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Abstract: This paper analyzes an infinite buffer bulk arrival batch size dependent bulk ser-
vice queue with server’s vacation. Customers enter the system in groups of random size
following Poisson manner. Single server provides two kinds of services, first one is essen-
tial for all the joining customers and is termed as first essential service (FES) and the second
service is optional to the customers and is termed as second optional service (SOS). The
server serves the customers in batches following versatile bulk service (VBS) rule in FES.
At the end of FES, the entire batch of customers served in FES will either join SOS with
certain probability or leave the system. While server is providing SOS, the FES can not be
resumed. The service time distribution for FES and SOS both are generally distributed while
FES time distribution is considered to be batch size dependent. At the end of a round of ser-
vice (which includes FES and/or SOS), upon looking into the queue length, the server will
decide to go for vacation (SV or MV) with general vacation time distribution which depends
on the queue length at vacation initiation epoch. We analyze the model mathematically by
using the supplementary variable technique (SVT), embedded Markov chain technique, and
bivariate generating function technique. We obtained the joint probabilities of the queue
length and server content at the service completion (arbitrary) epoch. We also obtained the
joint probabilities of the queue length and vacation type at the vacation completion (arbi-
trary) epoch. Several qualitative performance measures are obtained. Finally, Numerical
results are also presented to see the behavior of the considered model.

Keywords: VBS rule, Second optional service (SOS), Single vacation (SV), Multiple vaca-
tion (MV), Bivariate generating function.

1. Introduction
In real life scenario, queueing models are analyzed to reduce the congestion because of

their applicability in various areas, viz., computer networking, traffic signal point, manu-
facturing point, transportation, etc. Customers enter the system either singly or in bulk in
such queueing models. The server serves the customers either individually or in batch with
different service rules, viz., fixed batch size service rule, general bulk service (GBS) rule,
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random batch size bulk service rule, versatile bulk service (VBS) rule, etc. For detail and
deeper knowledge of bulk service queue, we mention Chaudhry and Templeton [12], and
Medhi [28]. VBS rule, also called the (a, Y ) rule is the most generalized bulk service rule
among all other mentioned bulk service rule. It was proposed by Powell and Humblet [31],
and later Kim et al. [21] named this rule as VBS rule. According to the VBS rule, the server
provides the service in batches, and a is the minimum threshold limit to serve. After one
service, if the queue length is found to be less than a, then the server remains in the idle state
and waits the queue length to reach to a or more for starting service. At the beginning of the
service the server takes Y (= i), i = a, a+1, ..., B customers for the service, where B is the
maximum capacity of the server, and Y is the random variable having finite support (Y is
also called variable service capacity) with probability mass function (PMF) Pr(Y = i)=y

i
,

i = a, a+1, ..., B and y
B
> 0. At the beginning of the service, if the number of customers is

greater than or equal to a but less than the chosen service capacity i (a ≤ i ≤ B) then it does
not wait for the queue length to reach i, and serves all the the customers with probability
y
i
. At the beginning of the service, if the number of customers is greater than the chosen

service capacity i then it takes i customers for the service with probability y
i
and rest will

wait in the queue. Literature in which the authors considered the VBS rule can be found in
[40, 25, 8, 33] and the references therein. If y

B
= 1 then VBS rule converts in GBS rule

which is proposed by Neuts [30].
Queueing system when no jobs are available in the system, the server goes into an idle

state. During this time, the manager may have some additional work for the server, such as
maintenance of the machine, promoting the company’s new policy, etc. Hence, for utilizing
the idle period of the server, Levy and Yechiali [23] proposed M/G/1 vacation queueing
model with single vacation (SV) and multiple vacation (MV) in which the server performs
some supplementary work when no primary job is available in the system. After this sig-
nificant contribution in the literature, many researchers turned their attention towards the
vacation model, see the excellent survey paper of Doshi [16], and Ke et al. [20]. For the
quality literature on vacation theory, readers are requested to see Takagi [36], and Tian and
Zhang [38]. According to the SV policy, after one service, if there is no job available for
service, then the server goes down for vacation, and after the vacation completion, if there
is a job in the system, then it starts service, otherwise, it remains in the dormant state. How-
ever, in the case of MV, it takes a repeated number of vacations until it finds the job at the
end of the vacation completion.

The terminology of second optional service in queueing systemswas proposed byMadan
[24], where he analyzed the M/G/1 queueing model using SVT. For every customer, the
first service is essential and is called first essential service (FES), some of them request
the subsidiary service called second optional service (SOS). Later, many researchers have
analyzed different queueing models with a second optional service, see, Medhi [27], Al-
Jararha and Madan [3], Wang [39], Choudhury and Tadj [11].
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1.1. Related literature survey

The literature on bulk service queues with the VBS rule can be found in [40, 8] where au-
thors obtained the queue length distribution at various epochs for different queues, however,
few authors worked for the joint distribution of queue and server content, see [25, 26, 33].
Maity and Gupta [25] analyzed M/M (a,Y )/1 queue and obtained the joint distribution of
queue and server content in steady-state. Maity et al. [26] considered Geo/G

(a,Y )
n /1 queue

and obtained the joint distribution of queue and server content at various epochs. Recently,
Pradhan [33] analyzed M/G

(a,Y )
n /1 queue and obtained the joint distribution of queue and

server content at various epochs by using the supplementary variable technique and the bi-
variate probability generating function (PGF) method.

The literature on bulk service queueing models with vacation where the customers gets
the service according to the GBS rule are analyzed in [17, 29, 37] and the references therein.
Tamrakar and Banerjee [37] consideredM/G

(a,b)
r /1 queue with queue length dependent sin-

gle and multiple vacation. They obtained joint probabilities of queue and server content and
the joint probabilities of queue length and vacation type at various epochs using SVT.

