘𝑘, 1   ≤ 𝑘𝑘   ≤ 𝑚𝑚}, of dimension m corresponds to the system being down due to 

zero cash and the arrival process is in one of m phases. 
• The set of states,   ∗  = {(𝑗𝑗, 𝑘𝑘), 1   ≤ 𝑗𝑗   ≤ 𝑆𝑆, 1   ≤ 𝑘𝑘   ≤ 𝑚𝑚},  of dimension mS corresponds to the 

system being down due to shocks with the arrival process in one of m phases and the cash level 
being in one of S states. 

• The set of states,    𝟎𝟎 = {(𝑗𝑗, 𝑘𝑘), 1   ≤ 𝑗𝑗   ≤ 𝑆𝑆, 1   ≤ 𝑘𝑘   ≤ 𝑚𝑚},  of dimension mS corresponds to the 
system being in idle state with the arrival process in one of m phases and the cash level being in 
one of S states. 

• The set of states,   𝒊𝒊 = {(𝑖𝑖, 𝑗𝑗, 𝑟𝑟, 𝑘𝑘), 1   ≤ 𝑗𝑗   ≤ 𝑆𝑆, 1   ≤ 𝑟𝑟   ≤ 𝑛𝑛, 1   ≤ 𝑘𝑘   ≤ 𝑚𝑚},  of dimension mnS 
corresponds to the system being busy with i customers in the system; the arrival process in one 
of m phases; the service process in one of n phases, and the cash level being in one of S states. 

It is easy to verify the CTMC with the above state space has the infinitesimal generator matrix, Q, 
of the form:  
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𝑄𝑄 =

𝐷𝐷 − 𝛿𝛿!𝐼𝐼 0 𝛿𝛿!𝒆𝒆!(𝑆𝑆)⊗ 𝐼𝐼
0 𝐼𝐼⊗ (𝐷𝐷 − 𝛿𝛿!𝐼𝐼) 𝛿𝛿!𝐼𝐼
0 𝜃𝜃𝜃𝜃 𝐼𝐼⊗ (𝐷𝐷! − 𝜃𝜃𝜃𝜃) 𝐼𝐼⊗ 𝜷𝜷⊗ 𝐷𝐷!
𝐸𝐸 𝜃𝜃(𝐼𝐼⊗ 𝒆𝒆⊗ 𝐼𝐼) 𝐴𝐴! 𝐴𝐴! 𝐴𝐴!
𝐸𝐸 𝜃𝜃(𝐼𝐼⊗ 𝒆𝒆⊗ 𝐼𝐼) 𝐴𝐴! 𝐴𝐴! 𝐴𝐴!
𝐸𝐸 𝜃𝜃(𝐼𝐼⊗ 𝒆𝒆⊗ 𝐼𝐼) 𝐴𝐴! 𝐴𝐴! 𝐴𝐴!
⋮ ⋮ ⋱ ⋱ ⋱

        (2) 

where the matrices appearing in the above generator are as follows 

  𝐴𝐴! = 𝐼𝐼⊗ 𝐷𝐷!, 𝐴𝐴! = 𝐼𝐼⊗ 𝑇𝑇⊕ 𝐷𝐷! − θ𝐼𝐼, 𝐴𝐴! = 𝐹𝐹   ⊗ 𝑻𝑻!𝜷𝜷⊗ 𝐼𝐼,   
            (3) 

𝐴𝐴! = 𝐹𝐹   ⊗ 𝑻𝑻!⊗ 𝐼𝐼,      𝐸𝐸 = 𝑝𝑝𝑖𝑖(𝒆𝒆𝑖𝑖(𝑆𝑆)
𝑁𝑁
𝑖𝑖=1 ⊗ 𝑻𝑻0⊗ 𝐼𝐼), 

 

𝑝𝑝! = 𝑝𝑝!!
!!! ,          𝐹𝐹 =

𝐹𝐹!
𝐹𝐹! 𝐹𝐹!

𝐹𝐹! 𝐹𝐹!
⋱ ⋱

𝐹𝐹! 𝐹𝐹!

,           (4) 

and 

𝐹𝐹! =

0 0 0 … 0 0
𝑝𝑝! 0 0 … 0 0
𝑝𝑝! 𝑝𝑝! 0 … 0 0
⋮ ⋮ ⋮ … ⋮ ⋮

𝑝𝑝!!! 𝑝𝑝!!! 𝑝𝑝!!! … 𝑝𝑝! 0

	  ,	  	  𝐹𝐹! =

𝑝𝑝! 𝑝𝑝!!! 𝑝𝑝!!! … 𝑝𝑝! 𝑝𝑝!
0 𝑝𝑝! 𝑝𝑝!!! … 𝑝𝑝! 𝑝𝑝!
0 0 𝑝𝑝! … 𝑝𝑝! 𝑝𝑝!
⋮ ⋮ ⋮ … ⋮ ⋮
0 0 0 … 0 𝑝𝑝!

	  ,	  	  	  	  (5)	  

The generator given in (2) is of GI/M/1-type and possesses matrix-geometric steady-state probability 
vector ([20]) as shown in the next subsection. Such processes have been extensively studied in the 
literature (see e.g., [1, 3, 10, 15, 20]). 

3.1. The steady-state probability vector 
In this section we will look at the steady-state probability vector of the generator given in (2). 

Towards this end, we define x, partitioned as     𝒙𝒙 = 𝒙𝒙∗,𝒙𝒙∗, 𝒙𝒙 0 , 𝒙𝒙 1 , 𝒙𝒙(2)… , to be the steady-state 
probability vector of Q. That is, x satisfies 

                                                                   𝒙𝒙𝑄𝑄 = 0,	  	  𝒙𝒙𝒙𝒙 = 1.	   	   	                      (6) 
For use in sequel, we further partition the steady-state vector as follows. Recall that S = K N. 

• 𝒙𝒙∗ = 𝒙𝒙𝟏𝟏∗ ,… ,𝒙𝒙𝑲𝑲∗    ,, where 𝒙𝒙𝒋𝒋∗, 1   ≤ 𝑗𝑗   ≤ 𝐾𝐾, of order Nm, gives steady-state probability that the 
system is in down state with the cash level at jN and the arrival process is in one of m states. 

• 𝒙𝒙(0) = 𝒙𝒙! 0 ,… ,𝒙𝒙𝑲𝑲 0 ,  where 𝒙𝒙! 0 , 1   ≤ 𝑗𝑗   ≤ 𝐾𝐾,  of order Nm, gives the steady-state 
probability vector that the system is idle with the cash level at jN and the arrival process is in 
one of m states.  

• 𝒙𝒙(𝑖𝑖) = 𝒙𝒙! 𝑖𝑖 ,… ,𝒙𝒙𝑲𝑲 𝑖𝑖 ,  where 𝒙𝒙! 𝑖𝑖 , 1   ≤ 𝑗𝑗   ≤ 𝐾𝐾,  of order Nmn, gives the steady-state 
probability vector that the system is busy with i customers in the system, the cash level at jN , 
the service is in one of n phases, and the arrival process is in one of m states. 

Since customers are cleared from the system whenever the ATM machine’s cash level hits zero or when 
a catastrophic event occurs, the queue is always stable and the steady vector x satisfying (6) always 
exists. The steady-state equations given in (6) can be rewritten as 
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𝒙𝒙∗ 𝐷𝐷 − 𝛿𝛿!𝐼𝐼 + 𝒙𝒙 𝑖𝑖 𝐸𝐸 = 𝟎𝟎!
!!! ,	   	   	   	   	   	  	  	  	  	  	  (7)	  

𝒙𝒙∗ 𝐼𝐼⊗ 𝐷𝐷 − 𝛿𝛿!𝐼𝐼 + 𝜃𝜃  𝒙𝒙 0 + 𝜃𝜃 𝒙𝒙(𝑖𝑖)(𝐼𝐼⊗ 𝒆𝒆⊗ I) = 𝟎𝟎!
!!! ,	   	   	  	  	  	  	  	  (8)	  

𝛿𝛿!𝒙𝒙∗(𝒆𝒆!⊗ 𝐼𝐼)+ 𝛿𝛿!𝒙𝒙∗ + 𝒙𝒙(0)[𝐼𝐼⊗ (𝐷𝐷! − 𝜃𝜃𝜃𝜃)]+ 𝒙𝒙(1)𝐴𝐴! = 𝟎𝟎,         (9)	  

𝒙𝒙 0 𝐼𝐼⊗ 𝜷𝜷⊗ 𝐷𝐷! + 𝒙𝒙 1 𝐴𝐴! + 𝒙𝒙 2 𝐴𝐴! = 𝟎𝟎,	   	   	   	   	  	  	  	  (10)	  

𝒙𝒙 𝑖𝑖 − 1 𝐴𝐴! + 𝒙𝒙 𝑖𝑖 𝐴𝐴! + 𝒙𝒙 𝑖𝑖 + 1 𝐴𝐴! = 𝟎𝟎, 𝑖𝑖 ≥ 2	  ,	   	   	   	  	  	  	  (11)	  

subject to the normalizing condition given by  

𝒙𝒙∗𝒆𝒆+ 𝒙𝒙∗𝒆𝒆+ 𝒙𝒙 0 𝒆𝒆+ 𝒙𝒙(𝑖𝑖)!
!!! 𝒆𝒆 = 1.	   	   	   	  	  	  	  (12)	  

Since the generator given in (2) is of GI /M/1−type, we can apply the well-known results from [20] to 
get the result in the following theorem. 

