
1. Introduction
Most classical queueing models assume that customers always join the queue upon their

arrivals. However, if customers can make their decisions about joining or balking based on
their own utilities (or benefits), then the queueing models should be analyzed under different
information scenarios.

This study aims to investigate the performance of the discrete-time queueing system
with customer choices of joining or balking from either the individual customer self-interest
or social welfare perspective.

In the past two decades, there were many studies customer choice behaviors in queueing
systems from an economic viewpoint, which has become a trend in the study of queueing
systems. This research area was initiated by Naor [12] who studied the M/M/1 model with
customer choice on joining or balking. Assuming an arriving customer would know the
queue length (observable queue case), Naor [12] introduced the customer self-interest equi-
librium and socially optimal strategies for a single server queue under a linear reward-cost
structure. His study was complemented by Edelson and Hildebrand [5], who considered the
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same queueing system but assumed that the customers make their decisions without knowing
the queue length (unobservable queue case). Since then, there was a growing number of pa-
pers that focused on the economic analysis of variants of the M/M/1 queues with the balking
behaviors of customers, such as Hassin and Haviv [8] on M/M/1 queue with priorities, Bur-
netas and Economou [2] on M/M/1 queue with setup times, Guo and Zipkin [6] on M/M/1
queue with various levels of information and non-linear reward- cost structure, Hassin [7]
on M/M/1 queue with various levels of information and uncertainty in the system parame-
ters, Economou and Kanta [4] on M/M/1 queue with compartmented waiting space, Sun et
al. [13] on queues with priority policies and Wang et.al [15–17] on the joining behavior of
customers in variants of single server queues.

It is worth noting that most the previous studies are focused on the Markovian systems
in which all random variables are exponentially distributed. Such a feature limits the appli-
cation of the queueing models. Thus, the analysis on single server queues with generally dis-
tributed service times is practically relevant to queueingmanagers. However, the research on
customers’ joining strategy combined with general service times and server vacations is still
limited. There are still queueing models worth exploration. Mandelbaum and Yechiali [11],
Altman and Hassin [1], Haviv and Kerner [9] and Kerner [10] studied the customers’ joining
decisions in the classic M/G/1 models. Economou et al. [3] investigated the same class of
models with server vacations. Zhang and Wang [18] discussed the pricing mechanism in an
M/G/1 retrial queue. While these studies focused on continuous-time queueing models, we
try to analyze the discrete-time queueing models with customer choice behaviors.

In this paper, we study the customers’ joining/balking behaviors in the discrete-time
queue with generally distributed service and vacation times. Two information scenarios are
considered. These are the No-information (NI) case and Part-information (PI) case. For the
NI case, an arriving customer does not know any information about the queueing system.
For the PI case, an arriving customer knows the server state, but not the queue length.

The paper is organized as follows. Section 2 provides a mean value analysis for the
Geo/G/1 queue with multiple vacations under the NI scenario and derives the customer self-
interest equilibrium strategies as well as socially optimal strategies. Section 3 is devoted to
the Part-information(PI) case with similar analysis as that in the NI case. In Section 4, we
present numerical illustrations. Finally, Section 5 concludes the paper with a summary.

2. The NI Case
2.1. Model formulation

Consider a discrete-time queueing system where the time axis is segmented into a se-
quence of equal time intervals (called slots). It is assumed that all events (arrivals and
departures) occur at the slot boundaries, and therefore they may occur at the same time.
For mathematical clarity, we define the arrival first (AF) system and assume that the de-
partures occur at the instant immediately before the slot boundaries which is denoted by
t = n−;n = 1, 2, · · · , and the arrivals occur at the moment immediately after the slot bound-
aries, i.e., t = n+;n = 0, 1, · · · . Customers arrive at the system according to a geometric
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arrival process with rate p(0 < p < 1), that is, p is the probability that an arrival occurs in a
slot. The inter-arrival interval time Y follows a geometric distribution with rate p.

P{Y = j} = ppj−1, j = 1, 2, · · · , 0 < p < 1.

where p = 1 − p. Then, the number of customers arriving during [0, n], denoted by An,
follows a negative binomial distribution:

P{An = j} = Cj
np

jpn−j, j = 0, 1, 2, · · · , n.