The bulk arrival bulk service queue with server’s vacation has been analyzed by [10,
34, 19, 18, 4]. Chang and Choi [10] considered discrete time GeoX/GY /1/N queue with
MV and obtained some performance measures at various epochs. Sikdar and Gupta [34]
consideredMX/GY /1/N queue with SV and MV and obtained the stationary queue length
distribution at various epochs by using SVT. Haridass and Arumuganathan [19] analyzed
MX/G(a,b)/1 queue with vacation interruption and obtained queue length distribution at an
arbitrary epoch. Jeyakumar and Senthilnathan [18] considered MX/G(a,b)/1 with MV and
setup time, closedown times, and server breakdown without interruption. Using SVT, they
derived the PGF of the queue length at an arbitrary epoch. Ayyappan and Deepa [4] consid-
ered MX/G(a,b)/1 queue with MV, closedown, essential and optional repair, and obtained
the queue size distribution at an arbitrary epoch using the SVT.

For the bulk queues with SOS, few papers are available in the literature . Ayyappan and
Shyamala [6] considered MX/G/1 queue with SOS, Bernoulli Schedule server vacation
and random break downs and obtained the time-dependent probability generating functions
in terms of the Laplace transforms and the corresponding steady state results are also ob-
tained explicitly. Ayyappan and Supraja [7] analyzed MX/G(a,b)/1 queue with unreliable
server, second optional service, two different vacations, and restricted admissibility policy,
and obtained the queue length distribution at random and departure epoch using the SVT.
Singh et al. [35] analyzed bulk arrival queue with different m-SOS, vacation, and unreli-
able server using SVT. Ayyappan and Deepa [5] consideredMX/G(a,b)/1 queue with SOS,
MV, and setup time. They obtained the PGF of the queue size at different epochs using
SVT. For the current work on the bulk queues with SOS, readers are invoked to see [22, 15]
and the references therein. To the best of the authors’ knowledge, the considered model,
i.e., MX/G(a,Y )/1 queue with SOS and queue length dependent SV and MV, has not been
analyzed so far in the literature for the joint probabilities of queue and server content for
FES (SOS) at the service completion (arbitrary) epoch as well as joint probabilities of queue
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content and vacation type at the vacation termination (arbitrary) epoch.

1.2. Practical motivation

Queueing models with SOS can be applied in many areas (viz., Barbar shop, Malls, etc.)
Considered model can be used for blood (or swab) sample testing in an epidemic situation
such as COVID-19, as batch service queues have efficacious application in blood pooling,
see, e.g., [2, 9, 14]. In an epidemic (viz., COVID-19), the health administration of any
country wants to test more and more samples using less number of kits. Hence, a mixed
sample is used for testing by taking a group of samples from the queue, see [41, 32, 13].
Further, in a pandemic situation handling the health workers’ shortage is also a big challenge.
To deal with such situation, the health administration may provide some additional work to
the health workers (viz., visiting the quarantine room, stocking the health care inventory,
making people aware of the epidemic) when he has no primary work.

Our model may play a key role in sample testing to deal with pandemic situations such as
COVID-19. Let us consider that a large number of samples arrive at the health department in
bulk for testing from different sectors, then the health worker tests these samples in batches
(mixed sample), termed as FES, according to the (a, Y ) rule with batch size dependent ser-
vice. After FES, if the mixed sample diagnosed negative then the health worker decides how
many samples will be mixed for the next test with a certain probability. For example, the
health administration instructs the health worker that if the mixed sample is found negative,
select the batch of maximum capacity for the next test; otherwise, choose the batch size of its
minimum capacity. Therefore, (a, Y ) rule is justified here. After FES, if the mixed sample
diagnosed positive then the sample go for the SOS to identify the infected sample.

Further, in the absence of primary work, the health worker does some additional work
(viz., stocking of health care inventory, increase people awareness, visiting the quarantine
room, etc.). Before going for this additional work, the health worker always checks the queue
size, and depending on the queue size; he fixes his returning time in the primary system.
Hence, the QSDV policy rule may have a wide impact on the system’s performance. The
practical application discusses above motivate us to work on this problem.

1.3. Paper structure

Section 2 presents the model description of the considered model. In Section 3, joint
probabilities of queue and server content as well as queue length and vacation type obtained
at different epoch. The various important performance measures are presented in Section 4.
The behavior of the system is discussed by means of graphs and tables in Section 5. The
whole study ends with the conclusion (i.e., Section 6).

2. Model
The present paper investigates infinite capacity bulk arrival, batch size dependent bulk

service queue with queue size dependent single (multiple) vacations. Here below is the detail
mathematical description of our model.
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The customers are coming in packets (groups) following the Poison distribution with rate
λ. LetX be the size of the arriving group with probability mass function Pr(X = m) = gm,
m ∈ N associated with finite mean E(X) = g̃ and PGFX(z) =

∞∑
i=1

giz
i. The customers are

served in batches according to the VBS rule, i.e., (a, Y ) rule, where the random variable Y ,
denoting service capacity, has the following probability mass function,

Pr(Y = i) =

{
yi, a ≤ i ≤ B

0, otherwise.

