
1. Introduction
Many queues and storage processes can be analyzed as solutions to stochastic recursive

equations taking the form
Xn+1 = r(Xn, Zn+1) (1)

for some deterministic function r. When (Zn : n ≥ 1) is a sequence of independent and
identically distributed (iid) random variables (rv’s) independent of X0, then (Xn : n ≥ 0)
is a Markov chain with stationary transition probabilities. However, in some applications
settings, it is more appropriate to permit the Zi’s to be auto-correlated. In such settings, it is
natural to assume instead that (Zn : n ≥ 1) forms a stationary sequence. We then say that
the process (Xn : n ≥ 0) is a dynamical system fed by a stationary input sequence.

Under suitable assumptions, one can establish that

1

n

n−1∑
j=0

P (Xj ∈ ·) ⇒ X∞ (2)
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as n → ∞, where ⇒ denotes weak convergence. In this paper, we provide a vehicle for
bounding the stationary expectationE f(X∞) for real-valued f . Such bounds are of intrinsic
interest in their own right, and are also of critical value in various computations that require
taking expectations of a system in equilibrium. The rigorous invocation of such arguments
often requires the knowledge that such equilibrium expectations are finite; see, for example,
the argument used by [11] to deduce Theorem 1 there. Such finiteness is, of course, implied
by our bound.

Section 2 is devoted to describing and developing our bound. In that section, we also
show how the bound can be used to establish tightness for sequences fed by stationary inputs;
such tightness results are needed in order to invoke certain theorems that can be found in the
literature; see, for example, TheoremA of [2]. Section 2 also discusses the use of the iterated
random function viewpoint, as a vehicle for establishing existence of stationary distributions
for models fed by stationary input sequences. Section 3 focuses on illustrating the use of
the bound in the setting of the delay sequence for a single server queue fed by a stationary
sequence of service times and inter-arrival times.

2. The Bound
Suppose thatX = (Xn : n ≥ 0) is an S-valued sequence satisfying (1) subject toX0 =

x ∈ S, where S is a complete separable metric space. We assume that (Zn : −∞ < n < ∞)
is a stationary sequence for which (2) holds. Put Fn = σ(Zj : j ≤ n).

Theorem 1. Suppose that f : S → R+ is a continuous function. If there exists g : S → R+

and b ∈ R+ such that
E[g(r(y, Z1))|F0] ≤ g(y)− f(y) + b (3)

for y ∈ S, then E f(X∞) ≤ b.

This result generalizes a similar bound that is known for Markov chains; see [7]. In that
context, g is known as a Lyapunov function.
Proof. By stationarity of (Zn : −∞ < n ≤ ∞), (3) implies that

E[g(r(y, Zj+1))|Fj] ≤ g(y)− f(y) + b

for j ≥ 0. Since Xj is Fj-measurable, it follows that

E[g(r(Xj, Zj+1))|Fj] ≤ g(Xj)− f(Xj) + b

and hence

E[g(Xj+1)|Fj] ≤ g(Xj)− f(Xj) + b (4)

for y ≥ 0.
Put

Tm = inf{j ≥ 0 : E[g(Xj+1)|Fj] > m}
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and note that on {Tm > j}, E[g(Xj+1)|Fj] ≤ m and

E g(Xj)I(Tm ≥ j)

= EE[g(Xj)|Fj−1]I(Tm ≥ j)

≤mP (Tm > j).

Hence,
Tm∑
j=1

g(Xj) and
Tm−1∑
j=0

E[g(Xj+1)|Fj]

are both integrable. Furthermore,

Tm∧n∑
j=1

(g(Xj)− E[g(Xj)|Fj−1])

is a martingale adapted to (Fj : j ≥ 1); where a ∧ b ≜ min(a, b).
Consequently,

E
Tm∧n∑
j=1

(g(Xj)− E[g(Xj)|Fj−1]) = 0

for n ≥ 1. So,

0 = −E
(Tm∧n)−1∑

j=0

(E[g(Xj+1|Fj)]− g(Xj)) + E g(XTm∧n)− E g(X0).

The non-negativity of g(XTm∧n) ensures that

g(x) ≥ −E
(Tm∧n)−1∑

j=0

(E[g(Xj+1)|Fj]− g(Xj)),

so that (4) yields the inequality

bETm ∧ n+ g(x) ≥ E
(Tm∧n)−1∑

j=0

(b− E[g(Xj+1)|Fj] + g(Xj))

≥ E
(Tm∧n)−1∑

j=0

f(Xj).