The service time, denoted by B, follows a general distribution, which has the finite first and
second moments, i.e., E(B) < ∞;E(B2) < ∞. Its distribution function, PGF(probability
generating function), and mean are represented, respectively, as:

bj = P (B = j), j ≥ 1, G(z) = E(zB) =
∞∑
j=1

bjz
j, b = E[B] = G′(z)|z=1 =

∞∑
j=1

jbj.

Denote by RB the residual service time, which has the probability distribution and mean:

qk =
1

E[B]

∞∑
j=k+1

bj, k = 0, 1, 2, · · · , E[RB] =
E[B(B − 1)]

2E[B]
.

Such a system is denoted by Geo/G/1 queue. We focus on the Geo/G/1/MVwhere the server
follows the multiple vacation(MV) policy. Under the multiple vacation poliy, the server
starts a vacation whenever the system becomes empty and keeps taking the vacation until
a vacation completion instant at which waiting customers exist in the system, then resumes
serving customers. The vacation time, denoted by V , follows the general distribution func-
tion with the finite first and second moments, i.e., E(V ) < ∞;E(V 2) < ∞. Its distribution
function, PGF, and mean are represented respectively

vj = P (V = j), j ≥ 1, V (z) = E(zV ) =
∞∑
j=1

vjz
j, v = E[V ] = V ′(z)|z=1 =

∞∑
j=1

jvj.

Denote by RV the residual vacation time, which has the probability distribution and mean:

wk =
1

E[V ]

∞∑
j=k+1

vj, k = 0, 1, 2, · · · , E[RV ] =
E[V (V − 1)]

2E[V ]
.

To model the customer’s joining strategy, we assume that customer’s utility equals a reward
for receiving service, denoted byK, minus an expected waiting cost. Here, the waiting cost
is a linear function of the waiting time. Let C be the cost per time unit and S be the sojourn
time for the customer (i.e. waiting time in queue plus service time). Thus the expected
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waiting cost is CE[S]. To ensure that an arrival customer must enter an empty system, we
assume

K > C(E[RV ] + E[B]), (1)
which means that the service reward must be larger than the expected cost of joining an
empty system with the server on vacation. To ensure the stability of the queueing system,
we futher assume

pqE[B] < 1. (2)

2.2. Equilibrium analysis under the NI scenario

In the NI case, an arriving customer has no information about the system (e.g. no infor-
mation about the queue length and the server status). In this scenario, an arriving customer
joins the queue with probability q with q ∈ [0, 1]. If all customers apply strategy q, the ar-
rival process becomes the geometric process with the parameter pq. Note that when q = 1
or q = 0, the strategy becomes pure “always join” or “always balk” case. Such a decision
rule is called q-joining strategy.

To analyze the equilibrium strategy, we first derive the expected sojourn time (also called
system time). Let L be the queue length (including the customer in service), I be the server
state(I ∈ {0, 1}, 1: busy, 0: vacation), S be the sojourn time of the joining customer, and
pi be the probability of the server state, i ∈ {0, 1}. From the Little’s law and the results in
Tian and Zhang [14], we have

p1 = pqE[B], E[L] = pqE[S]. (3)

The probability that an arriving customer enters to the system and finds that the server is in
state i(i ∈ {0, 1}) is

pqpi
pqp0 + pqp1

= pi.

If the customer finds that the server is on vacation, his sojourn time has two parts: the residual
vacation time and L + 1 service time. If he finds that the server is busy, his sojourn time is
the addition of one residual service time and L service time. Thus, we obtain

E[S] = p0(E[RV ] + (E[L] + 1)E[B]) + p1(E[RB] + E[L]E[B]). (4)

It follows from p0 + p1 = 1 that the following result can be established.
Lemma 1. In a Geo/G/1/MV queue with NI, if an arriving customer applies the q joining
strategy, his expected sojourn time is

E[S] = E[RV ] + E[B] +
pqE[B]

1− pqE[B]
E[RB]. (5)

For an arriving customer, if he chooses to balk, his payoff is 0, and if he chooses to enter,
his payoff function, denoted by Re(q) is given by

Re(q) = K − CE[S] = K − C

(
E[RV ] + E[B] +

pqE[B]

1− pqE[B]
E[RB]

)
. (6)
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Evidently, if Re(q) > 0, the customer decides to enter; if Re(q) < 0; he decides to balk; if
Re(q) = 0, he is indifferent between entering and balking. Because the equation Re(q) is a
monotone decreasing function for q, it has the unique solution q∗e to (6):

q∗e =
1

pE[B]

(
1− E[RB]

K
C
− E[RV ]− E[B] + E[RB]

)
. (7)

and




q∗e ≤ 0, K
C
≤ E[RV ] + E[B],

q∗e ∈ (0, 1), E[RV ] + E[B] < K
C
< E[RV ] + E[B] + pE[B]

1−pE[B]
E[RB],

q∗e ≥ 1, E[RV ] + E[B] + pE[B]
1−pE[B]

E[RB] ≤ K
C
.