Here B is the maximum serving capacity of the server with yB > 0 and E(Y ) = ỹ. At each
service initiation epoch if the queue length lies in [a, i) (where i is the chosen service capacity
at the service initiation epoch) then server does not wait for the queue length to reach i, but
it takes entire customer for the service with probability yi, and if the server finds the queue
length≥ i then it takes only i customers for the service with probability yi. The service (FES)
time (Tr), of a batch of size r (a ≤ r ≤ B) is distributed generally along with probability
density function (pdf) sr(t), distribution function (DF) Sr(t), the Laplace-Stieltjes transform
(LST) S̃r(θ) and the mean service time 1

µr
= sr = −S̃

(1)
r (0) (a ≤ r ≤ B), where S̃(1)

r (0)

is the derivative of S̃r(θ) evaluated at θ = 0. After first essential service (FES) the served
batch may choose second optional service (SOS) with probability α. The optional service
time (T̂ ) of a batch distributed generally along with probability density function (pdf) s(t),
distribution function (DF) S(t), the Laplace-Stieltjes transform (LST) S̃(θ) and the mean
service time 1

µ
= ς = −S̃(1)(0), where S̃(1)(0) is the derivative of S̃(θ) evaluated at θ = 0.

After FES if the queue length is found to be less than the minimum threshold limit a and
the batch served in FES does not choose SOS then the server goes for the type k vacation
(where k (0 ≤ k ≤ a − 1) is the queue length at vacation initiation epoch), similarly, after
SOS if the queue length is found to be k < a then the server goes for type k vacation . At
the end of the vacation if the queue length is≥ a then it serves the customer as per the (a, Y )
rule otherwise depending on the vacation policy the server remains in the system at dormant
state until queue length reaches at least the minimum threshold limit a or takes repeated
vacation until it finds queue length ≥ a at the end of the vacation. Vacation time Vk of the
type k vacation obeys the general distribution with pdf vk(t), DF Vk(t), LST Ṽk(θ). The
mean vacation time 1

νk
= xk = −Ṽ

(1)
k (0) where Ṽ (1)

k (0) is the derivative of Ṽk(θ) at θ = 0.

The traffic intensity of the system ρ =
λg̃

B∑
i=a

yi
µi

+λg̃ α
µ

ỹ
(< 1) which ensures the stability of the

system. In this paper we have studied SV and MV queues in an unified way by defining a
variable δ as follows:

δ =

{
1, for MV,
0, for SV.

Remark 1: The traffic intensity of the model under consideration is proved using the
result given in Abolnikov and Dukhovny [1]. If we consider the TPM of the queue length
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at complete round of service completion epoch (i.e., FES and/or SOS). Then the resulting
TPM will be ∆B,B type matrix. Then using the stability condition given in Abolnikov and
Dukhovny [[1], Theorem 3.4], the Markov chain is ergodic if and only if{

d
dz
(1−α+αMos(z))

B∑
i=a

yiM
(i)(z)zB−i

}
z=1

< B, i.e., ρ < 1, whereM (r)(z) (a ≤ r ≤ B)

and Mos(z) are the PGF of m(r)
j and qj , respectively, with m

(r)
j = Pr{j arrivals during the

service (i.e., FES) time of a batch size r}, a ≤ r ≤ B, j ≥ 0, and qj = Pr{j arrivals during
the service (i.e., SOS) time}, j ≥ 0.

3. Analysis
This section is devoted in obtaining the joint probabilities of the queue length and server

content at the service (FES and SOS) completion epoch and the joint probabilities of the
queue size and the vacation type at the vacation termination epoch. Later we obtain the joint
probabilities of the queue and server content during FES (SOS) and the joint probabilities of
queue length and vacation type at an arbitrary epoch by relating it to the joint probabilities
at service completion and vacation termination epoch. From this perspective, we have the
following random variable at time t.

• N(t): be the number of customers are in the queue.
• Ŝ1(t): be the number of customers with the server when the server is busy in FES.
• Ŝ2(t): be the number of customers with the server when the server is busy in SOS.
• K̂(t): be the vacation type taken by the server, when the server is on vacation.
• U(t): remaining service (FES) time of the batch, if any.
• Û(t): remaining service (SOS) time of the batch, if any.
• V (t): remaining vacation time of the server, if any.

Point to be noted here that Ŝ1(t) = 0 and Ŝ2(t) = 0will represent the server is in the dormant
state at time t.

For SV, {(N(t), Ŝ1(t) = 0, Ŝ2(t) = 0), 0 ≤ n ≤ a − 1} ∪ {
(
N(t), Ŝ1(t), U(t)

)
} ∪

{
(
N(t), Ŝ2(t), Û(t)

)
}∪{

(
N(t), K̂(t), V (t)

)
} forms aMarkov chainwith state space {(n, 0, 0);

0 ≤ n ≤ a − 1}
∪
{(n, r, u);n ≥ 0, a ≤ r ≤ B, u ≥ 0}

∪
{(n, k, u); 0 ≤ k ≤ a − 1, n ≥

k, u ≥ 0}.
For MV, {

(
N(t), Ŝ1(t), U(t)

)
} ∪ {

(
N(t), Ŝ2(t), Û(t)

)
} ∪ {

(
N(t), K̂(t), V (t)

)
} forms

a Markov chain with state space {(n, r, u);n ≥ 0, a ≤ r ≤ B, u ≥ 0}
∪
{(n, k, u); 0 ≤ k ≤

a− 1, n ≥ k, u ≥ 0}.
Let us now, define the state probabilities at time t as

• Rn(t) ≡ Pr{N(t) = n, Ŝ1(t) = 0, Ŝ2(t) = 0}, 0 ≤ n ≤ a− 1 (exist only for SV).
• Pn,r(u, t)du ≡ Pr{N(t) = n, Ŝ1(t) = r, u ≤ U(t) ≤ u+ du}, n ≥ 0 , a ≤ r ≤ B.