Theorem 1. The vectors,  𝒙𝒙∗,𝒙𝒙∗, 𝒙𝒙 0 ,  and 𝒙𝒙(1), are obtained by solving the following equations 

𝒙𝒙∗ 𝐷𝐷 − 𝛿𝛿!𝐼𝐼 + 𝒙𝒙(𝑖𝑖)!
!!! 𝐸𝐸 = 𝟎𝟎,         (13)	  

𝒙𝒙∗ 𝐼𝐼⊗ 𝐷𝐷 − 𝛿𝛿!𝐼𝐼 + 𝜃𝜃  𝒙𝒙 0 + 𝜃𝜃 𝒙𝒙!
!!! 𝑖𝑖 𝐼𝐼⊗ 𝒆𝒆⊗ I = 0,     (14) 

𝛿𝛿!𝒙𝒙∗ 𝒆𝒆!⊗ I + 𝛿𝛿!𝒙𝒙∗ + 𝒙𝒙 0 𝐼𝐼⊗ 𝐷𝐷! − 𝜃𝜃𝜃𝜃 + 𝒙𝒙 1 𝐴𝐴! = 𝟎𝟎,      (15)	  

𝒙𝒙 0 𝐼𝐼⊗ 𝜷𝜷⊗ 𝐷𝐷! + 𝒙𝒙 1 𝐴𝐴! + 𝑅𝑅𝐴𝐴! = 𝟎𝟎,	            (16)	  

subject to the normalizing equation 

𝒙𝒙∗𝑒𝑒 + 𝒙𝒙∗𝑒𝑒 + 𝒙𝒙 0 𝑒𝑒 + 𝒙𝒙 1 𝐼𝐼 − 𝑅𝑅 !!𝑒𝑒 = 1,	          (17)	  

and the rest of the steady-state vectors are obtained as 

𝒙𝒙 𝑖𝑖 = 𝒙𝒙 1 𝑅𝑅!!!, 𝑖𝑖 ≥ 1,	   	   	        (18)	  

where R is the minimal non-negative solution to the matrix-quadratic equation: 

𝑅𝑅!𝐴𝐴! + 𝑅𝑅𝐴𝐴! + 𝐴𝐴! = 0.	   	   	        (19)	  

Note: The computation of the R matrix can be carried out using a number of well-known methods such 
as (block) Gauss-Seidel iterative by exploiting the special structure of the coefficient matrices, A0, A1, 
and A2, which are of dimension mnS. This is very important especially when m, n and S are significantly 
large. Further, the very special structure of matrix R, as shown below, should be exploited. 

Theorem 2. The matrix R, which is the minimal non-negative solution to (19), is of the form 

𝑅𝑅 =

𝑅𝑅! 0 0 … 0
𝑅𝑅! 𝑅𝑅! 0 … 0
𝑅𝑅! 𝑅𝑅! 𝑅𝑅! … 0
⋮ ⋮ ⋮ … ⋮
𝑅𝑅! 𝑅𝑅!!! 𝑅𝑅!!! … 𝑅𝑅!

	  .	   	   	        (20)	  

Proof. First note that the matrices A0, A1, and A2 are lower triangular. Hence, using the probabilistic 
interpretation of the rate matrix R (see e.g., [20]), it is obvious that R is also lower triangular. Let R be of 
the form 
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𝑅𝑅 =

𝑅𝑅!,! 0 0 … 0
𝑅𝑅!,! 𝑅𝑅!,! 0 … 0
𝑅𝑅!,! 𝑅𝑅!,! 𝑅𝑅!,! … 0
⋮ ⋮ ⋮ … ⋮

𝑅𝑅!,! 𝑅𝑅!,! 𝑅𝑅!,! … 𝑅𝑅!,!

.	  	   	        (21)	  

Using the special structure of the coefficient matrices, A0, A1, and A2, the matrix-quadratic equation in 
(19) can be rewritten as: 

𝑈𝑈!,!𝐹𝐹! + 𝑈𝑈!,!!!𝐹𝐹! + 𝑅𝑅!,! 𝐼𝐼! ⊗ 𝑇𝑇⊕ 𝐷𝐷! − 𝜃𝜃𝜃𝜃 = 0, 2 ≤ 𝑖𝑖 ≤ 𝐾𝐾, 1 ≤ 𝑗𝑗 ≤ 𝑖𝑖 − 1,      (22)	  

𝑈𝑈!,!𝐹𝐹! + 𝑅𝑅!,! 𝐼𝐼! ⊗ 𝑇𝑇⊕ 𝐷𝐷! − 𝜃𝜃𝜃𝜃 + 𝐼𝐼!" ⊗ 𝐷𝐷! = 0, 1 ≤ 𝑖𝑖 ≤ 𝐾𝐾,	        (23)	  

where 𝐹𝐹! = 𝐹𝐹!⊗ 𝑻𝑻!𝜷𝜷⊗ 𝐼𝐼,𝐹𝐹! = 𝐹𝐹!⊗ 𝑻𝑻!𝜷𝜷⊗ 𝐼𝐼,  and Ui,j, 1 ≤ i, j ≤ K, is the (i, j)th (block) element of R2. 
Note that R2 is also lower triangular and hence Ui,j = 0, for j > i, 1 ≤ i, j ≤ K. Also, it is easy to verify that 
Ui,j, 1 ≤ j ≤ i, 1 ≤ i ≤ K, is given by 

𝑈𝑈!,! =
𝑅𝑅!,!𝑅𝑅!,!!

!!! , 1 ≤ 𝑗𝑗 ≤ 𝑖𝑖 − 1,2 ≤ 𝑖𝑖 ≤ 𝐾𝐾,
𝑅𝑅!,!! ,      𝑗𝑗 = 𝑖𝑖,      1 ≤ 𝑖𝑖 ≤ 𝐾𝐾.

	        (24)	  

Noting that 𝑈𝑈!,! = 𝑅𝑅!,!!     and the fact the coefficient matrices appearing in (23) do not depend on i, it is 
clear that Ri,i , 1 ≤ i ≤ K , are identical. We will denote this common value to be R1 and thus R1 is the 
minimal non-negative solution to 

𝑅𝑅!!𝐹𝐹! + 𝑅𝑅! 𝐼𝐼! ⊗ 𝑇𝑇⊕ 𝐷𝐷! −   𝜃𝜃𝜃𝜃 + 𝐼𝐼!" ⊗ 𝐷𝐷! = 0, 1 ≤ 𝑖𝑖 ≤ 𝐾𝐾.	        (25)	  
Now we will show R2,1 = R3,2 = · · · = RK,K −1 and the common value be denoted as R2. Towards this end 
we look at (22) by setting j = i − 1 for 2 ≤ i ≤ K. Now with the help of (24) and the fact that Ri,i = R1 , 1 ≤ 
i ≤ K , the (K − 1) equations are given by 

[𝑅𝑅!,!!!𝑅𝑅! + 𝑅𝑅!𝑅𝑅!,!!!]𝐹𝐹! + 𝑅𝑅!!𝐹𝐹!   + 𝑅𝑅!,!!! 𝐼𝐼! ⊗ 𝑇𝑇⊕ 𝐷𝐷! −   𝜃𝜃𝜃𝜃 = 0, 2 ≤ 𝑖𝑖 ≤ 𝐾𝐾.    (26)	  
It is obvious that the minimal non-negative solution to (26) does not depend on i and hence R2,1 = R3,2 
= · · · = RK,K −1 = R2 , where R2 is the minimal non-negative solution to 

[𝑅𝑅!𝑅𝑅! + 𝑅𝑅!𝑅𝑅!]𝐹𝐹! + 𝑅𝑅!!𝐹𝐹!   + 𝑅𝑅! 𝐼𝐼! ⊗ 𝑇𝑇⊕ 𝐷𝐷! −   𝜃𝜃𝜃𝜃 = 0, 2 ≤ 𝑖𝑖 ≤ 𝐾𝐾.      (27)	  
Assuming that the result is true for r = 1, 2, · · ·, i, we will prove the result for r = i + 1. That is, 
assuming that R is of the form, 

𝑅𝑅 =

𝑅𝑅! 0 0 … 0 0 0 … 0
𝑅𝑅! 𝑅𝑅! 0 … 0 0 0 … 0
⋮ ⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮
𝑅𝑅! 𝑅𝑅!!! 𝑅𝑅!!! … 𝑅𝑅! 0 0 … 0

𝑅𝑅!!!,! 𝑅𝑅! 𝑅𝑅!!! … 𝑅𝑅! 𝑅𝑅! 0 … 0
⋮ ⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮

𝑅𝑅!,! 𝑅𝑅!,! 𝑅𝑅!,! … 𝑅𝑅!,!!! 𝑅𝑅! 𝑅𝑅!!! … 𝑅𝑅!

  ,        (28)	  

we will show that Ri+1,1 = R i+2,2 = · · · = RK,K −i  and the common value be denoted as Ri+1. Towards this 
end we look at the following equations 

𝑈𝑈!!!,!𝐹𝐹! + 𝑈𝑈!!!,!!!𝐹𝐹! + 𝑅𝑅!!!,! 𝐼𝐼! ⊗ 𝑇𝑇⊕ 𝐷𝐷! − 𝜃𝜃𝜃𝜃 = 0,1 ≤ 𝑗𝑗 ≤ 𝐾𝐾 − 𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝐾𝐾 − 1.     (29)	  
Now with the help of (28) along with (24), the equations in (29) are rewritten as 

𝑅𝑅!!!,!𝑅𝑅! + 𝑅𝑅!𝑅𝑅! + 𝑅𝑅!!!𝑅𝑅! +⋯+ 𝑅𝑅!𝑅𝑅!!!,!]𝐹𝐹! + [𝑅𝑅!𝑅𝑅! + 𝑅𝑅!!!𝑅𝑅! +⋯+ 𝑅𝑅!𝑅𝑅!]𝐹𝐹! 
                                      +𝑅𝑅!!!,! 𝐼𝐼! ⊗ 𝑇𝑇⊕ 𝐷𝐷! − 𝜃𝜃𝜃𝜃 = 0,            1 ≤ 𝑗𝑗 ≤ 𝐾𝐾 − 𝑖𝑖,      1 ≤ 𝑖𝑖 ≤ 𝐾𝐾 − 1  .	  	        (30)	  

Clearly, that the minimal non-negative solution to (30) does not depend on j and only on the lag i and 
hence Ri+1,1 = R i+2,2 = · · · = RK,K −i and let Ri+1 denote their common value. Note that Ri+1 is the minimal 
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non-negative solution to 
𝑅𝑅!!!𝑅𝑅! + 𝑅𝑅!𝑅𝑅! +⋯+ 𝑅𝑅!𝑅𝑅!!! 𝐹𝐹! + 𝑅𝑅!𝑅𝑅! +⋯+ 𝑅𝑅!𝑅𝑅! 𝐹𝐹! + 𝑅𝑅!!! 𝐼𝐼! ⊗ 𝑇𝑇⊕ 𝐷𝐷! − 𝜃𝜃𝜃𝜃 = 0. 