Sendingm → ∞, we find that the Monotone Convergence Theorem implies that

bn+ g(x) ≥
n−1∑
j=0

E f(Xj). (5)
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Since f is continuous, f(Xn) ⇒ f(X∞). Fatou’s lemma therefore guarantees that

E f(X∞) ≤ lim inf
n→∞

E f(Xn). (6)

Dividing both sides of (5) by n, sending n → ∞, and applying (6), we obtain the bound.
A key assumption in Theorem 1 is the requirement (2). We now elaborate further on this

weak convergence result, using the iterated random function perspective. In particular, we
define φn : S → S via

φn(y) = r(y, Zn)

for y ∈ S. We can then view Xn as Xn(x), where X0(y) = y and

Xn(y) = φn(Xn−1(y))

= (φn ◦ · · · ◦ φ1)(y)

for y ∈ S. The stationarity of the Zi’s implies, of course, that (φn : −∞ < n < ∞) is
a stationary sequence of random mappings. While the iterated random function viewpoint
has become a widely used tool in the Markov chain setting (see, for example, [4], [12],
[5], [6]), it has been exploited less frequently when analyzing dynamical systems fed by
stationary inputs. Notable exceptions are the papers by [1, 2], which focus on the application
of tightness and compactness arguments to provide sufficient conditions for (2).

We illustrate the iterated random function perspective with the discussion of a couple of
sufficient conditions for (2). The first is an elaboration of the famous argument due to [10],
expressed in the language of iterated random functions. Suppose that S = R+ and that φi is
a non-decreasing continuous function for i ∈ Z. Put Y0(y) = y and

Yn(y) = (φ−1 ◦ · · · ◦ φ−n)(y)

for n ≥ 1. Then, Yn(y) = Yn−1(φ−n(y)). Since Yn−1(·) is non-decreasing and φ−n(0) ≥ 0,
clearly Yn(0) ≥ Yn−1(0). It follows that there exists Y∞ such that Yn(0) ↗ Y∞ as n → 0.
Because

Yn(0)
D
= Xn(0)

where D
= denotes equality in distribution, it follows that if Y∞ is finite-valued, then

Xn(0) ⇒ Y∞

as n → ∞. Furthermore, because

Ỹn(0) = (φ−2 ◦ · · · ◦ φ−n−1)(0)
D
= Yn(0)

and Yn(0) = φ−1(Ỹn−1(0)), it follows from the continuity of φ−1 that

Y∞
D
= φ−1(Ỹ∞), (7)
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where Ỹ∞ = limn→∞ Ỹn(0)
D
= Y∞. The distributional identity (7) is the stationary process

analog of the steady-state equations that arise in the setting of Markov chain models. It is in
this sense that the distribution of Y∞ is a stationary distribution of the dynamical system (1),
and that we refer to E f(Y∞) as a stationary expectation.

It remains to provide a sufficient condition for the finiteness of Y∞. We say that the
function f : S → R+ is coercive if the sub-level set Km = {x ∈ S : f(x) ≤ m} is a
compact subset of S for each m ≥ 1. Recall that a sequence (Pn : n ≥ 1) of probabilities
on S is tight if for each ϵ > 0, there exists a compact subsetK for which Pn(K) ≥ 1− ϵ for
n ≥ 1.

Proposition 1. Suppose that S is a complete separable metric space and thatX satisfies (3)
with f : S → R+ coercive, b ∈ R+, and g : S → R+. If

Pn(·) =
1

n

n−1∑
j=0

P (Xj ∈ ·),

then (Pn : n ≥ 1) is tight.

Proof. The proof of Theorem 1 establishes that when X0 = x ∈ S,

1

n

n−1∑
j=0

E f(Xj) =

∫

S

f(y)Pn(dy) ≤ b+
g(x)

n
.

Hence, Markov’s inequality implies that

Pn(K
c
m) ≤

∫

Kc
m

f(y)

m
Pn(dy) ≤

1

m

∫

S

f(y)Pn(dy) ≤
b

m
+

g(x)

mn
,

so that by choosingm sufficiently large, Pn(K
c
m) < ϵ, thereby proving tightness.

