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Abstract: This paper considers a queueing-inventory system with synchronous vacation of
multiple servers. The stocks are replenished by an (s, S) policy. When the inventory is
empty, all servers synchronize multiple vacations, and the vacation time follows an expo-
nential distribution. In this paper, we first establish a three-dimensional Markov process
for the number of customers, the inventory level and the status of the servers in the system.
Then, we give the solution of the steady-state probability distribution of the system by using
the matrix-geometric solution method, and derive some important performance measures. In
order to deal with the case of larger or super larger dimension of the state space, an approxi-
mate method to calculate the steady-state probability distribution of the system is developed.
We further develop a total average cost function. Finally, we investigate the effect of system
parameters on the optimal number of servers, the optimal inventory policy and the optimal
average cost function through numerical illustration.

Keywords: Queueing-inventory systems, (s, S) policy, multiple servers, lost sales, syn-
chronous vacation.

1. Introduction
A queueing system with attached inventory is called a queueing-inventory system. In

such system, every customer takes on-hand items from the inventory and requires some posi-
tive service time. A simple example is a retail market where customers spend time to pay for
items that they want to purchase (see Baek and Moon [1]). Another example is a pure inven-
tory systemwhere it requires some time to deal with items for retrieval, preparation, packing,
and loading before items in inventory are out of the warehouse (see Saffari et al. [18]). A
queueing-inventory system is different from both the traditional inventory system and the
traditional queueing system (see Zhao and Lian [29]). During the last decades, queueing-
inventory systems have drawn much attention of many researchers because of their differing
characteristics from both the classic queueing systems and the classic inventory systems.
* Corresponding author
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In real life, long queues often consume a lot of time and cost. When there is only one
server, it often leads to long waiting time for customers and increases waiting cost. There-
fore, it is often to use faster serves or hire additional servers to reduce costs associated with
customers sojourn time in the system. Many studies discussed multiple server facilities in
queueing-inventory system. Yadavalli et al. [25] studied a continuous review perishable in-
ventory system with multi-server service facility, where an (s, S) policy is considered. The
(s, S) policy is a well-known control policy in queueing-inventory system, in which inven-
tory is raised to an order-up-to level S whenever it falls below reorder-level s at a review
instant. In [25], the authors assumed that customers follow Markov arrivals, and also con-
sidered a second flow of negative customers. They obtained the joint probability distribution
of the number of busy servers, the inventory level and the number of customers in the orbit
in the steady state of the system. Various measures of stationary system performance were
computed and the total expected cost per unit time was calculated. Yadavalli et al. [26] also
studied a continuous review retrial inventory system with a finite source of customers and
identical multiple servers in parallel. They assumed that all the c servers are homogeneous,
and the service times are exponentially distributed. In [26], the Laplace-Stieltjes transform
of the waiting time distribution and the moments of the waiting time distribution were cal-
culated. Rajkumar et al. [17] considered a multi-server inventory system at a service facility
with an (s, S) policy. In [17], the authors assumed the customers to arrive according to a
Poisson process. They calculated the Laplace-Stieltjes transforms of the first passage time
and the waiting time of a tagged customer.

Krishnamoorthy et al. [10] studied a M/M/c queueing-inventory system with an (s,Q)
policy and lost sales. They obtained a product form solution of the steady-state distribution
for the case of two servers, and also obtained a matrix-geometric solution of the steady-state
distribution for the case of more than two servers. They have derived conditional distribu-
tion of the inventory level, conditioned on the number of customers in the system, and con-
ditional distribution of the number of customers, conditioned on the inventory level. They
also computed the optimal number of servers and also computed the optimal (s,Q) pair
values and the corresponding minimum cost. Wang[24] further investigated a multi-server
retrial queuing-inventory system with two demand classes and an (s,Q) policy. Assume
that the demand arrival is Markov arrival process (MAP) and the lower priority customers
are impatient. They derived the steady-state probability of the system using the truncation
approximation method and investigated the problem to optimize the number of servers, stock
and reorder levels, retrial and service rates such that the average operating cost is minimized.
Jeganathan et al. [6] studied a Markovian inventory-queueing system with server interrup-
tions of two heterogeneous servers and an (s,Q) policy. They applied a matrix method to
obtain the steady-state joint probability distribution of customers level in the queue, retrial
group, status of the servers and stock level of heterogeneous system. They also studied the
significant effect of a heterogeneous system to compare with a homogeneous system. Je-
ganathan et al. [5] also studied a perishable inventory model with two dedicated servers and
one flexible server, where the service rates are different with respect to stations and servers.
By using matrix analysis method, the joint stationary distribution of the number of customers

2



Queueing Models and Service Management

in station 1 and station 2, the status of the servers and the inventory level under steady state
are investigated. Various system performance measures are derived and the long-run total
expected cost rate is calculated. For more research work on queuing-inventory systems, we
refer the reader to survey papers given by Krishnamoorthy et al. [9] and Krishnamoorthy et
al. [11].

However, all the research works mentioned above assumed that the servers are always
available to work even if the system is out of stock. In practice, it is very common to allow
the servers to do some secondary jobs for improving server’s utilization when the servers
are idle. This period that the servers to do some secondary jobs is called a vacation in the
queueing literature. The readers may reference Doshi [4], Takagi [21], Tian and Zhang [22]
and Ke et al. [8] for more details on various queuing systems with vacations of multiple
servers.

Daniel and Ramanarayanan [3] were the first to study a queueing-inventory system by
considering the server’s vacation, in which a vacation was granted when the inventory is
exhausted. They assumed that the customer arrival times, the lead times and the rest times
all follow arbitrary distributions. They obtained the steady-state probabilities of the system
by using renewal and convolution techniques. Afterwards, many authors focus on queueing-
inventory systemswith server’s vacation. Viswanath et al. [23] considered a server’s vacation
in MAP/PH/1 queueing-inventory system in which the server went for a vacation whenever
there were no waiting customers, or the inventory level was zero. They derived the steady-
state probability distribution by using the matrix-geometric solution method. A finite-source
queueing-inventory systemwith an (s,Q) policy and a modified vacation policy was investi-
gated by Padmavathi et al. [16], in which the server went into an inactive period whenever the
inventory level reaches zero. Melikov et al. [14] proposed a model for a queueing-inventory
system with perishable inventory and early and delayed vacations of the server under the
(s, S) policy where the server went into a vacation if either the level of inventory in the sys-
tem or the queue length was zero. They developed a method for approximate computation
of the system’s characteristics. Zhang et al. [28] considered a random order size policy in
an M/M/1 queueing-inventory system with multiple server vacation. They derived a prod-
uct form solution for the stationary distribution under the assumption that the server takes
multiple vacations once the inventory is depleted.