• Wn,r(u, t)du ≡ Pr{N(t) = n, Ŝ2(t) = r, u ≤ Û(t) ≤ u+ du}, n ≥ 0 , a ≤ r ≤ B.
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• Q
[k]
n (u, t)du ≡ Pr{N(t) = n, K̂(t) = k, u ≤ V (t) ≤ u+ du}, n ≥ k , 0 ≤ k ≤

a− 1.

In steady state, as t → ∞, the limiting probabilities are defined as follows
Rn = lim

t→∞
Rn(t) (0 ≤ n ≤ a− 1), (exist only for SV),

Pn,r(u) = lim
t→∞

Pn,r(u, t), n ≥ 0, a ≤ r ≤ B,
Wn,r(u) = lim

t→∞
Wn,r(u, t), n ≥ 0, a ≤ r ≤ B,

Q
[k]
n (u) = lim

t→∞
Q[k]

n (u, t), n ≥ k, 0 ≤ k ≤ a− 1.

Nowwe obtain the system equation that governs the system behavior. Analyzing the system,
at time t and t+ dt, in steady state, the Kolmogorov equations are obtained as follows:

0 = (1− δ)

(
− λR0 +Q

[0]
0 (0)

)
, (1)

0 = (1− δ)

(
− λRn + λ

n∑
i=1

giRn−i +
n∑

k=0

Q[k]
n (0)

)
, 1 ≤ n ≤ a− 1,(2)

− d

du
P0,r(u) = −λP0,r(u)

+

( a−1∑
k=0

Q[k]
r (0) +

B∑
j=a

Pr,j(0)(1− α) +
B∑

j=a

Wr,j(0)

) B∑
i=r

yisr(u)

+(1− δ)λ
a−1∑
j=0

Rjgr−j

B∑
i=r

yisr(u), a ≤ r ≤ B, (3)

− d

du
Pn,r(u) = −λPn,r(u) + λ

n∑
j=1

Pn−j,r(u)gj

+

( a−1∑
k=0

Q
[k]
n+r(0) +

B∑
j=a

Pn+r,j(0)(1− α) +
B∑

j=a

Wn+r,j(0)

)
yrsr(u)

+(1− δ)λ
a−1∑
j=0

Rjgn+r−jyrsr(u), a ≤ r ≤ B, n ≥ 1, (4)

− d

du
Q

[k]
k (u) = −λQ

[k]
k (u) +

( B∑
r=a

Pk,r(0)(1− α) +
B∑

r=a

Wk,r(0)

+δ
k∑

j=0

Q
[j]
k (0)

)
vk(u), 0 ≤ k ≤ a− 1, (5)

− d

du
Q[k]

n (u) = −λQ[k]
n (u) + λ

n−k∑
i=1

giQ
[k]
n−i(u), n ≥ k + 1, 0 ≤ k ≤ a− 1, (6)
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− d

du
W0,r(u) = −λW0,r(u) + P0,r(0)s(u)α, a ≤ r ≤ B, (7)

− d

du
Wn,r(u) = −λWn,r(u) + λ

n∑
j=1

Wn−j,r(u)gj + Pn,r(0)s(u)α,

n ≥ 1, a ≤ r ≤ B. (8)

Further, we define for Re θ ≥ 0,

S̃r(θ) =

∫ ∞

0

e−θudSr(u) =

∫ ∞

0

e−θusr(u)du, a ≤ r ≤ B, (9)

P̃n,r(θ) =

∫ ∞

0

e−θuPn,r(u)du, a ≤ r ≤ B, n ≥ 0, (10)

Pn,r ≡ P̃n,r(0) =

∫ ∞

0

Pn,r(u)du, a ≤ r ≤ B, n ≥ 0, (11)

S̃(θ) =

∫ ∞

0

e−θudS(u) =

∫ ∞

0

e−θus(u)du, a ≤ r ≤ B, (12)

W̃n,r(θ) =

∫ ∞

0

e−θuWn,r(u)du, a ≤ r ≤ B, n ≥ 0, (13)

Wn,r ≡ W̃n,r(0) =

∫ ∞

0

Wn,r(u)du, a ≤ r ≤ B, n ≥ 0, (14)

Ṽk(θ) =

∫ ∞

0

e−θudVk(u) =

∫ ∞

0

e−θuvk(u)du, 0 ≤ k ≤ a− 1, (15)

Q̃[k]
n (θ) =

∫ ∞

0

e−θuQ[k]
n (u)du, 0 ≤ k ≤ a− 1, n ≥ k, (16)

Q[k]
n ≡ Q̃[k]

n (0) =

∫ ∞

0

Q[k]
n (u)du, 0 ≤ k ≤ a− 1, n ≥ k. (17)

One may note here that Pn,r (Wn,r) denotes the probability that there are n (n ≥ 0) customers
in the queue and server is busy with r (a ≤ r ≤ B) customers during FES (SOS), at an
arbitrary epoch. Also,Q[k]

n indicates the probability of n (n ≥ k) customers in the queue and
the server is on type k (0 ≤ k ≤ a− 1) vacation, at an arbitrary epoch. Multiplying (3)-(8)
by e−θu and integrating with respect to u over 0 to∞ we obtain

(λ− θ)P̃0,r(θ) =

( a−1∑
k=0

Q[k]
r (0) +

B∑
j=a

Pr,j(0)(1− α) +
B∑

j=a

Wr,j(0)

) B∑
i=r

yiS̃r(θ)

+(1− δ)λ
a−1∑
j=0

Rjgr−j

B∑
i=r

yiS̃r(θ)− P0,r(0), a ≤ r ≤ B, (18)

(λ− θ)P̃n,r(θ) = λ

n∑
j=1

gjP̃n−j,r(θ) +

( a−1∑
k=0

Q
[k]
n+r(0) +

B∑
j=a

Pn+r,j(0)(1− α)
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+
B∑

j=a

Wn+r,j(0)