Based on the conditions for different value ranges of q∗e , we can analyze the equilib-
rium joining strategies of customers. There are three cases regarding the customer strategic
responses.

Case 1. If
K

C
≤ E[RV ] + E[B],

for all ∀q ∈ [0, 1], then Re(q) ≤ 0. Thus, ”never entering (i.e. entering with probability
zero)” is the customer’s unique equilibrium strategy.

Case 2. If

E[RV ] + E[B] <
K

C
< E[RV ] + E[B] +

pE[B]

1− pE[B]
E[RB],

it follows from the monotonicity of Re(q) that Re(q
∗
e) = 0, and when q < q∗e , Re(q) > 0;

when q > q∗e , Re(q) < 0. Based on Nash equilibrium, ”entering with probability q∗e” is the
customer’s unique equilibrium strategy.

Case 3. If
E[RV ] + E[B] +

pE[B]

1− pE[B]
E[RB] ≤

K

C
,

for all ∀q ∈ [0, 1], Re(q) ≥ 0. Thus, ”always entering (i.e. entering with probability 1)” is
the customer’s unique equilibrium strategy.

We can summarize the results above as follows:

Theorem 1. In a Geo/G/1/MV queue with NI, under the conditions (1) and (2), “entering
with probability qe” is the customer’s unique equilibrium strategy, where qe is

qe =

{
q∗e , E[RV ] + E[B] < K

C
< E[RV ] + E[B] + αE[RB]

1, E[RV ] + E[B] + αE[RB] ≤ K
C

(8)

where q∗e is given in equation (7) and α = pE[B]
1−pE[B]

.
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2.3. Social optimal analysis

From the queueing manager’s perspective, maximizing the social welfare may become
the system objective. To determine the joining probability for maximizing social welfare,
we first write down the social welfare as a function of q. That is

Rs(q) = pqK − CE[L] = pq

(
K − C

(
E[RV ] + E[B] +

pE[B]

1− pE[B]
E[RB]

))
. (9)

Evidently, the social welfare function Rs(q) has two parameters (K,C).
Solving the equation dRs(q)/dq = 0, we can obtain the social optimal

q∗s =
1

pE[B]

(
1−

√
E[RB]

K
C
− E[RV ]− E[B] + E[RB]

)
. (10)

Because for ∀q ∈ [0, 1], pqE[B] < 1, thus R′′
s (q) < 0, ∀q ∈ [0, 1], so the equation Rs(q) is

a concave function and q = q∗s is global minimum. Clearly,



q∗s ≤ 0, K
C
≤ E[RV ] + E[B],

q∗s ∈ (0, 1), E[RV ] + E[B] < K
C
< E[RV ] + E[B] + pE[B]

1−pE[B]
(1 + 1

1−pE[B]
)E[RB],

q∗s ≥ 1, E[RV ] + E[B] + pE[B]
1−pE[B]

(1 + 1
1−pE[B]

)E[RB] ≤ K
C
.

Similar to the customer’s equilibrium decision, there are three cases regarding the social
welfare maximization strategy.

Case 1. If
K

C
≤ E[RV ] + E[B],

for ∀q ∈ [0, 1], then R′
s(q) ≤ 0. Because the equation (9) is a decreasing function for q,

∀q ∈ [0, 1], Rs(0) ≥ Rs(q). Thus, ”entering with probability 0” is the unique social optimal
strategy.

Case 2. If

E[RV ] + E[B] <
K

C
< E[RV ] + E[B] +

pE[B]

1− pE[B]

(
1 +

1

1− pE[B]

)
E[RB],

for ∀q ∈ [0, 1], R′′
s (q) < 0 and R′

s(q
∗
s) = 0. When q < q∗s , R′

s(q) > 0; when q > q∗s ,
R′

s(q) < 0, in other word, when q ∈ [0, q∗s), Rs(q) is monotonically increasing for q, and
when q ∈ (q∗s , 1], Rs(q) is monotonically decreasing for q. It is easily to obtain that Rs(q)
achieves to the maximum value at the point q = q∗s . Based on Nash equilibrium, ”entering
with probability q∗s” is the unique social optimal strategy.