Suganya et al. [20] studied a queueing-inventory systemwith two heterogeneous servers
and multiple vacations. They assumed the customers to arrive according to a Markovian
arrival process, and two parallel servers to provide heterogeneous phase type services to
customers. They obtained the joint probability distribution of the number of customers in
the system, inventory level and server status in the steady state of the system. Suganya et
al. [19] also studied a queueing-inventory system with a finite number of homogeneous
sources of customers and multiple vacations of two heterogeneous servers. They obtained
the joint probability distribution and some important performancemeasures, and investigated
the optimality of the expected total cost rate by numerical illustration. A retrial production
inventory system with vacation and two heterogenous servers was considered by Jose and
Beena [7]. They considered an (s, S) policy for production of items. The stability condition
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and the steady-state probabilities of the system were calculated by using matrix analysis
methods.

All these papers mentioned above considered single server or two heterogeneous servers
in the queueing-inventory system models (or production system model) with server vaca-
tions. In this paper, we also considered an (s, S) policy as presented in [20] and [19]. How-
ever, this paper is different from the papers presented in [20] and [19], in which we consider c
homogeneous servers in a queueing-inventory system with synchronous multiple vacations.
In this system, when the inventory is empty, all c servers synchronize multiple vacations.
Also, in contrast to the M/M/c queueing-inventory model studied by Krishnamoorthy et al.
[10], in this paper we consider an M/M/c queueing-inventory model with synchronous va-
cation of multiple servers and an (s, S) inventory policy. In [10], Krishnamoorthy et al.
considered an M/M/c queueing-inventory model with an (s,Q) policy and without server
vacations. They obtained a product form solution of the steady-state distribution for the case
of c = 2, and also obtained the matrix-geometric solution of the steady-state distribution for
the case of c ≥ 3. Another difference from Krishnamoorthy et al. [10] is that in this paper
we obtained both an exact solution and an approximated solution to calculate the steady-state
probability distribution of the system.

Amotivating example of ourmodel comes from online sales of some electronic products.
For example, consider an online retailer who sells two types of computers, e.g., Type 1 and
Type 2. There are one or more than one servers who serve the customers. If a customer
purchases one computer by online from the retailer, it usually needs some service time of
the servers for preparation, packing, and mailing. The retailer can adopt an (s, S) policy to
manage the inventory of each types of computers. Once the inventory level of Type 1 (or
Type 2) computers drop to level s, an order of Type 1 (or Type 2) computers is placed for
a variable replenishment quantity such that upon replenishment, the on-hand inventory is
restocked to level S. When the inventory of Type 1 (or Type 2) computers is depleted, the
retailer often sells Type 1 (or Type 2) computer by online reservation. During this reservation
period, servers do not provide service to customers demanding Type 1 (or Type 2) computers
until the deadline of the reservation, and theymay provide service to customers of demanding
Type 2 (or Type 1) computer. This period of online reservation can be looked as synchronous
vacations of servers who serve customers demanding Type 1 (or Type 2) computers. Such
systems exist in most online sales companies and can be studied with the model presented
in this paper.

The main contributions of this paper are as follows: (i) We derive the stability condition
of the system and find that it does not depend on the vacation time. (ii) We obtain both
the exact solution and the approximate solution of the steady-state distribution of the joint
process of the queue length, the on-hand inventory level and the server’s status. The approx-
imate solution method can be used to calculate the steady-state probability distribution of the
system with larger or super larger dimension of the state space. This is the main difference
in methodology adopted between this paper with those aforementioned papers. (iii) We con-
sidered not only the optimal problem of finding the number of servers but also the optimal
problem of finding the joint (c, s, S) policy. (iv) The effects of the various system parame-
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ters on the optimal joint (c, s, S) policy and its corresponding average cost are numerically
investigated.

The rest of this paper is organized as follows. Firstly, we describe the system model
in Section 2. In Section 3, we derive the stability condition of the system by using the
quasi birth-death (QBD) process theory. Then, we give the matrix-geometric solution of
the steady-state probability of the system. Based on this, we compute some performance
measures. An approximate method to calculate the steady-state probability distribution of
the system is developed in Section 4. In Section 5, we derive a total average cost function
and present some numerical results. Conclusions are given in Section 6.

2. System Model
Weconsider a queueing-inventory systemwith synchronous vacation ofmultiple servers.

Figure 1 shows the schematic diagram of the proposed model.

Figure 1. Schematic diagram of the proposed model in this paper.

In this systemmodel, customers arrive according to a Poisson process with rate λ. There
are c homogeneous servers in the system. Each customer requires exactly a single item in
the inventory for service. Customers are served one by one under a First-Come, First-Served
(FCFS) discipline. The service times are exponentially distributed with parameter µ.

All c servers begin a vacation simultaneously whenever the on-hand inventory is empty.
At the end of each vacation, if the on-hand inventory in the system is not empty, all servers
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return back to the system to provide service for customers at any time, otherwise all the severs
take another vacation immediately and continue in the same manner until the servers finds
the on-hand inventory is not empty. We call this vacation policy a multiple synchronous
vacation. The vacation time of the servers follows another exponential distribution with
parameter θ.

In this paper, the (s, S) inventory policy with a continuous review is considered. That
is to say that, each time the on-hand inventory reaches the reorder point s, an order is placed
for a variable replenishment quantity such that upon replenishment, the on-hand inventory is
restocked to level S (s < S). The replenishment lead time is exponentially distributed with
parameter η. It is assumed that c < s.

Customers arriving during a period when inventory is depleted or when the servers are
off for vacation are rejected and lost. This is a lost sales situation. If a server is ready to serve
a customer who is at the head of the line and there is no item in inventory, the service starts
at the moment that the next replenishment arrives. It is assumed that the arrival process, the
service time, the lead time and the vacation time are independent each other.

3. System Analysis
In this section, we perform a steady-state analysis for the system model. We first formu-

late a quasi birth-death (QBD) process and derive a stability condition of the system. Then,
we compute the stationary distribution of the joint process of the number of customers in the
system, the inventory level and the status of the servers. Based on the stationary distribution,
we obtain some performance measures of the system.