(31) 

This completes the proof of the theorem. 
The result in the following theorem is intuitively obvious and serves as an accuracy check in the 

computation of the steady-state probability vector. 

Theorem 3. We have 
𝒙𝒙∗ + 𝒙𝒙∗(𝒆𝒆⊗ 𝐼𝐼)+ 𝒙𝒙 0 (𝒆𝒆⊗ 𝐼𝐼)+ 𝒙𝒙 1 𝐼𝐼 − 𝑅𝑅 !!(𝒆𝒆⊗ 𝐼𝐼) = 𝜼𝜼,	         (32)	  

where η is as given in (1). 
Proof: Post-multiplying equation (8) and (9) by (𝒆𝒆⊗ 𝐼𝐼); the equations (10) and (11) by (𝒆𝒆⊗ 𝒆𝒆⊗ 𝐼𝐼), 
and adding the resulting equations with (8), we obtain 

[𝒙𝒙∗ + 𝒙𝒙∗(𝒆𝒆⊗ 𝐼𝐼)+ 𝒙𝒙 0 (𝒆𝒆⊗ 𝐼𝐼)+ 𝒙𝒙 𝑖𝑖 (𝒆𝒆⊗ 𝐼𝐼)]𝐷𝐷 = 𝟎𝟎!
!!! .	         (33)	  

The stated result follows from (33) and the uniqueness of the vector η. 
The result in the following theorem is intuitively obvious since in steady-state the input rate should 

be equal to the output rate. This also serves as an accuracy check in the computation of the steady-state 
probability vector. 

Theorem 4. We have 
𝒙𝒙(𝑖𝑖)(!

!!!   𝒆𝒆⊗ 𝑻𝑻!⊗ 𝒆𝒆)+ 𝜃𝜃 𝑖𝑖𝒙𝒙 𝑖𝑖!
!!! 𝒆𝒆+ 𝑖𝑖 − 1 𝒙𝒙 𝑖𝑖 𝐸𝐸𝒆𝒆 = λ 1− 𝑃𝑃!"##!

!!! ,       (34)	  
where the probability that an arriving customer is lost due to the system being down is given by 

𝑃𝑃!"## =
!
!
[𝒙𝒙∗𝐷𝐷!𝒆𝒆+ 𝒙𝒙∗(𝒆𝒆⊗ 𝐷𝐷!𝒆𝒆)].	   	   	         (35)	  

Proof. First note the following definitions and their formulas. 
• The quantity, 𝒙𝒙∗𝐷𝐷!𝒆𝒆+ 𝒙𝒙∗(𝒆𝒆⊗ 𝐷𝐷!𝒆𝒆),  gives the rate of loss of customers at their arrival times 

due to the system being down. 
• The quantity, 𝒙𝒙(𝑖𝑖)(𝒆𝒆⨂!

!!! 𝑻𝑻!⨂𝒆𝒆),  gives the rate of customers leaving the system with a 
service. 

• The expression,   θ 𝑖𝑖𝒙𝒙(𝑖𝑖)𝒆𝒆  +  !
!!! (𝑖𝑖  −   1)𝒙𝒙(𝑖𝑖)𝐸𝐸!

!!! 𝒆𝒆, gives the rate of customers lost after 
getting admitted into the system either due to cash level becoming zero soon after a service 
completion or the system suffers from a catastrophic event. 

Now post-multiply each one of the equations (7) through (11) by e of appropriate dimension. Secondly, 
multiplying the equation (11) by i and adding this over i along with the other equations that were post-
multiplied by e, we get 

𝑖𝑖  𝒙𝒙 𝑖𝑖 𝒆𝒆⊗ 𝐷𝐷!𝒆𝒆!
!!! + 𝒙𝒙 0 𝒆𝒆⊗ 𝐷𝐷!𝒆𝒆 = 

 
                                                              𝜃𝜃 𝑖𝑖  𝒙𝒙 𝑖𝑖 𝒆𝒆+ 𝑖𝑖 − 1 𝒙𝒙 𝑖𝑖 𝐸𝐸𝒆𝒆!

!!!
!
!!! +   𝒙𝒙 𝑖𝑖 𝒆𝒆⊗ 𝑻𝑻!⊗ 𝒆𝒆!

!!!        (36) 
The stated result follows immediately from Theorem 3 and the fact that 𝜆𝜆 = 𝜼𝜼𝐷𝐷!𝒆𝒆. 

3.2. Stationary waiting time distributions 
In this section we will focus on deriving an expression for the Laplace-Stieltjes transforms (LSTs) 

of the waiting time distributions of an admitted customer in the queue as well as in the system without 
any regard to whether the customer received a service or not. Observe that the LST s do not depend on 
the future arrivals and thus there is no need to track the phase of the arrival process. 

Let y, partitioned into vectors of dimension Sn as y = (y(0), y(1), · · ·), denote the steady-state 
probability vector of the system at an arrival epoch. That is, the vector y(i) which is further partitioned 
as y(i) = (y1(i), · · · , yS(i)) is such that soon after an arrival epoch the steady-state probability of finding i 
customers in the system with cash level being j, and the service is in phase k is given by the kth 
component of the vector, yj(i), i ≥ 1, 1 ≤ j ≤ S. It is easy to verify that 
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𝒚𝒚(𝑖𝑖) =
𝑐𝑐  𝒙𝒙 0 𝐼𝐼! ⊗ 𝐷𝐷!𝒆𝒆𝒆𝒆 , 𝑖𝑖 = 1,

  
𝑐𝑐  𝒙𝒙 𝑖𝑖 − 1 𝐼𝐼!" ⊗ 𝐷𝐷!𝒆𝒆 ,      𝑖𝑖 ≥ 2,

	   	        (37)	  

where 

                                                              𝑐𝑐 = !
! !  –  !!"##

 ,                                 (38) 

and PLoss is as given in (35). 

Let W denote the waiting time in the system of an admitted customer such that this tagged customer 
can leave the system with or without a service. The waiting time, W, can be viewed as the time until 
absorption in a CTMC with an absorbing state. Towards this end we define the CTMC with state space 
given by 

Ω = ∗   ∪   𝒊𝒊, 𝑖𝑖   ≥ 1 , 

where   ∗    denotes the absorbing state and the set of states i contains the states: i ={(i, j, k) : 1 ≤ j ≤ S, 1 
≤ k ≤ n}, which correspond to the case when there are i customers in the system (including the one who 
just arrived), the cash level is j, and the phase of the service process is in k. The generator of the CTMC 
with the above state space Ω  is given by 

𝑄𝑄 =

0 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 …
𝜃𝜃𝒆𝒆+ (𝒆𝒆⊗ 𝑻𝑻!) 𝐴𝐴! 0 0 0 …
(𝜃𝜃𝒆𝒆+ 𝐸𝐸𝒆𝒆) 𝐴𝐴! 𝐴𝐴! 0 0 …
(𝜃𝜃𝒆𝒆+ 𝐸𝐸𝒆𝒆) 0 𝐴𝐴! 𝐴𝐴! 0 …
(𝜃𝜃𝒆𝒆+ 𝐸𝐸𝒆𝒆) 0 0 𝐴𝐴! 𝐴𝐴! …

⋮ ⋮ ⋮ ⋮ ⋱ ⋱

  ,	   	   	       (39)	  

where 

𝐴𝐴! = 𝐼𝐼! ⊗ 𝑇𝑇 − 𝜃𝜃𝜃𝜃 ,𝐴𝐴! = 𝐹𝐹⊗ 𝑻𝑻!𝜷𝜷,𝐸𝐸 = 𝑝𝑝!!
!!! 𝒆𝒆!(𝑆𝑆)⊗ 𝑻𝑻!,	       (40)	  

and 𝐹𝐹 is as given in (4). 
The following theorem gives an expression for the LST, w∗(s), of the waiting time, W. 

Theorem 5. The LST, w∗(s), of the waiting time in the system of an admitted customer is given by 

𝑤𝑤∗ 𝑠𝑠 = 𝒚𝒚 𝑖𝑖 𝒂𝒂!!
!!! 𝑠𝑠 , 𝑅𝑅𝑅𝑅(𝑠𝑠) ≥ 0,	   	   	       (41)	  

where ai(s) is given by  

𝒂𝒂!(𝑠𝑠) =
𝑠𝑠𝑠𝑠 − 𝐴𝐴!

!! 𝜃𝜃𝒆𝒆+ 𝒆𝒆⊗ 𝑻𝑻! , 𝑖𝑖 = 1  
  

(𝑠𝑠𝑠𝑠 − 𝐴𝐴!)!! 𝜃𝜃𝒆𝒆+ 𝒆𝒆⊗ 𝐸𝐸𝒆𝒆 + 𝑠𝑠𝑠𝑠 − 𝐴𝐴!
!!
𝐴𝐴!𝒂𝒂!!! 𝑠𝑠 ,      𝑖𝑖 ≥ 2  .

       (42)	  

Proof. First note that the vector, y(i), as given in (37) gives the steady-state probability vector of being 
in level i, for i ≥ 1. Secondly, the random variable W is nothing but the time until absorption with one 
absorbing state of the CTMC whose generator is as given in (39). The stated results now follows from 
the law of total probability. 

Corollary. The mean waiting time, µW, in the system of a tagged admitted customer before leaving the 
system either with or without a service is given by 

                                                       µμ! = 𝒚𝒚 𝑖𝑖 𝒂𝒂!!
!!! ,	   	   	                                   (43) 
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where 

                                𝒂𝒂! =
𝒆𝒆⊗ 𝜃𝜃𝜃𝜃 − 𝑇𝑇 !!𝒆𝒆 , 𝑖𝑖 = 1,

  
𝒆𝒆⊗ 𝜃𝜃𝜃𝜃 − 𝑇𝑇 !!𝒆𝒆 + 𝐹𝐹⊗ 𝜃𝜃𝜃𝜃 − 𝑇𝑇 !!𝑻𝑻!𝜷𝜷 𝒂𝒂!!!,      𝑖𝑖 ≥ 2  .

	                    (44) 

Proof: By definition, we have  µμ!   =   −   
!!∗ !
!" !!!

.  Denoting by  a!   =   −   
!!! !
!" !!!

,      i ≥ 1, it is easy 

to verify the following. 