Case 3. If

E[RV ] + E[B] +
pE[B]

1− pE[B]

(
1 +

1

1− pE[B]

)
E[RB] ≤

K

C
,
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for ∀q ∈ [0, 1], R′
s(q) ≥ 0. Because the equation (9) is an increasing function for q,

∀q ∈ [0, 1], Rs(1) ≥ Rs(q). Thus, ”entering with probability 1” is the unique social op-
timal strategy.

Summarizing these cases leads to the following theorem.

Theorem 2. In a Geo/G/1/MV queue with NI, under the condition of equation (1) and (2),
”to enter with probability qs” is the customer’s unique social equilibrium strategy, where qs
is

qs =

{
q∗s , E[RV ] + E[B] < K

C
< E[RV ] + E[B] + βE[RB]

1, E[RV ] + E[B] + βE[RB] ≤ K
C

(11)

and q∗s is given in the equation (10), and

β =
pE[B]

1− pE[B]

(
1 +

1

1− pE[B]

)
.

Based on Theorems 1 and 2, we obtain the following results.

Theorem 3. In a Geo/G/1/MV queue with NI, qs ≤ qe, and the mixture of the individual
equilibrium strategy and social equilibrium strategy is

(qe, qs) =




(q∗e , q
∗
s), E[RV ] + E[B] < K

C
< E[RV ] + E[B] + αE[RB]

(1, q∗s), E[RV ] + E[B] + αE[RB] <
K
C
< E[RV ] + E[B] + βE[RB]

(1, 1), E[RV ] + E[B] + βE[RB] ≤ K
C

(12)
In fact, when customersmake their joining decisions tomaximize their own utilities, they

always ignore the negative effect on others, called negative externality. However, when we
consider maximizing the social welfare, such a negative externality is taken into account.
Therefore, the joining probability for the socially optimal strategy will be smaller than that
for the individual equilibrium joining probability.

3. The PI Case

3.1. Model formulation

In the PI case, an arriving customer knows the server state of either on duty or on vaca-
tion. The decision rule can be represented by two number (d0, d1), where d0 (d1) represents
the customer’s decision when the server is on vacation (on duty) with d0 = 1 (d1 = 1)
being “joining” and d0 = 0 (d1 = 0) being “balking”. Then, there are four pure strategies
for customers: (a) always balking (0,0), i.e., balking regardless of server state; (b) balking
only when the server is on vacation (0,1); (c) balking only when the server is on duty (1,0);
and (d) always joining (1,1) i.e., joining regardless of server state. A randomized (mixed)
strategy can be denoted by (q0, q1), where qi is the probability that the customer decides to
join when the server’s state is i, i ∈ {0, 1}. Similar to the previous section, we use the mean
value analysis for the PI case.
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Here, we define Li as the queue length when the server is in state where i(i ∈ {0, 1})
and Si as the sojourn time of the customer joining at server’s state i where (i ∈ {0, 1}).
Further, we define pi as the probability that an arrival customer finds that the server is in
state i where (i ∈ {0, 1}). Similarly, to ensure the stability of the system, we assume

pq1E[B] < 1. (13)

Donate by p the effective arrival rate of customers.

p = p(q0p0 + q1p1). (14)

According to Little law, we have

p1 = pE[B], E[L] = pE[S]. (15)

Evidently, E[L] can also be expressed as E[L] = p0E[L0] + p1E[L1], and we know from
(13), (14) and p0 + p1 = 1 that

p0 =
1−pq1E[B]

1−p(q1−q0)E[B]
, p1 =

pq0E[B]
1−p(q1−q0)E[B]

,

p = pq0
1−p(q1−q0)E[B]

.
(16)

3.2. Equilibrium analysis under the PI scenario

Mark a customer who chooses to join the system, and donate by πi the probability that
this marked customer enters the system by knowing that the server’s state is i, then we have

πi =
pqipi

pq0p0 + pq1p1
, i ∈ {0, 1}.

From (14), we obtain
πi =

pqipi
p

, i ∈ {0, 1}.

It follows from (16) that

π0 = 1− pq1E[B], π1 = pq1E[B].