Because Y (0)
D
= Xn(0), it is evident that

Pn(·) =
1

n

n−1∑
j=0

P (Yj(0) ∈ ·),

and hence Proposition 1 establishes that the almost sure (and weak) limit Y∞ is finite-valued
in the presence of a coercive f .

We conclude this section with a second style of argument that can be used to establish
the validity of (2). This approach, based on an assumption of contractiveness in r, has found
many applications in the Markov chain setting where the Zi’s (and hence the φi’s) are iid.

Our contraction assumption takes the form

E[d(r(y, Z1), r(y2, Z1))|F0] ≤ γd(y1, y2) (8)
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for y1, y2 ∈ S, where γ < 1 and d : S × S → R+ is the metric on S. The inequality (8) is,
of course, equivalent to requiring that

E[d(φn(y1), φn(y2))|Fn−1] ≤ γd(y1, y2) (9)

for n ∈ Z. Relation (9) implies that

E d((φn ◦ · · ·φ1)(y), (φn ◦ · · ·φ2)(y))

= EE[d((φn ◦ · · ·φ1)(y), (φn ◦ · · ·φ2)(y))|Fn−1]

≤ γ E d((φn−1 ◦ · · ·φ1)(y), (φn−1 ◦ · · ·φ2)(y)),

from which we find that

E d((φn ◦ · · ·φ1)(y), (φn ◦ · · ·φ2)(y)) ≤ γn−1 E d(φ1(y), y). (10)

As in our Loynes-style argument, we put

Yn(y) = (φ−1 ◦ · · ·φ−n)(y).

Since ((φn ◦ · · ·φ1)(y), (φn ◦ · · ·φ2)(y))
D
= (Yn(y), Yn−1(y)), (10) shows that

E d(Yn(y), Yn−1(y)) ≤ γn−1 E d(Y1(y), y).

Hence, if E d(Y1(y), y) < ∞,

E
∞∑
n=1

d(Yn(y), Yn−1(y)) ≤ (1− γ)−1 E d(Y1(y), y) < ∞,

so that
∞∑
n=1

d(Yn(y), Yn−1(y)) < ∞ a.s. (11)

This inequality (11) implies that (Yn(y) : n ≥ 0) is a.s. Cauchy in the metric d. Since S
is assumed to be complete, it follows that there exists Y∞(y) ∈ S such that Yn(y) → Y∞(y)

a.s. in the metric d. Since Xn = (φn ◦ · · ·φ1)(x), Xn
D
= Yn(x) and we may conclude that

Xn ⇒ Y∞(x)

as n → ∞, proving (2) under (8).

Remark 1. The contraction assumption ensures that E d(Yn(y1), Yn(y2)) → 0 as n → ∞,
thereby guaranteeing that Y∞(y) is independent of y ∈ S.

Remark 2. If the φi’s are continuous, then the same argument as used in the monotone case
proves that the equation (7) holds, establishing that (1) possesses a stationary distribution.

C  Glynn and Zheng

68



3. A Queueing Example
In this section, we illustrate our bound by applying it to the well-studied delay sequence

for the single-server queue. Specifically, we consider a queue with an infinite capacity wait-
ing room that operates according to a first in/first out (FIFO) queue discipline. In this setting,
it is well known that the delay Xn associated with the n’th customer to arrive satisfies a re-
cursion of the form (1), where S = R+, r(x, z) = [x + z]+ (with [w]+ ≜ max(w, 0) for
w ∈ R), and

Zn = Vn−1 − χ
n,

with Vn representing the service time requirement for customer n, and χ
n corresponding

to the inter-arrival time separating the arrivals of customers n − 1 and n; see [8, 9, 3] for
an illustration of this recursion. We note that r satisfies the monotonicity and continuity
assumptions that were discussed in Section 2 in the context of our Loynes-style argument.

Put g(x) = x2 and observe that

g(r(x, z)) = ([x+ z]+)2 ≤ (x+ z)2,

so

E[g(r(y, Z1))|F0]− g(y) = 2y E[Z1|F0] + E[Z2
1 |F0].

Hence, if we assume that

E[Z1|F0] ≤ −δ < 0 a.s. (12)

and

E[Z2
1 |F0] ≤ b < ∞ a.s., (13)

it follows that we may choose f(x) = δx in Theorem 1. We conclude that in the presence
of assumptions (12) and (13), Theorem 1 and Proposition 1 imply the existence of a rv X∞
satisfying (7), and also the bound

EX∞ ≤ b

δ
.