(−𝐴𝐴!)!! 𝜃𝜃𝒆𝒆+ 𝒆𝒆⊗ 𝑻𝑻! = 𝒆𝒆	  

𝐹𝐹⊗ 𝑻𝑻! = 𝒆𝒆⊗ 𝑻𝑻! − (𝒆𝒆⊗ 𝑬𝑬)	  

	   𝒂𝒂! = (−𝐴𝐴!)!! 𝜃𝜃𝒆𝒆+ 𝒆𝒆⊗ 𝑻𝑻! = 𝒆𝒆⊗ (𝜃𝜃𝜃𝜃 − 𝑇𝑇)!!𝒆𝒆 ,	       (45) 

𝒂𝒂! = (−𝐴𝐴!)!! 𝜃𝜃𝒆𝒆+ 𝒆𝒆⊗ 𝐸𝐸 + (−𝐴𝐴!)!!𝐴𝐴!𝒆𝒆+ (−𝐴𝐴!)!!𝐴𝐴!𝒂𝒂!!!	  

= 𝒆𝒆⊗ 𝜃𝜃𝜃𝜃 − 𝑇𝑇 !!𝒆𝒆 + (𝐹𝐹⊗ 𝜃𝜃𝜃𝜃 − 𝑇𝑇 !!𝑻𝑻!𝜷𝜷)𝒂𝒂!!!, 𝑖𝑖 ≥ 2.	  

The stated result follows immediately from Theorem 5 and (45).  

Note: While there is no closed form expression for µW, one can efficiently compute the mean as follows.

 

Step 0: Set i = 1;  𝒂𝒂! = (𝒆𝒆⊗ 𝜃𝜃𝜃𝜃 − 𝑇𝑇)!!𝒆𝒆 ;   𝝃𝝃 = 𝒚𝒚(1)𝒂𝒂!;𝒃𝒃 =   𝒂𝒂!. 

 

Step 1: 𝑖𝑖   ← 𝑖𝑖 + 1;𝒃𝒃 ← 𝒂𝒂! + (𝐹𝐹⊗ 𝜃𝜃𝜃𝜃 − 𝑇𝑇)!!𝑻𝑻!𝜷𝜷 𝒃𝒃;   𝝃𝝃 ← 𝝃𝝃+ 𝒚𝒚(𝑖𝑖)𝒃𝒃. 
Step 2: If y(i)e > ɛ, where ɛ is a very small pre-specified number such as 10−6, go to Step 1; otherwise, 
µμ! = ξ. 

 

The following theorem gives an expression for the LST, 𝑤𝑤!∗ 𝑠𝑠 , of the waiting time in the queue of 
an admitted customer before getting into service or leaving the system (due to shortage in cash level or 
catastrophic event). The proof is very similar to Theorem 5 and will be omitted. 

Theorem 6. The LST,  𝑤𝑤!∗ 𝑠𝑠 , of the waiting time in the queue of an admitted customer is given by 
𝑤𝑤!∗ 𝑠𝑠 = 𝒚𝒚 𝑖𝑖 + 1 𝒂𝒂! 𝑠𝑠 ,!

!!!   𝑅𝑅𝑅𝑅(𝑠𝑠) ≥ 0,	  	  	  	  	   	       (46)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

 

where y(i) and ai(s) are, respectively, as given in (37) and (42). 
The mean waiting time in the queue of a tagged admitted customer is given in the corollary whose 

proof is similar to the corollary dealing with µW. 

Corollary. The mean waiting time, 𝜇𝜇!! , in the queue of a tagged admitted customer is given by 

µμ!! = 𝒚𝒚(𝑖𝑖 + 1)!
!!! 𝒂𝒂!,	   	   	   	       (47)

 

where 𝒂𝒂! is given by (45). 

Note: One can use Little’s result to get the mean waiting times from the mean numbers in the system as 
follows: 

µμ!" = λ 1− 𝑃𝑃!"## µμ!  	  and	  µμ!" = λ 1− 𝑃𝑃!"## µμ!!,	  

where  PLoss  is as given in (35) and the mean number (µNS) of customers in the system and the mean 
number (µNQ) of customers in the queue are obtained as 

µμ!" = 𝑖𝑖  𝒙𝒙 𝑖𝑖 𝑒𝑒 = 𝒙𝒙(1)!
!!! (𝐼𝐼 − 𝑅𝑅)!!𝒆𝒆  	  and	  µμ!" = 𝑖𝑖 − 1 𝒙𝒙 𝑖𝑖 𝒆𝒆 = 𝒙𝒙(1)𝑅𝑅!

!!! (𝐼𝐼 − 𝑅𝑅)!!𝒆𝒆.	  

3.3. The system performance measures 
In this section we will list a number of system performance measures of interest along with their 

expressions. These are in addition to the ones mentioned earlier. 
• The probability, PDNCZ , that the system is down due to cash level being zero is given by 

𝑃𝑃!"#$ = 𝒙𝒙∗𝒆𝒆.	  

• The probability, PDNCE , that the system is down due to catastrophic events is given by 
𝑃𝑃!"#$ = 𝒙𝒙∗𝒆𝒆.	  

• The probability, PDown , that the system is down is given by 

𝑃𝑃!"#$ = 𝒙𝒙∗𝒆𝒆+ 𝒙𝒙∗𝒆𝒆.	  

• The average, µCLSD , cash level when the system is down is given by 
µμ!"#$ =

!
𝒙𝒙∗𝒆𝒆!𝒙𝒙∗𝒆𝒆

𝑗𝑗𝒙𝒙𝒋𝒋∗𝒆𝒆!
!!! .	  

• The probability, PIdle , that the system is idle is given by 

𝑃𝑃!"#$ = 𝒙𝒙(0)𝒆𝒆. 

• The mean, µCash , level of cash in the system is given by 
µμ!"#! =    𝑗𝑗!

!!! 𝒙𝒙!∗𝑒𝑒 + 𝒙𝒙! 0 𝒆𝒆+ 𝒙𝒙! 𝑖𝑖 𝒆𝒆!
!!! .	  

• The rate, RADCL , at which admitted customers are lost is given by 

𝑅𝑅!"#$ = 𝜃𝜃 𝑖𝑖  𝒙𝒙 𝑖𝑖 𝒆𝒆
!

!!!

+ 𝑖𝑖 − 1 𝒙𝒙 𝑖𝑖 𝐸𝐸𝒆𝒆
!

!!!

.	  

• The rate, RADLS , at which admitted customers leave the system by getting a service is given by 

𝑅𝑅!"#$ = 𝒙𝒙 𝑖𝑖 𝒆𝒆⊗ 𝑻𝑻0 ⊗ 𝒆𝒆 .
!

!!!

	  

• The probability, PLoss , that an arriving customer is lost due to the system being in down state is 
𝑃𝑃!"## =

!
λ
[𝒙𝒙∗𝐷𝐷!𝒆𝒆+ 𝒙𝒙∗(𝒆𝒆⊗ 𝐷𝐷!𝐞𝐞)].	  
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where 𝒂𝒂! is given by (45). 

Note: One can use Little’s result to get the mean waiting times from the mean numbers in the system as 
follows: 

µμ!" = λ 1− 𝑃𝑃!"## µμ!  	  and	  µμ!" = λ 1− 𝑃𝑃!"## µμ!!,	  

where  PLoss  is as given in (35) and the mean number (µNS) of customers in the system and the mean 
number (µNQ) of customers in the queue are obtained as 

µμ!" = 𝑖𝑖  𝒙𝒙 𝑖𝑖 𝑒𝑒 = 𝒙𝒙(1)!
!!! (𝐼𝐼 − 𝑅𝑅)!!𝒆𝒆  	  and	  µμ!" = 𝑖𝑖 − 1 𝒙𝒙 𝑖𝑖 𝒆𝒆 = 𝒙𝒙(1)𝑅𝑅!

!!! (𝐼𝐼 − 𝑅𝑅)!!𝒆𝒆.	  

3.3. The system performance measures 
In this section we will list a number of system performance measures of interest along with their 

expressions. These are in addition to the ones mentioned earlier. 
• The probability, PDNCZ , that the system is down due to cash level being zero is given by 

𝑃𝑃!"#$ = 𝒙𝒙∗𝒆𝒆.	  

• The probability, PDNCE , that the system is down due to catastrophic events is given by 
𝑃𝑃!"#$ = 𝒙𝒙∗𝒆𝒆.	  

• The probability, PDown , that the system is down is given by 

𝑃𝑃!"#$ = 𝒙𝒙∗𝒆𝒆+ 𝒙𝒙∗𝒆𝒆.	  

• The average, µCLSD , cash level when the system is down is given by 
µμ!"#$ =

!
𝒙𝒙∗𝒆𝒆!𝒙𝒙∗𝒆𝒆

𝑗𝑗𝒙𝒙𝒋𝒋∗𝒆𝒆!
!!! .	  

• The probability, PIdle , that the system is idle is given by 

𝑃𝑃!"#$ = 𝒙𝒙(0)𝒆𝒆. 

• The mean, µCash , level of cash in the system is given by 
µμ!"#! =    𝑗𝑗!

!!! 𝒙𝒙!∗𝑒𝑒 + 𝒙𝒙! 0 𝒆𝒆+ 𝒙𝒙! 𝑖𝑖 𝒆𝒆!
!!! .	  

• The rate, RADCL , at which admitted customers are lost is given by 

𝑅𝑅!"#$ = 𝜃𝜃 𝑖𝑖  𝒙𝒙 𝑖𝑖 𝒆𝒆
!

!!!

+ 𝑖𝑖 − 1 𝒙𝒙 𝑖𝑖 𝐸𝐸𝒆𝒆
!

!!!

.	  

• The rate, RADLS , at which admitted customers leave the system by getting a service is given by 

𝑅𝑅!"#$ = 𝒙𝒙 𝑖𝑖 𝒆𝒆⊗ 𝑻𝑻0 ⊗ 𝒆𝒆 .
!

!!!

	  

• The probability, PLoss , that an arriving customer is lost due to the system being in down state is 
𝑃𝑃!"## =

!
λ
[𝒙𝒙∗𝐷𝐷!𝒆𝒆+ 𝒙𝒙∗(𝒆𝒆⊗ 𝐷𝐷!𝐞𝐞)].	  