3.1. Stability condition

Let Φ(t) = {(M(t), N(t), J(t)), t ≥ 0} be a state process of the system, whereM(t)
denotes the number of customers in the system at time t, N(t) denotes the inventory level
at time t, and J(t) denotes the status of the servers at time t. J(t) is defined as either 0 or 1
according to whether the servers are off for vacation or on for servicing, respectively. Then,
the process Φ(t) is a QBD process with state space: Ω = ∪∞

m=0{m}, where

m = {(m, 0, 0), (m, 1, 1), . . . , (m,S, 1), (m,S, 0)} , m ≥ 0

is the collection of states with M(t) = m, called the level m. The number of states in a
levelm is S + 2.

The infinitesimal generator of the process Φ(t) is given as follows:

Q =



A0 C
B1 A1 C

B2 A2 C
. . . . . . . . .

Bc−1 Ac−1 C
B A C

. . . . . . . . .


6
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where each block matrix is (S + 2)× (S + 2) matrix.
For 0 ≤ m ≤ c, we have

Am =



−η 0 η
fm
1 η 0

. . . ... ...
fm
s η 0

fm
s+1 0 0

. . . ... ...
fm
S−1 0 0

fm
S 0
θ −θ


where

f 0
k =

{
−(η + λ), 1 ≤ k ≤ s

−λ, s+ 1 ≤ k ≤ S,

and for 1 ≤ m ≤ c,

fm
k =


−(η + λ+ kµ), 1 ≤ k ≤ m

−(η + λ+mµ), m+ 1 ≤ k ≤ s

−(λ+mµ), s+ 1 ≤ k ≤ S.

For 1 ≤ m ≤ c, we have

Bm =



0
gm1 0

gm2
. . .
. . . 0

gmS 0
0 0


where

gmk =

{
kµ, 1 ≤ k ≤ m

mµ, m+ 1 ≤ k ≤ S,

A = Ac,B = Bc, and C = diag{0, λ, . . . , λ, 0} is a diagonal matrix.
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Consider the matrixHc = A+B +C, which is given by

Hc =



−η 0 η
µ h1 η 0

2µ h2 η 0
. . . . . . ... ...

cµ hc η 0
. . . . . . ... ...

cµ hs η 0
cµ hs+1 0 0

. . . . . . ... ...
cµ hS−1 0 0

cµ hS 0
θ −θ


where

hk =


−(η + kµ), 1 ≤ k ≤ c

−(η + cµ), c+ 1 ≤ k ≤ s

−cµ, s+ 1 ≤ k ≤ S.

It is easy to see that Hc is an infinitesimal generator of a Markovian process. Let ξ =
(ξ0,0, ξ1,1, . . . , ξS,1, ξS,0) be the steady-state probability vector of the infinitesimal generator
Hc. Therefore, the vector ξ satisfies the following equations:{

ξHc = 0

ξe = 1
(1)

where e is a column vector of 1’s of appropriate dimension. Eq. (1) can be rewritten as
follows:

ηξ0,0 = µξ1,1, (2)

nµξn,1 − [η + (n− 1)µ] ξn−1,1 = 0, 2 ≤ n ≤ c, (3)

cµξn,1 − (η + cµ)ξn−1,1 = 0, c+ 1 ≤ n ≤ s+ 1, (4)

ξn,1 = ξn−1,1, s+ 2 ≤ n ≤ S, (5)

η(ξ1,1 + ξ2,1 + · · ·+ ξs,1)− cµξS,1 + θξS,0 = 0, (6)

ηξ0,0 = θξS,0, (7)

ξ0,0 +
S∑

i=1

ξi,1 + ξS,0 = 1. (8)
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From Eqs. (2)-(5), it is easy to get

ξn,1 =



αnξ0,0, 1 ≤ n ≤ c(
1 +

η

cµ

)n−c

αcξ0,0, c+ 1 ≤ n ≤ s+ 1(
1 +

η

cµ

)s+1−c

αcξ0,0, s+ 2 ≤ n ≤ S

(9)

where

αn =


η

µ
, n = 1

η

n!µn

n−1∏
i=1

(η + iµ), 2 ≤ n ≤ c.
(10)

From Eq. (7), we have
ξS,0 =

η

θ
ξ0,0. (11)

Substituting Eqs. (9) and (11) into Eq. (8), we get

ξ0,0 =

(
1 +

η

θ
+

c−1∑
n=1

αn + αcγ

)−1

(12)

where

γ =

(
1 +

η

cµ

)s+1−c(
S − s+

cµ

η

)
− cµ

η
, (13)

and
∑0

n=1 is defined to be zero. In the following sections, we always define
∑0

n=k = 0 for
k ≥ 1.

Using the steady-state probabilities given by Eqs. (9)-(12), we can derive the stability
condition of the process Φ(t).
Theorem 1. The processΦ(t)with the infinitesimal generatorQ is positive recurrent if and
only if

ρ < 1−

c−1∑
n=1

(
1− n

c

)
αn

c−1∑
n=1

αn + αcγ

(14)

where ρ =
λ

cµ
, αn and γ are given by Eqs. (10) and (13), respectively.

Proof. From the well-known result given by Neuts [15], the process Φ(t) is positive recur-
rent if and only if ξCe < ξBe. It is easy to see that

ξCe = λ
S∑

n=1

ξn,1 = λξ0,0

(
1

ξ0,0
− 1− η

θ

)
,

9
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and

ξBe = µ
c−1∑
n=1

nξn,1 + cµ
S∑

n=c

ξn,1

= cµ(1− ξ0,0 − ξS,0)− µ
c−1∑
n=1

(c− n)ξn,1

= cµξ0,0

[
1

ξ0,0
− 1− η

θ
−

c−1∑
n=1

(
1− n

c

)
αn

]
.

Thus, ξCe < ξBe is equivalent to the following inequality:

λ

cµ
< 1−

c−1∑
n=1

(
1− n

c

)
αn

1

ξ0,0
− 1− η

θ

. (15)

Substitute Eq. (12) into Eq. (15), we obtain Eq. (14). This proves Theorem 1.
Remark 1. (i) Eq. (14) shows that the stability condition of this system does not depend on
the parameter of the vacation time. Besides, it is stronger than the stability condition of the
classical M/M/c queueing system:

λ

cµ
< 1. (ii) For single server case c = 1, the stability

condition of the system agrees with the stability condition of the classical M/M/1 queueing
system:

λ

µ
< 1.