)
yrS̃r(θ) + (1− δ)λ

a−1∑
j=0

Rjgn+r−jyrS̃r(θ)

−Pn,r(0), a ≤ r ≤ B, n ≥ 1, (19)

(λ− θ)Q̃
[k]
k (θ) =

( B∑
r=a

Pk,r(0)(1− α) +
B∑

r=a

Wk,r(0) + δ
k∑

j=0

Q
[j]
k (0)

)
Ṽk(θ)

−Q
[k]
k (0), 0 ≤ k ≤ a− 1, (20)

(λ− θ)Q̃[k]
n (θ) = λ

n−k∑
i=1

giQ̃
[k]
n−i(θ)−Q[k]

n (0), n ≥ k + 1, 0 ≤ k ≤ a− 1, (21)

(λ− θ)W̃0,r(θ) = P0,r(0)S̃(θ)α−W0,r(0), a ≤ r ≤ B, (22)

(λ− θ)W̃n,r(θ) = λ
n∑

j=1

W̃n−j,r(θ)gj + Pn,r(0)S̃(θ)α

−Wn,r(0), n ≥ 1, a ≤ r ≤ B. (23)

As our main objective is to obtain the joint probabilities of the queue and server content
during FES (SOS) as well as the joint probabilities of queue length and vacation type at
an arbitrary epoch, these arbitrary epoch joint probabilities are obtained by establishing a
relationship between the joint probabilities of the queue length and server content at the
service completion epoch, and the joint probabilities of the queue length and vacation type
at the vacation termination epoch. Towards this end, we define,

P+
n,r = Pr{n customers are in the queue at service (i.e., FES) completion epoch

of a batch of size r}, n ≥ 0, a ≤ r ≤ B, (24)
P+
n = Pr{n customers are in the queue at service (i.e., FES) completion epoch}

=
B∑

r=a

P+
n,r, n ≥ 0, (25)

W+
n,r = Pr{n customers are in the queue at service (i.e., SOS) completion epoch

of a batch of size r}, n ≥ 0, a ≤ r ≤ B, (26)
W+

n = Pr{n customers are in the queue at service (i.e., SOS) completion epoch}

=
B∑

r=a

W+
n,r, n ≥ 0, (27)

Q[k]+
n = Pr{n customers are in the queue at type k vacation

termination epoch}, 0 ≤ k ≤ a− 1, (28)
Q+

n = Pr{n customers are in the queue at the vacation termination epoch}

=

min(n,a−1)∑
k=0

Q[k]+
n , n ≥ 0. (29)
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3.1. Joint probabilities at service (vacation) completion epoch

In this subsection our primary objective is to obtain P+
n,r (W+

n,r) (n ≥ 0, a ≤ r ≤ B)

and Q[k]+
n (0 ≤ k ≤ a− 1, n ≥ k), i.e., the joint probabilities of the queue length and server

content at service (FES and SOS) completion epoch and the joint probabilities of the queue
size and the vacation type at vacation termination epoch, in this connection we further define
the following generating functions:

P (z, y, θ) =
∞∑
n=0

B∑
r=a

P̃n,r(θ)z
nyr, |z| ≤ 1, |y| ≤ 1, (30)

P+(z, y) =
∞∑
n=0

B∑
r=a

P+
n,rz

nyr, |z| ≤ 1, |y| ≤ 1, (31)

P+(z, 1) =
∞∑
n=0

B∑
r=a

P+
n,rz

n =
∞∑
n=0

P+
n zn = P+(z), |z| ≤ 1, (32)

W (z, y, θ) =
∞∑
n=0

B∑
r=a

W̃n,r(θ)z
nyr, |z| ≤ 1, |y| ≤ 1, (33)

W+(z, y) =
∞∑
n=0

B∑
r=a

W+
n,rz

nyr, |z| ≤ 1, |y| ≤ 1, (34)

W+(z, 1) =
∞∑
n=0

B∑
r=a

W+
n,rz

n =
∞∑
n=0

W+
n zn = W+(z), |z| ≤ 1, (35)

Q(z, y, θ) =
a−1∑
k=0

∞∑
n=k

Q̃[k]
n (θ)znyk, |z| ≤ 1, |y| ≤ 1, (36)

Q+(z, y) =
a−1∑
k=0

∞∑
n=k

Q[k]+
n znyk, |z| ≤ 1, |y| ≤ 1, (37)

Q+(z, 1) =
a−1∑
k=0

∞∑
n=k

Q[k]+
n zn =

∞∑
n=0

min(n,a−1)∑
k=0

Q[k]+
n zn

=
∞∑
n=0

Q+
n z

n = Q+(z), |z| ≤ 1. (38)

Further, we define

m
(r)
j = Pr{j arrivals during the service (i.e., FES) time of a batch size r},

a ≤ r ≤ B, j ≥ 0,

=


∫∞
0

j∑
l=1

e−λt(λt)l

l!
g
l(∗)
j sr(t)dt, j ≥ 1,∫∞

0
e−λtsr(t)dt, j = 0.

(39)
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qj = Pr{j arrivals during the service (i.e., SOS) time}, j ≥ 0,

=


∫∞
0

j∑
l=1

e−λt(λt)l

l!
g
l(∗)
j s(t)dt, j ≥ 1,∫∞

0
e−λts(t)dt, j = 0.