 
	  

4. Special Cases 
In this section we will look at a few special cases of the model under study and in some cases (e.g., 

when S = 1) derive explicit expressions for the steady-state probability vector. While special cases 
involving S = 1 by themselves may not be of any practical value, they do play an important role in the 
accuracy check of numerical implementation. We also present special cases that reduce to some well-
known classical queueing models. 

4.1. Case 1: M/M/1-model with N = 1, S > 1 
In this case, we assume that the arrivals occur according to a Poisson process and the service times 

are exponential. It is easy to verify that 
𝐴𝐴! = λ𝐼𝐼,𝐴𝐴! = − λ + θ + µμ 𝐼𝐼,𝐴𝐴! = 𝐴𝐴! = 𝜇𝜇𝐹𝐹, 𝐸𝐸 = 𝜇𝜇𝒆𝒆!,  	  

where  

𝐹𝐹 = 𝟎𝟎 0
𝐼𝐼!!! 𝟎𝟎 .	  

With the simplified expressions for the input data matrices as given above, the matrix R (see (20)) is 
such the (block) entries, namely, Ri , 1 ≤ i ≤ K , are scalars and are obtained recursively as follows. 

𝑅𝑅! =
λ

λ  +  θ  +  µμ
   ,     𝑅𝑅! =

! !!!!!!!!!
!!!
λ  +  θ  +  µμ  

,      2 ≤ 𝑖𝑖 ≤ 𝑘𝑘.	  

The steady-state probability vector x (see Theorem 1) can explicitly be obtained as shown below. 

Theorem 7. In the case of M/M/1−type model for ATM system, the scalar, x∗, and the vectors, 𝒙𝒙∗, and 
x(i), i ≥ 0, are given by 

𝒙𝒙∗ = !
!!
𝒙𝒙 0 𝐼𝐼 +   λ𝑅𝑅 𝐼𝐼 − 𝑅𝑅 −1 ,	   	            (48)	  

𝒙𝒙 0 = 𝛿𝛿!𝑥𝑥∗𝒆𝒆![λ𝐼𝐼   −   λ𝜃𝜃𝑅𝑅 𝐼𝐼 − 𝑅𝑅 −1 − λµμ𝑅𝑅𝑅𝑅𝐹𝐹]!!,	  	           (49)	  

𝒙𝒙 𝑖𝑖 = λ𝒙𝒙 0 𝑅𝑅𝑅𝑅!!!,	   	   	           (50)	  

where x∗  is the normalizing constant and 𝑅𝑅 = 𝜆𝜆+ 𝜃𝜃+ µμ 𝐼𝐼−   µμ𝑅𝑅𝐹𝐹 −1. 
Proof. Follows immediately by substituting the simplified expressions for the input data matrices in (13) 
through (18). 

4.2. Case 2: M/M/1-model with N = 1, S = 1 
In the case of Poisson arrivals and exponential services along with N = S = 1, it is easy to verify 

that 

𝑥𝑥∗ =
𝑟𝑟𝑟𝑟

𝛿𝛿! 1− 𝑟𝑟
𝑥𝑥 0 , 𝑥𝑥∗ =

𝜃𝜃
𝛿𝛿! 1− 𝑟𝑟

𝑥𝑥 0 , 𝑥𝑥 𝑖𝑖 = 𝑥𝑥 0 𝑟𝑟! , 𝑖𝑖 ≥ 0,  	  

𝑟𝑟 =
λ

λ + θ   +   µμ
, 𝑥𝑥 0 =

θ   +   µμ 𝛿𝛿!𝛿𝛿!
λµμ𝛿𝛿!   +   𝛿𝛿! θ   +   𝛿𝛿! λ   +   θ   +   µμ

,	  

𝜇𝜇! =
1

µμ   +   θ  
,       𝜇𝜇!! =

𝑥𝑥(0)𝑟𝑟
(1   −   𝑃𝑃!"##)(1   −   𝑟𝑟)(µμ   +   𝜃𝜃)

  ,	  

where PLoss is as given in (35). 

4.3. Case 3: M/PH/1-model with N = 1, S = 1 
In this case, we assume that the arrivals occur according to a Poisson process and the service times 

 
	  

4. Special Cases 
In this section we will look at a few special cases of the model under study and in some cases (e.g., 

when S = 1) derive explicit expressions for the steady-state probability vector. While special cases 
involving S = 1 by themselves may not be of any practical value, they do play an important role in the 
accuracy check of numerical implementation. We also present special cases that reduce to some well-
known classical queueing models. 

4.1. Case 1: M/M/1-model with N = 1, S > 1 
In this case, we assume that the arrivals occur according to a Poisson process and the service times 

are exponential. It is easy to verify that 
𝐴𝐴! = λ𝐼𝐼,𝐴𝐴! = − λ + θ + µμ 𝐼𝐼,𝐴𝐴! = 𝐴𝐴! = 𝜇𝜇𝐹𝐹, 𝐸𝐸 = 𝜇𝜇𝒆𝒆!,  	  

where  

𝐹𝐹 = 𝟎𝟎 0
𝐼𝐼!!! 𝟎𝟎 .	  

With the simplified expressions for the input data matrices as given above, the matrix R (see (20)) is 
such the (block) entries, namely, Ri , 1 ≤ i ≤ K , are scalars and are obtained recursively as follows. 

𝑅𝑅! =
λ

λ  +  θ  +  µμ
   ,     𝑅𝑅! =

! !!!!!!!!!
!!!
λ  +  θ  +  µμ  

,      2 ≤ 𝑖𝑖 ≤ 𝑘𝑘.	  

The steady-state probability vector x (see Theorem 1) can explicitly be obtained as shown below. 

Theorem 7. In the case of M/M/1−type model for ATM system, the scalar, x∗, and the vectors, 𝒙𝒙∗, and 
x(i), i ≥ 0, are given by 

𝒙𝒙∗ = !
!!
𝒙𝒙 0 𝐼𝐼 +   λ𝑅𝑅 𝐼𝐼 − 𝑅𝑅 −1 ,	   	            (48)	  

𝒙𝒙 0 = 𝛿𝛿!𝑥𝑥∗𝒆𝒆![λ𝐼𝐼   −   λ𝜃𝜃𝑅𝑅 𝐼𝐼 − 𝑅𝑅 −1 − λµμ𝑅𝑅𝑅𝑅𝐹𝐹]!!,	  	           (49)	  

𝒙𝒙 𝑖𝑖 = λ𝒙𝒙 0 𝑅𝑅𝑅𝑅!!!,	   	   	           (50)	  

where x∗  is the normalizing constant and 𝑅𝑅 = 𝜆𝜆+ 𝜃𝜃+ µμ 𝐼𝐼−   µμ𝑅𝑅𝐹𝐹 −1. 
Proof. Follows immediately by substituting the simplified expressions for the input data matrices in (13) 
through (18). 

4.2. Case 2: M/M/1-model with N = 1, S = 1 
In the case of Poisson arrivals and exponential services along with N = S = 1, it is easy to verify 

that 

𝑥𝑥∗ =
𝑟𝑟𝑟𝑟

𝛿𝛿! 1− 𝑟𝑟
𝑥𝑥 0 , 𝑥𝑥∗ =

𝜃𝜃
𝛿𝛿! 1− 𝑟𝑟

𝑥𝑥 0 , 𝑥𝑥 𝑖𝑖 = 𝑥𝑥 0 𝑟𝑟! , 𝑖𝑖 ≥ 0,  	  

𝑟𝑟 =
λ

λ + θ   +   µμ
, 𝑥𝑥 0 =

θ   +   µμ 𝛿𝛿!𝛿𝛿!
λµμ𝛿𝛿!   +   𝛿𝛿! θ   +   𝛿𝛿! λ   +   θ   +   µμ

,	  

𝜇𝜇! =
1

µμ   +   θ  
,       𝜇𝜇!! =

𝑥𝑥(0)𝑟𝑟
(1   −   𝑃𝑃!"##)(1   −   𝑟𝑟)(µμ   +   𝜃𝜃)

  ,	  

where PLoss is as given in (35). 

4.3. Case 3: M/PH/1-model with N = 1, S = 1 
In this case, we assume that the arrivals occur according to a Poisson process and the service times 
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4. Special Cases 
In this section we will look at a few special cases of the model under study and in some cases (e.g., 

when S = 1) derive explicit expressions for the steady-state probability vector. While special cases 
involving S = 1 by themselves may not be of any practical value, they do play an important role in the 
accuracy check of numerical implementation. We also present special cases that reduce to some well-
known classical queueing models. 

4.1. Case 1: M/M/1-model with N = 1, S > 1 
In this case, we assume that the arrivals occur according to a Poisson process and the service times 

are exponential. It is easy to verify that 
𝐴𝐴! = λ𝐼𝐼,𝐴𝐴! = − λ + θ + µμ 𝐼𝐼,𝐴𝐴! = 𝐴𝐴! = 𝜇𝜇𝐹𝐹, 𝐸𝐸 = 𝜇𝜇𝒆𝒆!,  	  

where  

𝐹𝐹 = 𝟎𝟎 0
𝐼𝐼!!! 𝟎𝟎 .	  

With the simplified expressions for the input data matrices as given above, the matrix R (see (20)) is 
such the (block) entries, namely, Ri , 1 ≤ i ≤ K , are scalars and are obtained recursively as follows. 

𝑅𝑅! =
λ

λ  +  θ  +  µμ
   ,     𝑅𝑅! =

! !!!!!!!!!
!!!
λ  +  θ  +  µμ  

,      2 ≤ 𝑖𝑖 ≤ 𝑘𝑘.	  

The steady-state probability vector x (see Theorem 1) can explicitly be obtained as shown below. 