Thus, we have
E[S] = (1− pq1E[B])E[S0] + pq1E[B]E[S1]. (17)

If a customer finds that the server is on vacation, then his sojourn time is the remaining
vacation time plus L0 + 1 service time. According to PASTA property, upon the certain
customer arrival, the distribution of the queue length and the distribution of system length
L0 are the same. Notice that when the server is on vacation, the process of customers arrival
follows a geometric distribution with parameter pq0. Then the next equation holds:

E[S0] = E[RV ] + (E[L0] + 1)E[B]. (18)
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If the customer finds that the server is busy, his sojourn time is the remaining service
time of the customer being served plus L1 service time. Thus, we have

E[S1] = E[RB] + E[L1]E[B]. (19)

When the server is on vacation, customer arrivals follow a geometric distribution with
parameter pq0. Because the system is in steady state, according to Little law, we have

E[L0] = pq0E[RV ]. (20)

From (15), (19) and (20), we have

Lemma 2. In a Geo/G/1/MV queueing model with PI, under the assumption that all cus-
tomers adopt the equilibrium strategy (q0, q1), the expected sojourn times of customers join-
ing at the server’s vacation state and on-duty state are

E[S0] = E[RV ] + (pq0E[RV ] + 1)E[B],

E[S1] = (pq0E[RV ] + 1)E[B] + E[RB ]
1−pq1E[B]

,
(21)

, respectively. The average queue length is given by

E[L] = pq0

(
E[RV ] +

(
pq1E[RB]

1− pq1E[B]
+ 1

)
E[B]

1− p(q1 − q0)E[B]

)
. (22)

Note that from (21) the expected reward of customer joining a vacation state, denoted
by Re(0; q0), is

Re(0; q0) = K − CE[S0] = K − C(E[RV ] + (pq0E[RV ] + 1)E[B]), (23)

which does not depend on q1. Because both q0 and q1 are in the expression of E[S1], we
denote the expected reward of the customer joining a “server on duty” state by Re(1; q0, q1),
which is given by

Re(1; q0, q1) = K − CE[S1] = K − C

(
(pq0E[RV ] + 1)E[B] +

E[RB]

1− pq1E[B]

)
. (24)

Remark 1. The equilibrium strategies (q0, q1) can be determined by the iterative algorithm
as follows.

Wewill compute the values of q0 and q1 iteratively. First, startingwith (23), ifRe(0; q0) >
0, the customer chooses to join the system; if Re(0; q0) = 0, he is indifferent between join-
ing and balking; and if Re(0; q0) < 0, the customer chooses to balk. It’s obvious that (23)
strictly decreases with q0, thus, there exists only one zero solution q∗e(0):

q∗e(0) =
1

pE[RV ]E[B]

(
K

C
− E[RV ]− E[B]

)
. (25)
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and




q∗e(0) ≤ 0, K
C
≤ E[RV ] + E[B],

q∗e(0) ∈ (0, 1), E[RV ] + E[B] < K
C
< E[RV ] + (pE[RV ] + 1)E[B],

q∗e(0) ≥ 1, E[RV ] + (pE[RV ] + 1)E[B] ≤ K
C
.

Lemma 3. In a Geo/G/1/MV queueing model with PI, if (1) and (2) hold, and the server is
on vacation, then “joining with probability qe(0)” is the unique equilibrium strategy. Denote
qe(0) by

qe(0) =

{
q∗e(0) E[RV ] + E[B] < K

C
< E[RV ] + γE[B],

1 E[RV ] + γE[B] ≤ K
C
.

(26)

where q∗e(0) is given by (25) and γ = pE[RV ] + 1.
After computing qe(0), we will compute the value of qe(1) from (24). To simplify the

question, donate Re(1; qe(0), q1) by Re(1; q1), where qe(0) is given in (26). When the server
is in a busy period, qe(0) is known, and ifRe(1; q1) > 0, he chooses to join; ifRe(1; q1) < 0,
he chooses to balk; and if Re(1; q1) = 0, he is indifferent. Due to the two values of qe(0),
we consider two cases.
Case 1. When E[RV ] + E[B] < K

C
< E[RV ] + (pE[RV ] + 1)E[B], qe(0) = q∗e(0).

Substituting (25) into (26), we have

Re(1; q1) = C

(
E[RV ]−

E[RB]

1− pq1E[B]

)
.