3.2. Steady-state probability distribution

In this section, we derive the joint steady-state probability distribution of the number of
customers in the system, the inventory level and the servers’ status.

3.2.1. Matrix-geometric solution

Let x = (x0,x1,x2, . . .) be the steady-state probability vector of the process Φ(t),
where

xm = (xm(0, 0), xm(1, 1), . . . , xm(S, 1), xm(S, 0)) , m ≥ 0.

Then x satisfies the following equations:{
xQ = 0
xe = 1

(16)

where e is a column vector of 1’s of appropriate dimension.
From Neuts [15], under the stability condition of the system given by Theorem 1, the

steady-state probability vector x can be expressed as follows:

xm = xcR
m−c, m ≥ c (17)

10



Queueing Models and Service Management

whereR is the minimal nonnegative solution to the matrix quadratic equation

R2B +RA+C = 0, (18)

and satisfies with the spectral radius sp(R) < 1, and the vectors x0,x1, . . . ,xc are the
positive solutions of the following equations:

(x0,x1, . . . ,xc)B[R] = 0, (19)

where

B[R] =


A0 C
B1 A1 C

. . . . . . . . .
Bc−1 Ac−1 C

Bc RB + A,

 ,

and the normalizing condition

c−1∑
m=0

xme+ xc (I −R)−1 e = 1. (20)

The Eq. (19) can be rewritten as follows:

x0A0 + x1B1 = 0, (21)

xi−1C + xiAi + xi+1Bi+1 = 0, 1 ≤ i ≤ c− 1, (22)

xc−1C + xc(RB +A) = 0. (23)

It is easy to solve Eqs. (21)-(23) subject to the normalizing condition Eq. (20). The solutions
x0,x1, . . . ,xc are computed iteratively as

xi = xi+1Fi+1, 0 ≤ i ≤ c− 1 (24)

where {
F0 = 0

Fi+1 = −Bi+1 (FiC +Ai)
−1 , 0 ≤ i ≤ c− 1,

(25)

and xc can be determined by the following equations:{
xc(FcC +RB +A) = 0

xc

[∑c−1
m=0

∏c−m−1
i=0 Fc−i + (I −R)−1] e = 1.

(26)
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3.2.2. Algorithmic computation of the rate matrix R

In order to calculate the steady-state probability of the system, it is necessary to solve
the rate matrix R. Unfortunately, it is not feasible to find the analytical solution from Eq.
(18). However, several quadratically-convergent algorithms such as Logarithmic Reduction
algorithm and Cyclic Reduction algorithm for computing the matrixR have been proposed.
We refer to Bean [2] for physical interpretations of these algorithms. We use the Logarithmic
Reduction algorithm given by Latouche and Ramaswami [12] to compute the rate matrixR.
The main steps involved in the logarithmic reduction algorithm for computation of R are
listed here as follows:

Step 1. C(0) = (−A)−1C, B(0) = (−A)−1B, G(0) = B(0), H (0) = C(0).
Step 2. Consider

T1
(j) =

(
C(j)

)2
, T2

(j) =
(
B(j)

)2
, U (j) = C(j)B(j) +B(j)C(j),

C(j+1) =
(
I −U (j)

)−1

T1
(j), B(j+1) =

(
I −U (j)

)−1

T2
(j),

G(j+1) = G(j) +H(j)B(j+1), H (j+1) = H (j)C(j+1).

Continue Step 2 until
∥∥∥e−G(j+1)e

∥∥∥
∞
< ε.

Step 3. R = −C
(
A+CG(j+1)

)−1

.

3.3. Performance measures

Based on the steady-state probability distribution obtained in Subsection 3.2, we can
derive the performance measures of the system in steady state. Here, we list some of perfor-
mance measures of interest.

3.3.1. Mean inventory level

Let I denote the mean inventory level. We note that the probability that the inventory
level is n is

∞∑
m=0

xm(n, 1) for 1 ≤ n ≤ S − 1, and the probability that the inventory level is

S is
∞∑

m=0

[xm(S, 1) + xm(S, 0)]. Hence, the mean inventory level is given by

I =
∞∑

m=0

S∑
n=1

nxm (n, 1) +
∞∑

m=0

Sxm (S, 0)

=

[
c−1∑
m=0

xm + xc (I −R)−1

]
ν

where ν = (0, 1, 2, . . . , S, S)T is a column vector with dimension of S + 2.

12



Queueing Models and Service Management

3.3.2. Mean number of busy servers

Let Nb denote the mean number of busy servers. We consider the following two cases:
(i) For 1 ≤ k ≤ c − 1, the number of busy servers is k if and only if the inventory level is
k and the number of customers in the system is larger than or equal to k, or the number of
customers in the system is k and the inventory level is larger than k; (ii) The number of busy
servers is c if and only if both the number of customers in the system and the inventory level
are larger than or equal to c. Thus, the mean number of busy servers is given by

Nb =
c−1∑
k=1

k

[
∞∑

m=k

xm (k, 1) +
S∑

n=k+1

xk (n, 1)

]
+ c

∞∑
m=c

S∑
n=c

xm(n, 1)

=
c−1∑
m=1

xmδm + xc (I −R)−1 δc +
c−1∑
m=1

mxmεm

where δm = (0, 1, . . . ,m, 0, . . . , 0)T for 1 ≤ m ≤ c − 1, δc = (0, 1, . . . , c, c, . . . , c, 0)T ,
and εm = (0, . . . , 0︸ ︷︷ ︸

m+1

, 1, 1, . . . , 1, 0)T for 1 ≤ m ≤ c− 1 are column vectors of dimension of

S + 2.

3.3.3. Mean reorder rate

Let Er be the mean reorder rate, i.e., the mean number of replenishments per unit of
time. We note that a reorder is triggered when the inventory level drops to n (0 ≤ n ≤ s),
and if there are m customers in the system the probability when a reorder is triggered is
s∑

n=1

xm(n, 1) + xm(0, 0). Thus, the mean reorder rate is given by

Er = η
∞∑

m=0

s∑
n=1

xm(n, 1) + η
∞∑

m=0

xm(0, 0)

= η

[
c−1∑
m=0

xm + xc (I −R)−1

]
χ

where χ = (1, 1, . . . , 1︸ ︷︷ ︸
s+1

, 0, . . . , 0)T is a column vector with dimension of S + 2.