Theorem 7. In the case of M/M/1−type model for ATM system, the scalar, x∗, and the vectors, 𝒙𝒙∗, and 
x(i), i ≥ 0, are given by 

𝒙𝒙∗ = !
!!
𝒙𝒙 0 𝐼𝐼 +   λ𝑅𝑅 𝐼𝐼 − 𝑅𝑅 −1 ,	   	            (48)	  

𝒙𝒙 0 = 𝛿𝛿!𝑥𝑥∗𝒆𝒆![λ𝐼𝐼   −   λ𝜃𝜃𝑅𝑅 𝐼𝐼 − 𝑅𝑅 −1 − λµμ𝑅𝑅𝑅𝑅𝐹𝐹]!!,	  	           (49)	  

𝒙𝒙 𝑖𝑖 = λ𝒙𝒙 0 𝑅𝑅𝑅𝑅!!!,	   	   	           (50)	  

where x∗  is the normalizing constant and 𝑅𝑅 = 𝜆𝜆+ 𝜃𝜃+ µμ 𝐼𝐼−   µμ𝑅𝑅𝐹𝐹 −1. 
Proof. Follows immediately by substituting the simplified expressions for the input data matrices in (13) 
through (18). 

4.2. Case 2: M/M/1-model with N = 1, S = 1 
In the case of Poisson arrivals and exponential services along with N = S = 1, it is easy to verify 

that 

𝑥𝑥∗ =
𝑟𝑟𝑟𝑟

𝛿𝛿! 1− 𝑟𝑟
𝑥𝑥 0 , 𝑥𝑥∗ =

𝜃𝜃
𝛿𝛿! 1− 𝑟𝑟

𝑥𝑥 0 , 𝑥𝑥 𝑖𝑖 = 𝑥𝑥 0 𝑟𝑟! , 𝑖𝑖 ≥ 0,  	  

𝑟𝑟 =
λ

λ + θ   +   µμ
, 𝑥𝑥 0 =

θ   +   µμ 𝛿𝛿!𝛿𝛿!
λµμ𝛿𝛿!   +   𝛿𝛿! θ   +   𝛿𝛿! λ   +   θ   +   µμ

,	  

𝜇𝜇! =
1

µμ   +   θ  
,       𝜇𝜇!! =

𝑥𝑥(0)𝑟𝑟
(1   −   𝑃𝑃!"##)(1   −   𝑟𝑟)(µμ   +   𝜃𝜃)

  ,	  

where PLoss is as given in (35). 

4.3. Case 3: M/PH/1-model with N = 1, S = 1 
In this case, we assume that the arrivals occur according to a Poisson process and the service times 

 
	  

are of phase type. Noting that for this case, 

𝐴𝐴! = 𝜆𝜆𝜆𝜆,𝐴𝐴! = 𝑇𝑇 − 𝜆𝜆   +   𝜃𝜃 𝐼𝐼,𝐴𝐴! = 𝐴𝐴! = 0,𝐸𝐸 = 𝑻𝑻!,	  
verify that R has an explicit expression given by R = λ[(λ+θ)I − T]−1 and the steady-state probability 
vector, x, is given explicitly as follows. 

𝑥𝑥∗ =
𝑥𝑥(0)
𝛿𝛿!

𝜷𝜷𝑅𝑅(𝐼𝐼 − 𝑅𝑅)!!𝑻𝑻!, 𝑥𝑥∗ =
𝜃𝜃𝜃𝜃(0)
𝛿𝛿!

𝐼𝐼 + 𝜷𝜷𝑅𝑅 𝐼𝐼 − 𝑅𝑅 !!𝒆𝒆 ,𝒙𝒙 𝑖𝑖 = 𝑥𝑥 0 𝜷𝜷𝑅𝑅! , 𝑖𝑖 ≥ 1,  	  

𝜇𝜇! =
𝑥𝑥(0)

1− 𝑃𝑃!"##
𝜷𝜷 𝐼𝐼 − 𝑅𝑅 !! 𝜃𝜃𝜃𝜃 − 𝑇𝑇 !!𝒆𝒆, 𝜇𝜇!! =

𝑥𝑥(0)
1− 𝑃𝑃!"##

𝜷𝜷𝑅𝑅   𝐼𝐼 − 𝑅𝑅 !! 𝜃𝜃𝜃𝜃 − 𝑇𝑇 !!𝒆𝒆,	  

where PLoss is as given in (35) and x(0) is the normalizing constant. 

4.4. Case 4: MAP/PH/1-model with θ = 0 
In this case, we assume that θ = 0, which implies that there are no catastrophic events. We assume 

that S < ∞ so that the queueing model in this special is always stable. The only way the system can be in 
down state is due to zero cash. Thus, in this special case of our model, we study MAP/PH/1-type 
queueing-inventory model in which customers (or demands) including those waiting in the queue are 
lost whenever the cash (or stocks) level becomes zero, and the customers who are admitted (due to 
availability of inventory) may be served with one or more inventory based on a probabilistic rule. Note 
that in this case δ2 doesn’t play a role. One can easily verify that the steady-state equations given in (7) 
through (11) along with the normalizing equation (12) hold good here by taking 𝒙𝒙∗, and θ to be zero. 
However, there are no other simplifications or explicit expressions available for this special case. 

4.5. Case 5: MAP /PH/1-model with S = ∞ 
In this case, we assume that there is no limit on S and hence the system can be down only through 

catastrophic events.  Thus, the model reduces to MAP /PH/1 catastrophic models with recovery time that 
is exponentially distributed with parameter δ2. Unless θ = 0, the queue is always stable. This becomes a 
special case of the model considered in [8]. However, for the sake of completeness, we will briefly 
summarize the results below with the notations set forth in this paper. First note that due to unlimited 
value for S, all admitted customers leaving the system with a service will see no shortage of cash. Thus, 
there is no need to keep track of the cash level. Secondly, the parameters N and δ1 play no role. Finally, 
the state space of Section 3 will be reduced significantly for the current case as shown below. 

Ω =   ∗   ∪   𝒊𝒊, 𝑖𝑖   ≥ 0 , 
where the set of states and their definitions are as follows: 

• The set of states, * = {k, 1 ≤ k ≤ m}, of dimension m corresponds to the system being down due 
to catastrophic event, and the arrival process is in one of m phases. 

• While the set of states, 0 = {(0, k), 1 ≤ k ≤ m}, of dimension m corresponds to the system being 
in idle state with the arrival process in one of m phases, the set of states, i = {(i, r, k), 1 ≤ r ≤ n, 1 
≤ k ≤ m}, of dimension mn corresponds to the system being busy with the arrival process in one 
of m phases, the service process in one of n phases. 

Denoting 𝑄𝑄 to be the generator of the CTMC governing the system 

𝑄𝑄 =

𝐷𝐷−𝛿𝛿2𝐼𝐼 𝛿𝛿2𝐼𝐼
𝜃𝜃𝜃𝜃 𝐷𝐷0 − 𝜃𝜃𝜃𝜃 𝜷𝜷⊗ 𝐷𝐷1

𝜃𝜃(𝒆𝒆⊗ 𝐼𝐼) 𝑻𝑻𝟎𝟎⊗ 𝐼𝐼 (𝑇𝑇⊕ 𝐷𝐷0)− 𝜃𝜃𝜃𝜃 𝐼𝐼⊗ 𝐷𝐷1
𝜃𝜃(𝒆𝒆⊗ 𝐼𝐼) 𝑻𝑻0𝜷𝜷⊗ 𝐼𝐼 (𝑇𝑇⊕ 𝐷𝐷0)− 𝜃𝜃𝜃𝜃 𝐼𝐼⊗ 𝐷𝐷1
𝜃𝜃(𝒆𝒆⊗ 𝐼𝐼) 𝑻𝑻0𝜷𝜷⊗ 𝐼𝐼 (𝑇𝑇⊕ 𝐷𝐷0)− 𝜃𝜃𝜃𝜃 𝐼𝐼⊗ 𝐷𝐷1

⋮ ⋱ ⋱ ⋱

.  	  	  (51)	  
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are of phase type. Noting that for this case, 

𝐴𝐴! = 𝜆𝜆𝜆𝜆,𝐴𝐴! = 𝑇𝑇 − 𝜆𝜆   +   𝜃𝜃 𝐼𝐼,𝐴𝐴! = 𝐴𝐴! = 0,𝐸𝐸 = 𝑻𝑻!,	  
verify that R has an explicit expression given by R = λ[(λ+θ)I − T]−1 and the steady-state probability 
vector, x, is given explicitly as follows. 

𝑥𝑥∗ =
𝑥𝑥(0)
𝛿𝛿!

𝜷𝜷𝑅𝑅(𝐼𝐼 − 𝑅𝑅)!!𝑻𝑻!, 𝑥𝑥∗ =
𝜃𝜃𝜃𝜃(0)
𝛿𝛿!

𝐼𝐼 + 𝜷𝜷𝑅𝑅 𝐼𝐼 − 𝑅𝑅 !!𝒆𝒆 ,𝒙𝒙 𝑖𝑖 = 𝑥𝑥 0 𝜷𝜷𝑅𝑅! , 𝑖𝑖 ≥ 1,  	  

𝜇𝜇! =
𝑥𝑥(0)

1− 𝑃𝑃!"##
𝜷𝜷 𝐼𝐼 − 𝑅𝑅 !! 𝜃𝜃𝜃𝜃 − 𝑇𝑇 !!𝒆𝒆, 𝜇𝜇!! =

𝑥𝑥(0)
1− 𝑃𝑃!"##

𝜷𝜷𝑅𝑅   𝐼𝐼 − 𝑅𝑅 !! 𝜃𝜃𝜃𝜃 − 𝑇𝑇 !!𝒆𝒆,	  

where PLoss is as given in (35) and x(0) is the normalizing constant. 

4.4. Case 4: MAP/PH/1-model with θ = 0 
In this case, we assume that θ = 0, which implies that there are no catastrophic events. We assume 

that S < ∞ so that the queueing model in this special is always stable. The only way the system can be in 
down state is due to zero cash. Thus, in this special case of our model, we study MAP/PH/1-type 
queueing-inventory model in which customers (or demands) including those waiting in the queue are 
lost whenever the cash (or stocks) level becomes zero, and the customers who are admitted (due to 
availability of inventory) may be served with one or more inventory based on a probabilistic rule. Note 
that in this case δ2 doesn’t play a role. One can easily verify that the steady-state equations given in (7) 
through (11) along with the normalizing equation (12) hold good here by taking 𝒙𝒙∗, and θ to be zero. 
However, there are no other simplifications or explicit expressions available for this special case. 