(40)

w
(k)
j = Pr{j arrivals during the type k vacation}, 0 ≤ k ≤ a− 1, j ≥ 0,

=


∫∞
0

j∑
l=1

e−λt(λt)l

l!
g
l(∗)
j vk(t)dt, j ≥ 1,∫∞

0
e−λtvk(t)dt, j = 0,

(41)

where gl(∗)j is the probability associated with l-fold convolution function of gj with itself.
For detail discussion of the l-fold convolution associated with random variables readers are
invoked to see the books by Chaudhry and Templeton [[12], Section 1.2]. Define the PGF
(probability generating function) ofm(r)

j , qj and w(k)
j are as follows:

M (r)(z) =
∞∑
j=0

m
(r)
j zj = S̃r(λ− λX(z)), a ≤ r ≤ B, |z| ≤ 1, (42)

Mos(z) =
∞∑
j=0

qjz
j = S̃(λ− λX(z)), a ≤ r ≤ B, |z| ≤ 1, (43)

N (k)(z) =
∞∑
j=0

w
(k)
j zj = Ṽk(λ− λX(z)), 0 ≤ k ≤ a− 1, |z| ≤ 1. (44)

Lemma 1. For the case of SV the following result is hold

λRn =
n∑

m=0

m∑
k=0

en,mQ
[k]
m (0), 0 ≤ n ≤ a− 1. (45)

where en,m =
n−m∑
i=1

gien−i,m, 1 ≤ n ≤ a− 1, 0 ≤ m ≤ n− 1 and en,n = 1, 0 ≤ n ≤ a− 1.

Proof. Setting n = 1 in (2) and using (1) we obtain

λR1 =
1∑

m=0

m∑
k=0

e1,mQ
[k]
m (0), e1,0 = g1, e1,1 = 1. (46)

Setting n = 2 in (2) and using (1) and (46) we obtain

λR2 =
2∑

m=0

m∑
k=0

e2,mQ
[k]
m (0), e2,0 = g2 + e1,0g1, e2,1 = g1, e2,2 = 1. (47)
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We repeat the above process by setting n = 3, 4, ..., a− 1, respectively, in (2). In genral we
get

λRn =
n∑

m=0

m∑
k=0

en,mQ
[k]
m (0), 1 ≤ n ≤ a− 1, (48)

where en,m =
n−m∑
i=1

gien−i,m, 1 ≤ n ≤ a− 1, 0 ≤ m ≤ n− 1 and en,n = 1 , 1 ≤ n ≤ a− 1.

Using (1), (48), and e0,0 = 1 we obtain the desire result (45).

Lemma 2. The probabilities P+
n,r, W+

n,r, Q
[k]+
n , Pn,r(0), Wn,r(0) and Q

[k]
n (0) (a ≤ r ≤

B, 0 ≤ k ≤ a− 1) are associated with the following relation

P+
n,r = σPn,r(0), (49)

W+
n,r = σWn,r(0), (50)

Q[k]+
n = σQ[k]

n (0), (51)

where σ−1 =
∞∑

m=0

B∑
r=a

Pm,r(0) +
∞∑

m=0

B∑
r=a

Wm,r(0) +
∞∑

m=0

min(m,a−1)∑
k=0

Q
[k]
m (0).

Proof. Since P+
n,r,W+

n,r, and Q
[k]+
n are proportional to Pn,r(0),Wn,r(0) and Q[k]

n (0), respec-

tively. Applying the Bayes’ theorem and
∞∑
n=0

B∑
r=a

(P+
n,r + W+

n,r) +
∞∑
n=0

min(n,a−1)∑
k=0

Q
[k]+
n =1 we

get the desired outcome.

Lemma 3. The value σ−1 is given by

σ−1 =

1− (1− δ)
a−1∑
n=0

Rn

f
, (52)

where

f =
∞∑

n=B+1

β+
n

B∑
r=a

yrsr + β+
a sa +

B∑
n=a+1

β+
n

( n−1∑
i=a

yisi +
B∑
i=n

yisn
)

+
a−1∑
n=0

{
P+
n xn(1− α) +W+

n xn + (1− δ)
a−1∑
m=n

em,nQ
+
n

( B∑
r=a

gr−m

B∑
i=r

yiµr

+
∞∑
l=1

B∑
r=a

gr−m+lyrµr

)
+ δQ+

nxn

}
+

∞∑
n=0

P+
n ςα,

and β+
n = P+

n (1− α) +W+
n +Q+

n , n ≥ 0.
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Proof. Using (45), summing (18)-(23), we get

∞∑
m=0

B∑
r=a

(P̃m,r(θ) + W̃m,r(θ)) +
∞∑

m=0

min(m,a−1)∑
k=0

Q̃[k]
m (θ) =

A(θ)

θ
, (53)

where

A(θ) =
∞∑

n=B+1

( B∑
r=a

Pn,r(0)(1− α) +
B∑

r=a

Wn,r(0) +
a−1∑
k=0

Q[k]
n (0)

) B∑
r=a

yr(1− S̃r(θ))

+
B∑

n=a+1

( B∑
r=a

Pn,r(0)(1− α) +
B∑

r=a

Wn,r(0) +
a−1∑
k=0

Q[k]
n (0)

)
( n−1∑

i=a

yi(1− S̃i(θ)) +
B∑
i=n

yi(1− S̃n(θ))

)
+

a−1∑
n=0

( B∑
r=a

Pn,r(0)(1− α)

+
B∑

r=a

Wn,r(0) + δ
n∑

k=0

Q[k]
n (0)

)
(1− Ṽn(θ))

+

( B∑
j=a

Pa,j(0)(1− α) +
B∑

j=a

Wa,j(0) +
a−1∑
k=0

Q[k]
a (0)

)
(1− S̃a(θ))

+

{
1−

a−1∑
m=n

em,n

( B∑
r=a

gr−m

B∑
i=r

yiS̃r(θ) +
∞∑
l=1

B∑
r=a

gr−m+lyrS̃r(θ)

)}

(1− δ)
a−1∑
n=0

n∑
k=0

Q[k]
n (0) +

∞∑
n=0

B∑
r=a

Pn,r(0)α(1− S̃(θ)).