3.3.4. Mean order size

Let Eo be the mean order size. We note that a reorder is triggered when the inventory
level drops to n(0 ≤ n ≤ s), and the order size is S−n. Hence, the mean order size is given
by

Eo =
∞∑

m=0

s∑
n=1

(S − n) xm (n, 1) + S
∞∑

m=0

xm (0, 0)

=

[
c−1∑
m=0

xm + xc (I −R)−1

]
σ

where σ = (S, S − 1, . . . , S − s, 0, . . . , 0)T is a column vector with dimension of S + 2.
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3.3.5. Mean loss rate of customers

Let El be the mean loss rate of customers. Since the customer who arrives at epoch
when the inventory is zero or when the server is off for vacation is lost, the mean loss rate
of customers is given by

El = λ
∞∑

m=0

[xm(0, 0) + xm(S, 0)]

= λ

[
c−1∑
m=0

xm + xc (I −R)−1

]
τ1

where τ1 = (1, 0, . . . , 0, 1)T is a column vector with dimension of S + 2.

3.3.6. Mean number of waiting customers in the queue

LetLq be themean number of waiting customers in the queue. We consider the following
two cases: (i) The servers are off for vacation. If there are m customers in the system, the
probability that there arem customers waiting in the queue is xm(0, 0) + xm(S, 0). (ii) The
servers are on for servicing. We assume that there arem customers in the system and n items
in the inventory. For this case, if c ≤ n ≤ S and m ≥ c + 1, the probability that there are

m − c customers waiting in the queue is
S∑

n=c

xm(n, 1); otherwise, if 1 ≤ n ≤ c − 1 and

m ≥ n+1, the probability that there arem− n customers waiting in the queue is xm(n, 1).
Hence, the mean number of waiting customers in the queue is given by

Lq =
∞∑

m=1

m [xm (0, 0) + xm (S, 0)] +
∞∑

m=c+1

S∑
n=c

(m− c) xm (n, 1)

+
c−1∑
n=1

∞∑
m=n+1

(m− n)xm(n, 1)

=
c−1∑
m=1

xmτ1 +
c−1∑
m=2

xmτm + xc (I −R)−1 ς + xcR (I −R)−2 ω

where τ1 = (1, 0, . . . , 0, 1)T , τm = (0,m− 1,m− 2, . . . , 1, 0, . . . , 0)T for 2 ≤ m ≤ c− 1,
ς = (1, c−1, c−2, . . . , 1, 0, . . . , 0)T , andω = (1, 1, . . . , 1︸ ︷︷ ︸

c+1

, 0, . . . , 0, 1)T are column vectors

with dimension of S + 2.

3.3.7. Other performance measures

The mean number of customers who are admitted to the system per unit time is given by

λA = λ− El.

Using Little’s formula, the mean waiting time of a customer in the queue is given by

Wq =
Lq

λA
.

14
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The mean number of vacations per time unit is given by

Ev = θ

[
∞∑

m=0

(xm(0, 0) + xm(S, 0))

]
=
θ

λ
El.

4. Approximate Analysis
In Section 3, we computed the steady-state probability distribution of the system model

by using the matrix-geometric solution technique. However, this method is efficient only for
models of moderate dimension, and are not efficient for models with large or super larger
dimensions. Therefore, belowwe propose an approximate method to compute efficiently the
steady-state probability distribution of the system model so that we can perform asymptotic
analysis of the system model with the larger or super larger dimension of the state space.

Firstly, we consider the conditional joint probability distribution of the inventory level
and the servers’ status given the number of customers in the system. Let ζm =

(
ζm(0, 0),

ζm(1, 1), ζm(2, 1), . . . , ζm(S, 1), ζm(S, 0)
)
be the steady-state conditional probability distri-

bution of the inventory level and the servers’ status conditioned on that there arem (m ≥ 1)
customers in the system, where ζm(n, j) is the conditional probability that the number of
items in the inventory is n and the servers’ status is j, and j is either 0 or 1 according to
whether the servers are off for vacation or on for servicing. The explicit expressions for the
conditional probability distribution ζm are given in the following theorem.
Theorem 2. (1) When 1 ≤ m < c, the steady-state conditional probability distribution is
given by

ζm(0, 0) =

(
1 +

η

θ
+

m−1∑
n=1

βn + βmκ

)−1

, (27)

ζm(n, 1) =



βnζ
m(0, 0), 1 ≤ n ≤ m(

1 +
η

mµ

)n−m

βmζ
m(0, 0), m+ 1 ≤ n ≤ s+ 1(

1 +
η

mµ

)s+1−m

βmζ
m(0, 0), s+ 2 ≤ n ≤ S,

(28)

ζm(S, 0) =
η

θ
ζm(0, 0) (29)

where

βn =


η

µ
, n = 1

η

n!µn

n−1∏
i=1

(η + iµ), 2 ≤ n ≤ m,
(30)

κ =

(
1 +

η

mµ

)s+1−m(
S − s+

mµ

η

)
− mµ

η
. (31)
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(2) Whenm ≥ c, the steady-state conditional probability distribution is given by

ζm(0, 0) =

(
1 +

η

θ
+

c−1∑
n=1

αn + αcγ

)−1

, (32)

ζm(n, 1) =



αnζ
m(0, 0), 1 ≤ n ≤ c(

1 +
η

cµ

)n−c

αcζ
m(0, 0), c+ 1 ≤ n ≤ s+ 1(

1 +
η

cµ

)s+1−c

αcζ
m(0, 0), s+ 2 ≤ n ≤ S,

(33)

ζm(S, 0) =
η

θ
ζm(0, 0) (34)

where αn and γ are defined by Eqs. (10) and (13).
Proof. (1) For the case of 1 ≤ m < c, we get the infinitesimal generatorQ1 of the process
{(N(t), J(t)), t ≥ 0} under the condition thatM(t) = m as follows:

Q1 =



−η 0 η
µ l1 η 0

2µ l2 η 0
. . . . . . ... ...

cµ lm η 0
. . . . . . ... ...

cµ ls η 0
cµ ls+1 0 0

. . . . . . ... ...
cµ lS−1 0 0

cµ lS 0
θ −θ


where

lk =


−(η + kµ), 1 ≤ k ≤ m

−(η +mµ), m+ 1 ≤ k ≤ s

−mµ, s+ 1 ≤ k ≤ S.