4.5. Case 5: MAP /PH/1-model with S = ∞ 
In this case, we assume that there is no limit on S and hence the system can be down only through 

catastrophic events.  Thus, the model reduces to MAP /PH/1 catastrophic models with recovery time that 
is exponentially distributed with parameter δ2. Unless θ = 0, the queue is always stable. This becomes a 
special case of the model considered in [8]. However, for the sake of completeness, we will briefly 
summarize the results below with the notations set forth in this paper. First note that due to unlimited 
value for S, all admitted customers leaving the system with a service will see no shortage of cash. Thus, 
there is no need to keep track of the cash level. Secondly, the parameters N and δ1 play no role. Finally, 
the state space of Section 3 will be reduced significantly for the current case as shown below. 

Ω =   ∗   ∪   𝒊𝒊, 𝑖𝑖   ≥ 0 , 
where the set of states and their definitions are as follows: 

• The set of states, * = {k, 1 ≤ k ≤ m}, of dimension m corresponds to the system being down due 
to catastrophic event, and the arrival process is in one of m phases. 

• While the set of states, 0 = {(0, k), 1 ≤ k ≤ m}, of dimension m corresponds to the system being 
in idle state with the arrival process in one of m phases, the set of states, i = {(i, r, k), 1 ≤ r ≤ n, 1 
≤ k ≤ m}, of dimension mn corresponds to the system being busy with the arrival process in one 
of m phases, the service process in one of n phases. 

Denoting 𝑄𝑄 to be the generator of the CTMC governing the system 

𝑄𝑄 =

𝐷𝐷−𝛿𝛿2𝐼𝐼 𝛿𝛿2𝐼𝐼
𝜃𝜃𝜃𝜃 𝐷𝐷0 − 𝜃𝜃𝜃𝜃 𝜷𝜷⊗ 𝐷𝐷1

𝜃𝜃(𝒆𝒆⊗ 𝐼𝐼) 𝑻𝑻𝟎𝟎⊗ 𝐼𝐼 (𝑇𝑇⊕ 𝐷𝐷0)− 𝜃𝜃𝜃𝜃 𝐼𝐼⊗ 𝐷𝐷1
𝜃𝜃(𝒆𝒆⊗ 𝐼𝐼) 𝑻𝑻0𝜷𝜷⊗ 𝐼𝐼 (𝑇𝑇⊕ 𝐷𝐷0)− 𝜃𝜃𝜃𝜃 𝐼𝐼⊗ 𝐷𝐷1
𝜃𝜃(𝒆𝒆⊗ 𝐼𝐼) 𝑻𝑻0𝜷𝜷⊗ 𝐼𝐼 (𝑇𝑇⊕ 𝐷𝐷0)− 𝜃𝜃𝜃𝜃 𝐼𝐼⊗ 𝐷𝐷1

⋮ ⋱ ⋱ ⋱

.  	  	  (51)	  

 
	  

Suppose that z, partitioned as 𝒛𝒛 = 𝒛𝒛∗, 𝒛𝒛!, 𝒛𝒛!,… , is the steady-state probability vector of 𝑄𝑄. That is, z 
satisfies z𝑄𝑄 = 0, ze = 1. Then we have the following theorem. 

Theorem 8. In the case of MAP/PH/1−type model for ATM system with unlimited value for S, the 
steady-state vector z is obtained as follows. 

𝒛𝒛∗ = 𝜃𝜃[𝒛𝒛! + 𝒛𝒛! 𝐼𝐼 − 𝑅𝑅
!! 𝒆𝒆⊗   𝐼𝐼 𝛿𝛿!𝐼𝐼 − 𝐷𝐷 −1,	  

𝒛𝒛! = [𝛿𝛿!𝐳𝐳∗ + 𝒛𝒛!(𝑻𝑻! ⊗ 𝐼𝐼)] 𝜃𝜃𝜃𝜃 − 𝐷𝐷! −1,	  	   	           (52) 

𝒛𝒛! = 𝒛𝒛! 𝜷𝜷⊗ 𝐷𝐷! − 𝐴𝐴! + 𝑅𝑅𝐴𝐴!
!! ,	  

𝒛𝒛! = 𝒛𝒛!𝑅𝑅!!!, 𝑖𝑖 ≥ 1,	  

where 𝑅𝑅 satisfies 

𝑅𝑅! 𝑻𝑻!𝜷𝜷⊗ 𝐼𝐼 + 𝑅𝑅 (𝑇𝑇⊕ 𝐷𝐷! − 𝜃𝜃𝜃𝜃]+ 𝐼𝐼⊗ 𝐷𝐷! = 0,	  	           (53)	  

and the normalizing condition is given by 

                                                                     𝒛𝒛∗𝒆𝒆+ 𝒛𝒛!𝒆𝒆+ 𝒛𝒛! 𝐼𝐼 − 𝑅𝑅
!!𝒆𝒆 = 1,	   	                    (54)	  

and the probability, PDown, that the system is down at an arbitrary time is given by 

                                                                     𝑃𝑃!"#$ = 𝒛𝒛∗𝒆𝒆 = !
!!!!

.	   	   	                                (55)	  

Proof.  First note that (52) and (53) follow immediately due to the generator given in (51) is of 
GI/M/1−type and hence one can apply matrix-analytic methods (see e.g., [20]). To get the result given in 
(55), we rewrite the first equation in (52) as 
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Now post-multiplying (56) by e and using the normalizing condition given in (54) we get the stated 
result in (55). 

4.6.  Case 6: MAP /PH/1-model with θ = 0 and S = ∞ 
In this final case, when we take θ = 0 and S = ∞, the model reduces to the classical MAP/PH/1 

queue. Note that in this case the queueing model is stable if and only if λ < µ. 

5. Illustrative Examples 
In this section we discuss the qualitative aspects of the queueing model useful in service industries 

under study through illustrative numerical examples. In order to verify the correctness and the accuracy 
of the FORTRAN code written for the qualitative study of the model, we used (a) the results of Theorem 
3, Theorem 4, the Little’s result; (b) the explicit results available for some special cases; and (c) results 
obtained for the Poisson arrivals in its simple form and in the form involving eigenvalue and 
eigenvector [23] which the general algorithm doesn’t distinguish but the numerical results are identical. 

For our illustrative examples we consider five arrival processes and three service time distributions. 
These five MAPs and three PH-representations are as follows. 
1. ErA: This MAP corresponds to Erlang of order 2 with parameter 2λ for inter-arrival times. 
2. ExA: This MAP corresponds to exponential distribution with parameter λ for inter-arrival times. 
3. HeA: This MAP corresponds to hyperexponential distribution with mixing probabilities 0.9 and 0.1, 

and their rates are, respectively, 1.9λ and 0.19λ. 
4. MnA: This corresponds to a MAP with negative correlation between two successive inter-arrival times 

and the representation matrices are given by 
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5. MpA: This corresponds to a MAP with positive correlation between two successive inter-arrival times 
and the representation matrices are given by 
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Note that the ratio of the standard deviation of the inter-arrival times of these five arrival processes 
with respect to ErA are, respectively, 1, 1.41421, 3.17451, 1.99336, and 1.99336. Also, it can be verified 
that MnA has a negative correlation of -0.4889 and MpA has a positive correlation of 0.4889. Thus, the 
above MAP processes are all qualitatively different. These will be normalized so as to have a specific 
value for λ. 

For the service times we consider the following three PH −distributions.  These distributions will 
be normalized so as to arrive at a desired value for µ. 
A. ErS: This is an Erlang of order 2 with parameter given by 2µ. 
B. ExS: This is an exponential distribution with rate µ. 
C. HeS: We take this to be an hyperexponential distribution with mixing probabilities 0.9 and 0.1, and 

their rates are, respectively, 1.9µ and 0.19µ. 
It can easily be verified that these three PH−distributions are qualitative different in that the ratio of 

the standard deviation of ExS and HeS to ErS are, respectively, 1.41421 and 3.17451. By looking at 
these we ought to be able consider various scenarios for the service times. 
Example 1: In this example we fix N = 4, µ = 1.0, p1 = p2 = p3 = p4 = 0.25, S = KN, θ = 0.1, δ1 = 1.0, δ2 
= 2.0, and consider three values for the arrival rate: λ = 0.1, 0.8, 0.95 and vary K from 1 to 50. That is, 
we vary S from 4 to 200 in increments of 4. 

In Figure 1 we display the plots of selected system performance measures under different scenarios. 
Since some of the plots are similar in shapes, for example, the ones dealing with ExS are similar to ErS 
or the ones with λ = 0.80 and λ = 0.95, and also due to space limit, we display only those as 
representative ones. To point out the significance of the variation in the service times, we also display 
the ratios (HeS to ErS) of the values of the measures in Figure 1 (the right most set of plots) for selected 
measures. The observations summarized for the first four measures (see below) are based on the figures 
displayed. For the other selected measures the figures are not displayed due to space consideration.  
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1. The mean waiting time in the system (µW): 
• This measure appears to be sensitive to the type of service times as well as the type of arrival 

process. The sensitivity is more pronounced as λ becomes larger. Further, the level of sensitivity 
with respect to the arrival process as well as service times goes down as S is increased. This 

Figure 1a. Plots of selected measures under different scenarios for Erlang services.
Figure 1b. Plots of selected measures under different scenarios for Hyperexponential services.
Figure 1c. Plots of selected ratios under different scenarios.

(a)  λ= 0.10 and ErS (b)  λ= 0.95 and HeS  (c)  Ratio forλ= 0.95
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appears to be the case for all values λ. 
• When compared to all other arrival processes, this measure appears to be significantly higher for 

MpA indicating the key role played by correlation, especially positive one. 
• Unlike in the classical MAP /PH/1 queue this measure does not appear to grow large as λ is 

increased. This is the case even for MpA arrivals. This can be explained intuitively as follows. 
When λ is increased the system will be in down state (and hence all customers will be removed 
from the system) due to cash shortage, and hence the mean waiting time in the system is not 
allowed to grow beyond a certain point. We verified this to be true even for λ = 0.999. 

2. The probability that an arriving customer is lost (PLoss): 
• This measure giving the probability that the system is down at an arrival epoch appears to be 

sensitive to the type of arrival and service processes; however, the degree of sensitivity goes 
down as S is increased. 

• We notice an interesting observation with regard to this measure. While for ErA and MnA 
arrivals this measure appears to be smaller when services are HeS as compared to ErS, we notice 
that for the other three arrival processes, the reverse appears to be true. That is, for all other 
three arrivals, HeS appears to yield a larger value compared to ErS. 