Onemeans of inducing auto-correlation in theZi’s is to assume that (Zi : −∞ < i < ∞)
can be represented in terms of a moving average. In particular, suppose that

Zi =
∞∑
j=0

ajϵi−j (14)

where (ϵk : −∞ < k < ∞) is an iid sequence with finite second moment, and
∞∑
j=0

|aj| < ∞.
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Then,

E[Z1|F0] = a0 E ϵ1 +
∞∑
j=1

ajϵi−j

and
Var[Z1|F0] = a20Var ϵ1

A sufficient condition for (12) to hold is to then assume that the ϵi’s are bounded rv’s
(say, bounded in absolute value by 1), with

a0 E ϵ1 +
∞∑
j=1

|aj| < 0. (15)

We note that condition (15) is a strong requirement on the Zi’s.
In the spirit of weakening this assumption, we consider the following generalization of

condition (3), namely

E[g(Xm(y))|F0] ≤ g(y)− f(y) + b (16)

for y ∈ S. Condition (16) involves consideration of the conditional expectation overm ≥ 1
steps of X , rather than the single step postulated in Theorem 1. The identical argument as
used in Theorem 1 establishes that

1

n

n−1∑
j=0

E f(Xjm(y)) ≤ b+
g(y)

n
. (17)

Note that Xi+jm(y) = Xjm(Xi(y)), so that (17) implies that

1

n

n−1∑
j=0

E f(Xi+jm(y)) ≤ b+
E g(Xi(x))

n

for 0 ≤ i < m, from which it is evident that

1

nm

nm−1∑
j=0

E f(Xj(x)) ≤ b+
m−1∑
i=0

E g(Xi(x))

nm
. (18)

Suppose that (16) holds and
m−1∑
i=0

E g(Xi(x)) < ∞. (19)

Under these assumptions, the same argument as used form = 1 shows that

Pn(·) =
1

n

n−1∑
i=0

P (Xi(x) ∈ ·) ⇒ P (X∞ ∈ ·).
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We may further conclude that
E f(X∞) ≤ b.

Returning to our delay sequence example, put

Sn = Z1 + · · ·+ Zn.

It is well known that

Xm(y) = (y + Sm)I(Sm > −y) + max
0≤i≤m

(Sm − Si)I(Sm ≤ −y); (20)

see Chapter X of [3]. Consequently,

g(Xm(y))− g(y)

≤ (y + Sm)
2I(Sm > −y)− y2 + max

0≤i≤m
(Sm − Si)

2

≤ (y + Sm)
2 − y2 + max

0≤i≤m
(Sm − Si)

2

=2ySm + S2
m + max

0≤i≤m
(Sm − Si)

2. (21)

Suppose that

E[Sm|F0] ≤ −d < 0 (22)

and

E[S2
m + max

0≤i≤m
(Sm − Si)

2|F0] ≤ β < ∞. (23)

If f(x) = dx, then (22) implies that condition (16) is in force. Also, it is evident that (23)
yields the inequality

ES2
j = E(Sm − Sm−j)

2 ≤ E max
0≤i≤m

(Sm − Si)
2 ≤ β < ∞

for 0 ≤ j ≤ m. Hence, (20) shows that

E g(Xi(x)) ≤E(x+ Si)
2 + E max

0≤j≤i
(Si − Sj)

2

≤E(x+ Si)
2 +

i∑
j=0

E(Si − Sj)
2

≤x2 + 2xESi + ES2
i +

i∑
j=0

ES2
i−j

<∞
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for 0 ≤ i < m, proving the validity of (19). Hence, we may conclude that (22) and (23)
guarantee that

Pn(·) =
1

n

n−1∑
i=0

P (Xi(x) ∈ ·) ⇒ P (X∞ ∈ ·)

as n → ∞, where EX∞ satisfies the bound

EX∞ ≤ β

d
.

Use of the m-step conditions (22) and (23) weaken the requirements demanded of the
moving average defined in (14). In particular, (22) requires that when the ϵi’s are again
bounded by 1, the condition analogous to (15) now takes the form

m−1∑
i=0

ai E ϵ1 +
∑
j≥m

|aj| < 0. (24)

Condition (24) significantly weakens the requirements on the coefficients of the moving
average, thereby generalizing the dependency structures present within the Zi’s for which
bounds can be computed.
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