The conditional probability distribution ζm satisfies the following equations:{
ζmQ1 = 0
ζme = 1

(35)

where e is a column vector of 1’s of appropriate dimension. If we compare the matrix Q1

and the matrix Hc, it is easy to see that Q1 = Hm. Thus, we get the solution of Eq. (35)
by using the solution of Eq. (1) as given by Eqs. (27)-(29).
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(2) For the case ofm ≥ c, we get the infinitesimal generatorQ2 of the process {(N(t), J(t)), t ≥
0} under the condition thatM(t) = m as follows:

Q2 =



−η 0 η
µ h1 η 0

2µ h2 η 0
. . . . . . ... ...

cµ hc η 0
. . . . . . ... ...

cµ hs η 0
cµ hs+1 0 0

. . . . . . ... ...
cµ hS−1 0 0

cµ hS 0
θ −θ


where

hk =


−(η + kµ), 1 ≤ k ≤ c

−(η + cµ), c+ 1 ≤ k ≤ s

−cµ, s+ 1 ≤ k ≤ S.

The conditional probability distribution ζm satisfies the following equations:{
ζmQ2 = 0
ζme = 1

(36)

where e is a column vector of 1’s of appropriate dimension. If we compare the matrix Q2

and the matrixHc, we observe an interest fact thatQ2 = Hc. Thus, we get the solution of
Eq. (36) by using the solution of Eq. (1) as given by Eqs. (32)-(34).

Next, we consider an inventory system with negligible service time, i.e., µ → ∞. The
other assumptions are the same as given in Section 2. This inventory system becomes a
single-server inventory system with an (s, S) policy and lost sales. We call this system a
modified system. Let {(N̂(t), Ĵ(t)), t ≥ 0} be the state process of this modified system,
where N̂(t) is the inventory level at time t and Ĵ(t) is the status of the server which is defined
as either 0 or 1 according to whether the server is off for vacation or on for servicing, respec-
tively. The state space of the process is given by Ω̂ = {(0, 0), (1, 1), (2, 1), . . . , (S, 1), (S, 0)}.
Let π = (π0,0, π1,1, . . . , πS,1, πS,0) be the steady-state probability vector of the process
{(N̂(t), Ĵ(t)), t ≥ 0}. From the known result given by Zhang [27] (Eqs. (3-21)-(3-24),
p. 30), we get the components of the probability vector π as follows:

π0,0 =
λ

η

(
λ

λ+ η

)s

K, (37)
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πi,1 =


(

λ

λ+ η

)s−i+1

K, 1 ≤ i ≤ s

K, s+ 1 ≤ i ≤ S,

(38)

πS,0 =
λ

θ

(
λ

λ+ η

)s

K (39)

where

K =
1

λ

η
+ S − s+

λ

θ

(
λ

λ+ η

)s . (40)

Further, using the conditional joint probability distribution given in Theorem 2 and the
probability distribution given by Eqs. (37) and (38), we compute approximately the steady-
state probability distribution of the original system model described in Section 2.

Let M , N and J be the corresponding variables of M(t), N(t) and J(t) in the steady
state, respectively. Then, using conditional probability formula, we have

xm(n, j) = P (M = m,N = n, J = j)

= P (M = m)P (N = n, J = j|M = m), (m,n, j) ∈ Ω, m ≥ 1,

or equivalently,
xm = P (M = m)ζm, m ≥ 1

where ζm is determined by Theorem 2.
In general, the queue lengthM depends on the inventory levelN and the servers’ status

J . So, its probability distribution is different from the probability distribution of the queue
length of the classical M/M/c queue. Therefore, we compute approximately the probability
distribution ofM by the probability distribution of the queue length of the classical M/M/c
queue with arrival rate λ and variable service rates that depend on the number of customers
in the system and the inventory level, which is denoted by ψm,m ≥ 0.

Let [m] be a enlarged state that unites all the states in levelm. The state space of all the
enlarged states is denoted by Θ = {[m], m ≥ 0}. Denote ψm = P (M = [m]), m ≥ 0.
Then, similar to the approximate method proposed by Melikov et al. [13], the steady-state
probability distribution of the original system model is approximately determined by

xm ≈ ψmζ
m, m ≥ 1, (41)

or equivalently,
xm(n, j) ≈ ψm ζm(n, j), (m,n, j) ∈ Ω, m ≥ 1

where ζm(n, j) is given by Theorem 2. We note from Eq. (24) that the vector x0 = x1F1.
Thus, x0 can be approximately determined by

x0 ≈ ψ1ζ
1F1 (42)
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where F1 is given by Eq. (25).
Now, we compute approximately the probability distribution ψm = P (M = [m]), m ≥

0. Denote { ˆM(t), t ≥ 0} to be a Markov process defined in state space Θ. Let q([i], [j])
be the intensity of the transition from the enlarged state [i] to the enlarged state [j]. We note
that the transition from state [j + 1] to state [j] only when the servers are on working and
the inventory level is positive. For simplicity, we only consider the case that the number of
on-hand inventory items is larger than or equal to the number of busy servers. This means
that the servers will not be idle due to shortage of inventory. For this, in what follows we
assume that the intensity of replenishment arrival significantly exceeds the intensity of the
server leaving for vacation. Under this asymptotical condition, the intensity of the transition

from state [i] to state [i − 1] can be approximately determined by iµ
S∑

k=i

πk,1 for 1 ≤ i ≤ c,

and by cµ
S∑

k=c

πk,1 for i ≥ c, where πk,1, 1 ≤ k ≤ S, is given by Eq. (38). Hence, we obtain

q([i], [j]) =


λ, if [j] = [i+ 1], i ≥ 0

µi, if [j] = [i− 1], 1 ≤ i ≤ c

µc, if [j] = [i− 1], i ≥ c+ 1

0, in other cases

(43)

where

µi = iµ
S∑

k=i

πk,1, 1 ≤ i ≤ c.