It’s obvious that Re(1; q1) is strictly decreasing with q1, then the equation above has only
one zero solution q∗e(1),

q∗e(1) =
1

pE[B]

(
1− E[RB]

E[RV ]

)

and 


q∗e(1) ≤ 0, E[RV ] ≤ E[RB],

q∗e(1) ∈ (0, 1), E[RB] < E[RV ] <
E[RB ]

1−pE[B]
,

q∗e(1) ≥ 1, E[RB ]
1−pE[B]

≤ E[RV ].

Lemma 4. In a Geo/G/1/MV queueing model with PI, if equation (1) and (2) hold, and
(K,C) satisfies

E[RV ] + E[B] <
K

C
< E[RV ] + (pE[RV ] + 1)E[B],

that means qe(0) = q∗e(0), and the server is in the busy state, then ”join with probability
qe(1)” is the only equilibrium strategy, where qe(1) is

qe(1) =




0, E[RV ] ≤ E[RB],
q∗e(1), E[RB] < E[RV ] < δ,
1, δ ≤ E[RV ].

(27)
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where

δ =
E[RB]

1− pE[B]
.

Case 2. When E[RV ] + (pE[RV ] + 1)E[B] ≤ K
C
, qe(0) = 1, then substituting qe(0) = 1

into (24), we have

Re(1; q1) = K − C

(
(pE[RV ] + 1)E[B] +

E[RB]

1− pq1E[B]

)
.

Similarly, becauseRe(1; q1) is strictly decreasing with q1, there exists only one zero solution
q∗e(1),

q∗e(1) =
1

pE[B]

(
1− E[RB]

K
C
− (pE[RV ] + 1)E[B]

)
. (28)

Lemma 5. In aGeo/G/1/MVqueueingmodel with PI, if (1) and (2) hold, and (K,C) satisfies

E[RV ] + (pE[RV ] + 1)E[B] ≤ K

C
,

and the server is in the busy state, then ”joiningwith probability qe(1)” is the only equilibrium
strategy, where qe(1) is

qe(1) =




0, E[RV ] ≤ E[RB] and K
C
≤ E[RB] + γE[B],

q∗e(1), or E[RV ] ≤ E[RB] and E[RB] + γE[B]
< K

C
< δ + γE[B],

or E[RB] < E[RV ] < δ and K
C
< δ + γE[B],

1, or δ ≤ E[RV ],
or E[RV ] < δ and δ + γE[B] ≤ K

C
.

(29)

and q∗e(1) is given by (28), γ = pE[RV ] + 1, and δ = E[RB ]
1−pE[B]

.
Summarizing the results in Lemma 3, 4 and 5, we have

Theorem 4. In a Geo/G/1/MV queueing model with PI, if (1) and (2) hold, there exists
only one equilibrium strategy (qe(0), qe(1)), if the server is on vacation, the customer joins
with probability qe(0); if the server is busy, the customer joins with probability qe(1), where
(qe(0), qe(1)) are given in the following cases:

I. If E[RV ] ≤ E[RB] holds,

(qe(0), qe(1)) =




(q∗e(0), 0), E[RV ] + E[B] < K
C
< E[RV ] + γE[B],

(1, 0), E[RV ] + γE[B] ≤ K
C
≤ E[RB] + γE[B],

(1, q∗e(1)), E[RB] + γE[B] < K
C
< δ + γE[B],

(1, 1), δ + γE[B] ≤ K
C
.
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II. If E[RB] < E[RV ] < δ holds,

(qe(0), qe(1)) =





(q∗e(0), q
∗
e(1)), E[RV ] + E[B] < K

C
< E[RV ] + γE[B],

(1, q∗e(1)), E[RV ] + γE[B] ≤ K
C
< δ + γE[B],

(1, 1), δ + γE[B] ≤ K
C
.

III. If δ ≤ E[RV ] holds,

(qe(0), qe(1)) =

{
(q∗e(0), 1), E[RV ] + E[B] < K

C
< E[RV ] + γE[B],

(1, 1), E[RV ] + γE[B] ≤ K
C
.

where γ = pE[RV ] + 1, and δ = E[RB ]
1−pE[B]

.