• For all scenarios, we see that this measure appears to approach a limiting value as S increases 
(when all other parameters are fixed). This can be explained intuitively as follows. First note 
that an arriving is customer is lost if and only if the system is found to be in down state at that 
instant. When S is large, the system will be in down state mainly due to catastrophic events and 
the limiting value corresponds to that of the MAP /PH/1 queueing model with catastrophic 
events with an exponential recovering time for the system. Note from Theorem 8 that this 
limiting value is given by !

!  !  !!
.  

3. The rate of admitted customers leaving with a service (RADLS): 
• First observe that this measure is highest for ErA and lowest for M pA arrivals. As S is increased, 

this measure appears to increase at a steady rate for all MAP arrivals. 
• The sensitivity of this measure with regard to the arrivals and the service times can be seen for 

all scenarios. 
4. The rate of admitted customers lost (RADCL): 

• First note that this measure is highest for MpA arrivals and is lowest for ErA arrivals (across all 
values of S) as compared to the other arrival processes. Also, in MpA case this measure appears 
to show a non-decreasing trend as S is increased; however for other MAPs, this we see a non-
increasing trend in S. This trend is seen for small as well as for large values of λ. 

• It is interesting to observe (see the right most plots in Figure 1) that for ErA, this measure 
appears to be higher for HeS as compared to ErS for most values of S; however, for HeA arrivals 
it is exactly the opposite of this behavior. 

5. The probability that the system is down due to cash shortage (PDNCZ): 
• This measure approaches zero as S is increased but at a slower rate. 
• The sensitivity of this measure to the type of arrival process is more apparent for large values of 
λ. 

• In all cases, the MpA arrivals appear to have the smallest value for this measure as compared to 
the other arrival processes, while ErA has the highest value. 

6. The probability that the system is down due to catastrophic event (PDNCE): 
• While this measure appears to be almost the same across all five MAP s for very small and for 

large values of S, we notice some small deviations among various MAP s for medium values of 
S. This can be intuitively explained as follows. For very small values of S, the system will be in 
down state mostly due to cash shortage and hence PDNCE will be very small. However, for large 
values of S, the system will be down mostly due to catastrophic events, which are independent 
of the arrival process. For moderate values of S, the role of variation and correlation (if any) in 
the inter-arrival times of the five MAPs determines whether the system will be in down state 
through cash shortage or catastrophic events. 
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7. The probability that the system is down (PDown): 
• As is to be expected, this measure appears to decrease as S is increased for all scenarios. This 

measure is more sensitive to the service times in the case of HeA arrivals even for small values 
of S and for λ reasonably large. However, for large S and for other scenarios, the measure 
appears to be insensitive to the type of services. 

• For all scenarios, we see that this measure appears to approach a limiting value as S increases 
(when all other parameters are fixed). The intuitive explanation for this is the same as the one 
given for the measure PLoss since an arriving is customer is lost if and only if the system is found 
to be down at an arrival instant. 

• It is interesting to observe that the degree of sensitivity to the variation in the service times is 
more for MnA arrivals as compared to that of MpA, especially when λ is large. 

8. The mean cash level (µCash): 
• This measure, for all scenarios, appears to increase linearly as S is increased. This is the case for 

low as well as high traffic intensities. This might seem to be counter-intuitive since one would 
expect the cash level to decrease as λ is increased due to an increase in the number of customers 
arriving to the system. A possible intuitive explanation for this phenomenon (i.e., linearity) is 
for large S, the system will be down mostly through catastrophic events which will remove only 
the customers present in the system and hence the cash will not deplete much; on the other hand, 
for small S more replenishments will occur due to the system in down state mostly through cash 
shortage. 

The measures, the rate of customers leaving the system with a service and the mean waiting in the 
system, are important among others for the management. In the next example, we will specifically focus 
on these two measures as functions of θ and δ2 by fixing all other parameters. 

Example 2: Here we fix N = 3, λ = 0.8, µ = 1.0, p1 = p2 = p3 = 1/3, S = 225, δ1 = 1.0, and vary θ from 
0.01 to 0.1, and vary δ2 from 1.0 to 2.0. 

In Figures 2 and 3, respectively, we display the two measures, µW and RADLS. Looking at these two 
figures, we register the following key observations. 

• While we see a significant change in µW when going from ErS to HeS for both ErA and HeA 
arrivals for the ranges of (θ, δ2) considered, we do not see such a significant difference in the 
case of MpA arrivals. The rate of change, as a function of θ, in this measure is significant, 
whereas the rate of change appears to be insignificant when δ2 is varied. 

• Similar to the case of µW, we notice a significant change in RADLS when going from ErS to HeS 
for ErA arrivals for the ranges of (θ, δ2) considered. While for HeA arrivals, we see somewhat 
moderate change, there is not a significant change for the case of MpA arrivals. Again, the rate of 
change, as a function of θ, in this measure is significant, whereas the rate of change appears to be 
insignificant when δ2 is varied. 

 
	  

 

Based on the above two illustrative examples and the facts that the management (i) may not be able 
to control the variation or the sources from where the customers arrive leading to possibly higher 
variation in the inter-arrival times as well as possible correlation between two successive arrivals; and (ii) 
should be able to control the services, we can recommend the following. 

• Whenever the inter-arrival times of the customers have less variation and are independent of 
each other, the type of services offered play an important role. That is, a higher variation in the 
service times yield a lower value for µW and a higher value for RADLS. This is a desirable situation. 

• Whenever the inter-arrival times of the customers have more variation and or have (positive) 
correlation, the type of services offered appears to play no role. Also, in such cases µW has a 
higher value and a lower value for RADLS. This is not desirable one but as mentioned earlier the 
management may not have much of a choice in controlling. However, by increasing the rate of 
fixing the system upon an external shock, the management may be able to reduce the µW as well 
as increase RADLS but this will also increase the cost on a per unit basis. 
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6. Concluding Remarks and Future Research Work 
In this paper we proposed a queueing model useful in automatic teller machine applications. 

Assuming ATM is subject to being down due to (a) failures from catastrophic events and (b) shortage in 
cash level), repairs and replenishment, and with MAP arrivals and phase type services, we analyzed the 
model with the help of matrix-analytic methods. A few illustrative examples were presented. It was 
pointed out that if the inter-arrival times of the customers have less variation and are independent of 
each other, then having less variation in the service time will help to have a (a) higher value for the rate 
of customers leaving with service; and (b) lower value for the mean waiting time in the system. The 
methodology of the current paper can be employed to address a few variations of the current model as 
future work. First, we can relax the restriction of s = 0 in the (s, S)-type replenishment that we assumed 
for the cash. That is, we can send a request for cash replenishment when the cash level hits s or below as 
opposed to waiting for the cash level to deplete to zero. Secondly, since customers using ATM opt for 
obtaining a receipt of their transactions before leaving the area, we can model this using a probability. 
Note that if we assume the time to print a receipt is exponential or of phase type, then it is very easy to 
modify the existing phase type distribution of order n with a suitable of dimension higher than n. This is 
due to the fact that phase type distributions are closed under finite convolutions and mixtures. Thirdly, 
there are some locations where more than one ATM machine is present with a common queue. However, 
each machine has its own cash reserve but can have same source of catastrophic events (due to being in 
the same location). Thus, our model can be extended to include more than one ATM machine with its 
own cash reserve and a common source of catastrophic events, and all of these ATMs will have one 
common queue to house the incoming customers. All customers are lost if and only if all ATMs are 
down. 
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Figure 2a. Mean waiting time in the system as a function of θ and δ2 for Erlang services.
Figure 2b. Mean waiting time in the system as a function of θ and δ2 for Hyperexponential services.
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Based on the above two illustrative examples and the facts that the management (i) may not be able 
to control the variation or the sources from where the customers arrive leading to possibly higher 
variation in the inter-arrival times as well as possible correlation between two successive arrivals; and (ii) 
should be able to control the services, we can recommend the following. 

• Whenever the inter-arrival times of the customers have less variation and are independent of 
each other, the type of services offered play an important role. That is, a higher variation in the 
service times yield a lower value for µW and a higher value for RADLS. This is a desirable situation. 

• Whenever the inter-arrival times of the customers have more variation and or have (positive) 
correlation, the type of services offered appears to play no role. Also, in such cases µW has a 
higher value and a lower value for RADLS. This is not desirable one but as mentioned earlier the 
management may not have much of a choice in controlling. However, by increasing the rate of 
fixing the system upon an external shock, the management may be able to reduce the µW as well 
as increase RADLS but this will also increase the cost on a per unit basis. 

 
	  

6. Concluding Remarks and Future Research Work 
In this paper we proposed a queueing model useful in automatic teller machine applications. 

Assuming ATM is subject to being down due to (a) failures from catastrophic events and (b) shortage in 
cash level), repairs and replenishment, and with MAP arrivals and phase type services, we analyzed the 
model with the help of matrix-analytic methods. A few illustrative examples were presented. It was 
pointed out that if the inter-arrival times of the customers have less variation and are independent of 
each other, then having less variation in the service time will help to have a (a) higher value for the rate 
of customers leaving with service; and (b) lower value for the mean waiting time in the system. The 
methodology of the current paper can be employed to address a few variations of the current model as 
future work. First, we can relax the restriction of s = 0 in the (s, S)-type replenishment that we assumed 
for the cash. That is, we can send a request for cash replenishment when the cash level hits s or below as 
opposed to waiting for the cash level to deplete to zero. Secondly, since customers using ATM opt for 
obtaining a receipt of their transactions before leaving the area, we can model this using a probability. 
Note that if we assume the time to print a receipt is exponential or of phase type, then it is very easy to 
modify the existing phase type distribution of order n with a suitable of dimension higher than n. This is 
due to the fact that phase type distributions are closed under finite convolutions and mixtures. Thirdly, 
there are some locations where more than one ATM machine is present with a common queue. However, 
each machine has its own cash reserve but can have same source of catastrophic events (due to being in 
the same location). Thus, our model can be extended to include more than one ATM machine with its 
own cash reserve and a common source of catastrophic events, and all of these ATMs will have one 
common queue to house the incoming customers. All customers are lost if and only if all ATMs are 
down. 
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