Using Eq. (38), we get

µi = iµ

[
1− λ

θ

(
λ

λ+ η

)s

K − λ

η

(
λ

λ+ η

)s−i+1

K

]
, 1 ≤ i ≤ c (44)

whereK is given by Eq. (40).
We note that { ˆM(t), t ≥ 0} is a birth-and-death process on that state space Θ. The

transition diagram of the states inside the enlarged states in Θ is illustrated in Figure 2. If
ϱ =

λ

µc

< 1, the steady-state probability distribution of the queue lengthM is given by

ψm =


m∏
i=1

λ

µi

ψ0, 1 ≤ m ≤ c

c∏
i=1

λ

µi

ϱm−cψ0, m ≥ c+ 1
(45)

where

ψ0 =

{
1 +

c∑
k=1

k∏
i=1

λ

µi

+
c∏

i=1

λ

µi

(1− ϱ)−1

}−1

. (46)
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Figure 2. The transition diagram of the states inside the enlarged states in Θ.

5. Numerical Analysis
In this section, we develop a total average cost function by using the performance mea-

sures obtained in Section 4 and present some numerical analysis.
A total average cost function F (c, s, S) is defined by

F (c, s, S) = C1Lq + C2I + C3El + C4Er + C5EoEr + C6Nb + C7Evc (47)

where C1 is a waiting cost per unit time per customer in the queue, C2 is a holding cost of
inventory per unit time, C3 is a cost incurred due to loss of per customer, C4 is a fixed cost
for placing an order, C5 is a replenishment cost per item, C6 is a cost incurred per unit time
per busy server , and C7 is a vacation cost per unit time per server.

The cost function F (c, s, S) is a nonlinear function of the decision variables, and all the
decision variables are discrete integer variables. It is difficult to analyze the convexity of the
cost function due to its complexity. For this, we use the traversal search method to find the
optimal inventory policy that minimizes the cost function F (c, s, S).

Firstly, we compute the optimal average cost with the approximation method presented
in Section 4 and with the exact method presented in Section 3 by numerical examples.
Example 1. We compute the optimal reorder point s∗ and its corresponding optimal average
cost F by using the exact method presented in Section 3 and the approximation method
presented in Section 4, respectively for various values of parameter c, keeping the maximum
inventory capacity S fixed. Let F1(s

∗) and F2(s
∗) be the optimal average costs computed

with the exact method and the approximation method, respectively, and let∆1 be the relative
error of the optimal average cost F2(s

∗) on the optimal average cost F1(s
∗), then we can

define ∆1 as follows:

∆1 =

∣∣∣∣F1(s
∗)− F2(s

∗)

F1(s∗)

∣∣∣∣ .
In Table 1, we show the numerical results, where we set the cost parameters as: C1 = 10,
C2 = 5, C3 = 55, C4 = 25, C5 = 15, C6 = 5 and C7 = 45, and the other system parameters
as: λ = 4, µ = 6, θ = 0.8, η = 6, S = 20 as an example.
Table 1. The optimal order point and the optimal average cost for various parameter c.

c 4 5 6 7 8 9 10
s∗ 5 6 7 8 9 10 11

F1(s
∗) 90.5923 96.4501 103.2159 110.3754 117.8357 125.6048 133.7158

F2(s
∗) 96.8432 99.1778 101.3243 104.0954 107.4976 111.4794 116.0445

∆1 0.0690 0.0283 0.0183 0.0569 0.0877 0.1125 0.1322
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Table 1 shows that the optimal reorder points s∗ computed by using the exact method
and the approximation method are the same for different values of parameter c. However, its
corresponding optimal average costs F1(s

∗) and F2(s
∗) are different, and the relative error

of the optimal average cost F2(s
∗) varies from 0.0183 to 0.1322. From Table 1, we also

observe that the optimal reorder point s∗ and its corresponding optimal costs F1(s
∗) and

F2(s
∗) increase with the increasing of the number of servers. This agrees with our intuitive

expectation.
Example 2. We compute the optimal inventory policy (s, S) and the optimal average cost F
by using the exact method presented in Section 3 and the approximation method presented
in Section 4, respectively for various values of parameter c. The numerical results are shown
in Table 2, where F1(s

∗, S∗) and F2(s
∗, S∗) are the optimal average costs computed with the

exact method and the approximation method, respectively. Let ∆2 be the relative error of
optimal total average costs F2(s

∗, S∗), which is defined by

∆2 =

∣∣∣∣F1(s
∗, S∗)− F2(s

∗, S∗)

F1(s∗, S∗)

∣∣∣∣ .
In Table 2, the cost parameters and the other system parameters are assumed as the same as
in Table 1.
Table 2. The optimal inventory policy and the optimal average cost for various parameter c.

c 4 5 6 7 8 9 10
(s∗, S∗) (5, 13) (6, 14) (7, 15) (8, 16) (9, 17) (10, 18) (11, 19)
F1(s

∗, S∗) 83.2335 90.8513 99.1771 107.7274 116.3475 124.9820 133.6133
(s∗, S∗) (5, 16) (6, 16) (7, 17) (8, 18) (9, 18) (10, 19) (11, 20)
F2(s

∗, S∗) 94.1229 96.9054 99.6108 103.0473 107.0579 111.4098 116.0445
∆2 0.1308 0.0666 0.0044 0.0434 0.0798 0.1086 0.1315

From Table 2, we observe that the optimal reorder points s∗ computed by using the exact
method and the approximation method for different values of parameter c are the same, but
the optimal maximum inventory capacity S∗ are little different. However, its corresponding
optimal average costs F1(s

∗, S∗) and F2(s
∗, S∗) are different, and the relative errors of the

optimal average costs F2 varies from 0.0044 to 0.1315.
Next, we consider an optimal problem from the servers’ perspective. When the inventory

policy (s, S) is given, we consider the optimal problem of finding the number of servers to
minimize the average cost F (c, s, S) which is denoted here by F (c).
Example 3. Assume the inventory policy (s, S) = (20, 50) to be given, we can find the
optimal number of servers c and the optimal average cost F (c) for various service rates. The
numerical results are shown in Table 3. The system parameters are set as: λ = 5, θ = 4 and
η = 1.1, and the cost parameters are set as: C1 = 10, C2 = 2, C3 = 100, C4 = 25, C5 = 15,
C6 = 5 and C7 = 45.

It is obvious that increasing the service rate µ can reduce the number of servers. This can
be also observed from Table 3. However, we observe from Table 3 that when service rate µ
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Table 3. The optimal number of servers and the optimal average cost for various service
rates.