Table 1. The equilibrium strategy (qe(0), qe(1)) in the Geo/G/1/MV queue with PI
I (qe(0), qe(1)) II (qe(0), qe(1)) III (qe(0), qe(1))

K
C
∈ (κ1, κ2) (+,0) K

C
∈ (κ1, κ2) (+,+) K

C
∈ (κ1, κ2) (+,1)

K
C
∈ (κ2, κ3) (1,0) K

C
∈ (κ2, κ4) (1,+) K

C
∈ (κ2,+∞) (1,1)

K
C
∈ (κ3, κ4) (1,+) K

C
∈ (κ4,+∞) (1,1)

K
C
∈ (κ4,+∞) (1,1)

Table 1 shows the equilibrium strategy (qe(0), qe(1)) in Theorem 4 with different K/C
ratios. Note that κi in Table 1 can be defined as follows:

κ1 = E[RV ] + E[B],

κ2 = E[RV ] + (pE[RV ] + 1)E[B],

κ3 = E[RB] + (pE[RV ] + 1)E[B],

κ4 =
E[RB]

1− pE[B]
+ (pE[RV ] + 1)E[B].

The symbol ”+” means the joining probability in the interval (0; 1), for example, (+,1) is
equal to a certain strategy (qe(0), qe(1)), where 0 < qe(0) < 1, qe(1) = 1.
Remark 2. Theorem 4 reveals some customers’ joining behaviors under the PI scenario.
Intuitively, we may think that customers prefer joining at the server busy state to joining
at the server vacation state, i.e., qe(0) ≤ qe(1). However, such an intuition is only true
under certain conditions such as case III. More complex relations between the two joining
probabilities also exist as follows:

1. In Case I where E[RV ] < E[RB], customers prefer joining at server busy state to
joining at server vacation state. That is qe(0) ≥ qe(1).

2. Case II is a grey zone between Case I and Case III, and the relation between qe(0)
and qe(1) needs additional conditions To be specific, when (K,C) satisfies K/C <
E[RV ] + (pE[RV ] + 1)E[B], if E[RV ] + E[B] − E[RB] ≤ K/C, then q∗e(0) =

1
pE[RV ]E[B]

(
K
C
− E[RV ]− E[B]

)
≥ 1

pE[B]

(
1− E[RB ]

E[RV ]

)
= q∗e(1). , otherwise, qe(0) <

qe(1); and when (K,C) satisfies E[RV ] + (pE[RV ] + 1)E[B] ≤ K/C, then qe(0) ≥
qe(1).
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It is worth pointing that the social welfare optimal strategy under the PI scenario is harder
to analyze using the current approach. Under the equilibrium strategy (qe(0), qe(1)), the
social welfare can be written as

Rw = pπ1qe(1)K − CE[L0] + pπ0qe(0)K − CE[L1]. (30)

Clearly, the social welfare optimal strategy is the mixed strategy (qs(0), qs(1)) that maxi-
mizes Rs(qs(0), qs(1)), which is given by

Rs(qs(0), qs(1)) = p(πs1qs(1) + πs0qs(0))K − CE[L]. (31)

Here, we cannot derive the explicit expressions for πs0 = 1 − pqs(1)E[B] and πs1 =
pqs(1)E[B]. Such a complexity prevents us from analyzing the social welfare optimal join-
ing strategy in PI case.

4. Numerical Illustrations
In this section, we present numerical examples for the two information cases. Here, we

assume that the holding cost is C = 1 per time unit in the queue.
Example 1: qe and qs as functions of system parameters for the NI case
Consider qe and qs as functions of one of the system parameters(K, p, E[B], E[RB] and
E[RV ]) while keeping other parameters fixed. Figures 1 and 2 show how customer equi-
librium strategy qe and social optional strategy qs change with K, p, E[RB], and E[RV ]
respectively, with the corresponding constant parameter values given as

(p, E[B], E[RB], E[RV ]) = (0.5, 1.0, 4.0, 4.6)(Figure 1(a)),
(K,E[B], E[RB], E[RV ]) = (7.0, 1.0, 4.0, 4.6)(Figure 1(b)),
(K, p,E[B], E[RV ]) = (7.0, 0.2, 3.0, 2.0)(Figure 2(a)),
(K, p,E[B], E[RB]) = (7.0, 0.2, 3.0, 2.0)(Figure 2(b)), respectively.
As shown in Figure 1, the values of customer equilibrium strategy qe and social optimal

strategy qs increase with the service reward valueK, and decrease with the arrival probability
p (arrival rate). While the former relation is intuitive, the latter indicates the effective arrival
rate to the queueing system is adjusted to an appropriate level when the arrival rate increases.
of p.