Taking θ → 0 in (53) and using Lemma 2, (25), (27), (29), L’Hôspital’s rule, and the

normalization condition (1− δ)
a−1∑
n=0

Rn +
∞∑
n=0

B∑
r=a

(Pn,r +Wn,r) +
∞∑
n=0

min(n,a−1)∑
k=0

Q
[k]
n =1, after

few simplification we get desired outcome.

Lemma 4.

W+(z) = P+(z)Mos(z)α. (54)

Proof. Multiplying (22)-(23) by proper power of z and y and summing over the range of n
and r we obtain

(λ− θ − λX(z))W (z, y, θ) =
∞∑
n=0

B∑
r=a

Pn,r(0)αS̃(θ)z
nyr

−
∞∑
n=0

B∑
r=a

Wn,r(0)z
nyr. (55)
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Substituting θ = λ− λX(z) in the above expression and using Lemma 2 and (43) we get

W+(z, y) =
∞∑
n=0

B∑
r=a

P+
n,rαMos(z)z

nyr. (56)

Setting y = 1 in (56) and using (25) and (32) we get desired result (54).

Lemma 5.

W+
n = α

n∑
i=0

P+
i qn−i, n ≥ 0, a ≤ r ≤ B. (57)

Proof. Using (34), (32), and (43) in (54), after simplification we get
∞∑
n=0

W+
n zn = α

∞∑
n=0

n∑
i=0

P+
i qn−iz

n. (58)

Now collecting the coefficients of zn (n ≥ 0) from both the side of (58) we get desired
outcome (57).

Lemma 6.

Q+(z) =
a−1∑
k=0

∞∑
n=k

Q[k]+
n zn =

a−1∑
k=0

(P+
k (1− α) +W+

k + δQ+
k )N

(k)(z)zk. (59)

Proof. Multiplying (20) and (21) by proper power of z and y and summing them over the
range of n and k, we get

(λ− θ − λX(z))Q(z, y, θ) =
a−1∑
k=0

( B∑
r=a

(Pk,r(0)(1− α) +Wk,r(0)) + δ
k∑

j=0

Q
[k]
j (0)

)

Ṽk(θ)z
kyk −

a−1∑
k=0

∞∑
n=k

Q[k]
n (0)znyk. (60)

Now substituting θ = λ− λX(z) in (60) and using Lemma 2, (25), (27), (29), and (44) we
obtain

a−1∑
k=0

∞∑
n=k

Q[k]+
n znyk =

a−1∑
k=0

(
P+
k (1− α) +W+

k + δQ+
k

)
N (k)(z)zkyk. (61)

Substituting y = 1 in (61) we obtain desired result.

Lemma 7.

Q[k]+
n =

(
P+
k (1− α) +W+

k + δ
k∑

j=0

Q
[j]+
k

)
w

(k)
n−k, 0 ≤ k ≤ a− 1, n ≥ k. (62)

40



Queueing Models and Service Management

Proof. From (61) collecting the coefficients of yk (0 ≤ k ≤ a− 1) we obtain,

∞∑
n=k

Q[k]+
n zn = (P+

k (1− α) +W+
k + δQ+

k )N
(k)(z)zk. (63)

Now using (44) and (29) in (63) and collecting the coefficients of zn (n ≥ k) we obtain
desired result (62).

Hence from Lemma 7 it is clear that once P+
k (0 ≤ k ≤ a − 1) are known, the joint

probabilities Q[k]+
n (0 ≤ k ≤ a− 1, n ≥ k) are also known.

Multiplying (18)-(19) by proper power of z and y and summing over the range of n and
r we obtain

(λ− θ − λX(z))P (z, y, θ) =
B∑

r=a

( a−1∑
k=0

Q[k]
r (0) +

B∑
j=a

(Pr,j(0)(1− α) +Wr,j(0))

) B∑
i=r

yiS̃r(θ)y
r

+
∞∑
n=1

B∑
r=a

( a−1∑
k=0

Q
[k]
n+r(0) +

B∑
j=a

Pn+r,j(0)(1− α)

+
B∑

j=a

Wn+r,j(0)

)
S̃r(θ)yrz

nyr + (1− δ)λ
B∑

r=a

a−1∑
j=0

Rjgr−j

B∑
i=r

yiS̃r(θ)y
r

+(1− δ)λ
∞∑
n=1

B∑
r=a

a−1∑
j=0

Rjgn+r−jyrS̃r(θ)z
nyr −

∞∑
n=0

B∑
r=a

Pn,r(0)z
nyr.

Substituting θ = λ − λX(z) in the above expression and using Lemma 1, Lemma 2, (25),
(27), (29), (31), and (42) we get

P+(z, y) =
B∑

r=a

β+
r

B∑
i=r

yiM
(r)(z)yr +

∞∑
n=1

B∑
r=a

β+
n+rM

(r)(z)yrz
nyr

+(1− δ)
B∑

r=a

a−1∑
j=0

j∑
m=0

Q+
mej,m

(
gr−j

B∑
i=r

yi +
∞∑
n=1

gn+r−jyrz
n

)
M (r)(z)yr.