µ 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
c 15 14 12 11 10 9 9 8 8

F (c) 183.4039 99.6534 104.8701 97.0346 97.9742 114.2536 93.8314 111.2735 90.3845

increases from 0.8 to 1.2, the optimal number of servers c decreases slightly, and the optimal
average cost F (c) exhibits small fluctuations. This shows that higher service rates do little
help to reduce the optimal average costs, so the service rate should be increased moderately.

Finally, we conduct a numerical analysis by using the approximating method to consider
the effect of parameters λ, µ, θ and η on the optimal policy (c, s, S) and the optimal average
cost F (c, s, S). The numerical results are shown in Tables 4-7. We assume the system
parameters as: λ = 8, µ = 10, θ = 4 and η = 7, unless their values are mentioned in the
respective tables as for each case. In Tables 4-7, we set the cost parameters as: C1 = 10,
C2 = 5, C3 = 35, C4 = 80, C5 = 100, C6 = 50 and C7 = 45.
Example 4. We consider the effect of the arrival rate λ on the optimal policy (c, s, S) and
the optimal cost F (c, s, S) in Table 4.

Table 4. The effect of the arrival rate λ on the optimal policy and the optimal cost.
λ 2 3 4 5 6 7 8

(c, s, S) (2, 3, 13) (2, 3, 14) (3, 4, 18) (3, 4, 20) (3, 4, 21) (3, 4, 22) (4, 5, 28)
F (c, s, S) 121.2146 152.8183 183.7741 217.7202 255.8373 298.2934 344.3292

From Table 4, we observe that the optimal number of servers c and the optimal reorder
point s increase slightly with the increasing of the arrival rate λ, and the optimal maximum
inventory capacity S and the optimal average cost F (c, s, S) increase significantly with the
increasing of the parameter λ. This is because that the number of customers arriving in
the system per unit time increases with the increasing of the parameter λ. Therefore, more
servers may be needed to reduce the customers’ waiting cost. As a result, the optimal maxi-
mum inventory capacity S and the optimal average cost F (c, s, S) increase.
Example 5. We consider the effect of the service rate µ on the optimal policy (c, s, S) and
the optimal average cost F (c, s, S) in Table 5.

Table 5. The effect of the service rate µ on the optimal policy and the optimal cost.
µ 10 15 20 25 30 35 40

(c, s, S) (4, 5, 28) (3, 4, 26) (3, 4, 27) (3, 4, 28) (3, 4, 28) (3, 4, 29) (3, 4, 29)
F (c, s, S) 344.3292 273.1697 240.7529 223.5737 213.3170 206.5791 201.8599

From Table 5, it is found that the optimal number of servers c decreases slightly and
the optimal total average cost F (c, s, S) decreases significantly with the increasing of the
parameter µ. This is because that more items are taken by customers from the inventory
with the increasing of the service rate µ. Therefore, the number of servers in the system can
be decreased to reduce the vacation costs of servers.

22



Queueing Models and Service Management

Example 6. We consider the effect of the parameter θ on the optimal policy (c, s, S) and the
optimal cost F (c, s, S) in Table 6.

It is observed from Table 6 that the optimal number of servers c and the optimal reorder
point s decrease slightly with the increasing of the parameter θ, while the optimal average
cost F (c, s, S) increases slowly with the increasing of the parameter θ. This is because that
the mean vacation time of the servers decreases as the increase of the parameter θ. Therefore,
the number of waiting customers in the queue and the probability of the servers’ vacation
decrease. As a result, the number of servers in the system can be decreased to reduce the
vacation costs of servers.

Table 6. The effect of the parameter θ on the optimal policy and the optimal cost.
θ 2 3 4 5 6 7 8

(c, s, S) (4, 5, 26) (4, 5, 27) (4, 5, 28) (3, 4, 23) (3, 4, 24) (3, 4, 24) (3, 4, 25)
F (c, s, S) 313.2859 328.7768 344.3292 355.1125 365.1191 374.9571 384.5179

Example 7. We consider the effect of the parameter η on the optimal policy (c, s, S) and the
optimal cost F (c, s, S) in Table 7.
Table 7. The effect of the parameter η on the optimal policy and the optimal average cost.

η 0.8 2 5 7 9 11 13 17 19
(c, s, S) (4, 5, 33) (5, 6, 37) (5, 6, 30) (4, 5, 28) (3, 4, 18) (3, 4, 21) (3, 4, 19) (3, 4, 19) (3, 4, 19)
F (c, s, S) 672.6195 478.4653 370.3118 344.3292 327.7637 315.8212 307.0550 295.0992 290.7479

From Table 7, it is observed that the optimal policy (c, s, S) exhibits small fluctuations
when η increases from 0.8 to 11 and then tend to be stable. When the parameter η increases
to a certain extent, e.g., when η increases from 13 to 19, the optimal policy does not vary and
keeps to be (3, 4, 19). This is because that the average replenishment time decreases slightly
when η increases from 13 to 19. Thus, the optimal policy (c, s, S) tends to be stable. We
observed from Table 7 that the optimal average cost F (c, s, S) first decreases significantly
and then decreases slightly with the increasing of the parameter η. This is because that
the average replenishment time is reduced when the increase of the parameter η increases.
Therefore, the lost cost due to lost customers during the stock-out period is reduced. This
may be themain reason that results in the decreasing of the average costF (c, s, S). However,
when the parameter η increases to a certain extent, the average replenishment time decreases
slightly. This result in the slight decrease of the average cost F (c, s, S).

6. Conclusions
In this paper, we analyzed a queueing-inventory systemwith vacations ofmultiple servers

and an (s, S) replenishment policy. The steady-state probability vector of the system was
obtained by using the matrix-geometric solution method. An approximate method to calcu-
late the steady-state probability distribution of the system was developed to deal with larger
or super larger dimension of the state space. Various performance measures of the system
were derived. Numerical results showing the effect of the system parameters on the optimal
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number of servers, the optimal policy and the optimal total average cost were obtained. In
this system model, we assumed that the service rates of all the servers are identical, which is
appropriate when the service process is electronically or mechanically controlled. However,
in an inventory system with human servers, it may be appropriate to assume that the servers
have the different service rates. Therefore, queueing-inventory systems with heterogeneous
servers and servers’ vacations should be worthy of further study. However, this extension
would be more challenging due to their analytical complexity.
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