Figure 2 shows qe and qs decrease with E[RB] and E[RV ]. Such a relation reflects
the fact that the longer residual service time or residual vacation time will lead to more
congestion system which in turns reduces these joining probabilities. It follows from these
figures that the relation qs ≤ qe is true in these numerical examples.
Example 2: qe in NI case and (qe(0), qe(1)) in PI case as functions of system parameters
Consider qe and (qe(0), qe(1)) as functions of one of the system parameters(K, p, E[B],
E[RB] and E[RV ]) while keeping other parameters fixed.

Figures 1 and 2 show how customer equilibrium strategy qe and (qe(0), qe(1)) change
withK, p,E[RB], andE[RV ] respectively, with the corresponding constant parameter values
given as
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Figure 1. The Curve of qe and qs versus K and p
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Figure 2. The Curve of qe and qs versus E[RB] and E[RV ]

(p, E[B], E[RB], E[RV ]) = (0.5, 1.0, 4.0, 4.6)(Figure 3(a)),
(K,E[B], E[RB], E[RV ]) = (7.0, 1.0, 4.0, 4.6)(Figure 3(b)),
(K, p,E[B], E[RV ]) = (7.0, 0.2, 3.0, 2.0)(Figure 4(a)),
(K, p,E[B], E[RB]) = (7.0, 0.2, 3.0, 2.0)(Figure 4(b)).
Figures 3 and 4 show the relations among qe, qe(0) and qe(1) curves can be one of three

cases : i) qe in NI case stays in between qe(0) and qe(1) in PI case; ii) qe coincides with either
qe(0) or qe(1); and iii) They all coincide. Such an observation indicates that the information
level may affect the customers’ equilibrium strategy.

In Figure 3, the customers’ equilibrium joining probabilities depend on K and p in a
similar way as in Figure 1.

In Figure 4, while qe in the NI case always decreases with E[RB] and E[RV ], qe(0) and
qe(1) in the PI case seem to be more complex. Although qe(0) is a decreasing function of
E[RV ], it is independent of E[RB]. More interestingly, while qe(1) is a decreasing function
of E[RB], it is not monotonic function of E[RV ]. That is, it is decreasing first, and then
increasing as shown in Figure 4 (b).
Remark 3. It is worth noting that qe qe(0) and qe(1) intersect at the same point in Figure 4
(b), that is between 0 and 1. This happens only when

E[RB] < E[RV ] <
E[RB]

1− pE[B]
.
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Figure 3. The Curve of qe versus K and p
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Figure 4. The Curve of qe versus E[RB] and E[RV ]

and
E[RV ] + E[B] <

K

C
< E[RV ] + (pE[RV ] + 1)E[B].

holds at the same time. In addition, it follows from the expressions of qe, qe(0) and qe(1)
that qe = qe(0) = qe(1) holds if and only ifK/C = 2E[RV ] + E[B]− E[RB].

Example 3: Social welfare as functions of K and p for the NI case
Now we plot the welfare Rs(q); q ∈ {qe, qs} as the functions of K and p, respectively.
Consider E[B] = 0.4, E[RB] = 3, E[RV ] = 0.4, p = 2.0 (Figure 5(a)), andK = 15 (Figure
5(b)).

In Figure 5(a), the difference between Rs(qs) and Rs(qe) represents the loss of social
welfare due to customers’ following self-interest equilibrium strategy. In Figure 5(b), be-
cause of largeK, qe and qs are equal to 1, and two curves of Rs(qe) and Rs(qs) coincide.

5. Conclusions
Using themean value analysis, a relative simple approach, this note studies Geo/G/1/MV

queueing models with customers having choices to join or balk a queue under two informa-
tion scenarios: the no information and partial information cases. The numerical analysis
is presented to gain some managerial insights. For example, it has been observed that the
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Figure 5. Social Reward per time versusK and p if Choosing qe or qs

customer joining probabilities can be affected by the information about the server state in
a complex way. The numerical results also confirm that in the no information case, the
customer equilibrium joining probability is greater than the social welfare optimal joining
probability.

However, this work has some limitations. First, we could not work out the explicit results
for the social optimal joining strategy under the partial information scenario. Second, we
did not consider the full information scenario where the actual queue length is disclosed to
arriving customers. Finally, the competition and cooperation among service providers in a
queueing setting with customer joining strategy can be interesting issues to be addressed.
These topics can be good directions for future research.
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