. (64)

Substituting y = 1 in (64) and using Lemma 6, (54) and (32) after some algebraic
manipulation we get following result

P+(z) =
E⃗

K(z)
, (65)
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where

E⃗ = zB
B−1∑
r=a

β+
r

B∑
i=r

yiM
(r)(z)−

B−1∑
i=a

yiM
(i)(z)

i∑
n=0

β+
n z

n+B−i −
B−1∑
n=0

β+
n z

nyBM
(B)(z)

+
B∑
i=a

yiM
(i)(z)

a−1∑
k=0

(P+
k (1− α) +W+

k + δQ+
k )N

(k)(z)zB−i+k

+(1− δ)
a−1∑
n=0

Q+
n

a−1∑
m=n

em,n

(
zB

B∑
r=a

gr−m

B∑
i=r

yiM
(r)(z)

+
B∑
i=a

yiM
(i)(z)zB−i+m(X(z)−

i−m∑
n=1

gnz
n)

)
,

andK(z) = zB − (1− α + αMos(z))
B∑
i=a

yiM
(i)(z)zB−i.

Finally, using (65) in (64) after some algebraic manipulation we obtain

P+(z, y) =

∧
(z, y)

K(z)
, (66)

where

∧
(z, y) =

B−1∑
r=a

β+
r

B∑
i=r

yiM
(r)(z)

(
yrK(z) + (1− α + αMos(z))

B∑
j=a

yjM
(j)(z)zB−jyj

)

+
B−1∑
i=a

yiM
(i)(z)z−i

i∑
n=0

β+
n z

n

(
− yiK(z)− (1− α + αMos(z))z

B

B∑
j=a

yjM
(j)(z)z−jyj

)
+

B−1∑
n=0

β+
n z

nyBM
(B)(z)

(
− z−ByBK(z)

−
B∑

j=a

yjM
(j)(z)z−jyj

)
+

a−1∑
k=0

(P+
k (1− α) +W+

k + δQ+
k )N

(k)(z)zk

B∑
j=a

yjM
(j)(z)zB−jyj + (1− δ)

a−1∑
n=0

Q+
n

a−1∑
m=n

em,n

{(
gr−m

B∑
i=r

yiM
(r)(z)yr

+
B∑

r=a

yrM
(r)(z)z−r+myr(X(z)−

i−m∑
n=1

gnz
n)

)
K(z) + (1− α + αMos(z))

B∑
r=a

yrM
(r)(z)zB−ryr

( B∑
l=a

gl−m

B∑
i=l

yiM
(l)(z)
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+
B∑
i=a

yiM
(i)(z)z−(i−m)(X(z)−

i−m∑
n=1

gnz
n)
)}

.

It may be observed from (66) that the generating function P+(z, y) has been expressed in
compact form, except for theB unknowns {P+

n }B−1
n=0 . One can further note that from Lemma

7 once P+
k (0 ≤ k ≤ a − 1) are known then the joint probabilities Q[k]+

n (0 ≤ k ≤ a − 1)

are completely known. Hence, to find P+
n,r (a ≤ r ≤ B, n ≥ 0) and Q

[k]+
n (0 ≤ k ≤

a− 1, n ≥ k) we should find the unknowns {P+
n }B−1

n=0 . Next section is dedicated in getting
these unknowns {P+

n }B−1
n=0 .

3.2. Procedure of getting the unknowns P+
n (0 ≤ n ≤ B − 1)

It can be seen that the unknowns P+
n (0 ≤ n ≤ B−1) as appeared in (66) are same as the

unknowns which are appeared in (65). Using the result given in Abolnikov and Dukhovny

([1], Theorem 4.1 and Lemma 4.1, page 341) for
λg̃

B∑
i=a

yi
µi

+λg̃ α
µ

ỹ
< 1,K(z) has (B − 1) zeros

say x1, x2, ..., xl with multiplicity r1, r2, ..., rl, respectively, inside the unit circle |z| = 1(
where (l ≤ B−1) and

l∑
i=1

ri = (B−1)
)
and one simple zero, say, zB = 1, on the boundary

of unit circle |z|=1. Due to analyticity of (65) in |z| ≤ 1 these zeros are also the zeros of
numerator of (65). Hence, from (65) we have (B − 1) linearly independent equations,[

di−1

dzi−1

{
zB

B−1∑
r=a

β+
r

B∑
i=r

yiM
(r)(z)−

B−1∑
i=a

yiM
(i)(z)

i∑
n=0

β+
n z

n+B−i −
B−1∑
n=0

β+
n z

nyBM
(B)(z)

+
B∑
i=a

yiM
(i)(z)

a−1∑
k=0

(P+
k (1− α) +W+

k + δQ+
k )N

(k)(z)zB−i+k + (1− δ)
a−1∑
n=0

Q+
n

a−1∑
m=n

em,n(
zB

B∑
r=a

gr−m

B∑
i=r

yiM
(r)(z) +

B∑
i=a

yiM
(i)(z)zB−i+m(X(z)−

i−m∑
n=1

gnz
n)

)}]
z=xj

= 0,

1 ≤ j ≤ l & 1 ≤ i ≤ rj, (67)

where d0

dz0
h(z) = h(z).

Now using (66), Lemma 6 and the normalization condition (1 + α)P+(1) + Q+(1) = 1,
after applying L’Hôspital’s rule, we get

(1 + α)

( B−1∑
r=a

β+
r

B∑
i=r

yi(B + λg̃sr)−
B−1∑
i=a

yi

i∑
n=0

β+
n (n+B − i+ λg̃si)

−
B−1∑
n=0

β+
n yB(n+ λg̃sB)) + (1− δ)

a−1∑
n=0

Q+
n

a−1∑
m=n

em,n

( B∑
r=a

gr−m

B∑
i=r

yi(λg̃sr +B)

+
B∑
i=a

yi(g̃ −
i−m∑
n=1

ngn) + (1−
i−m∑
n=1

ngn)(B − i+m+ λg̃si)
))
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+
B∑
i=a

a−1∑
k=0

(P+
k (1− α) +W+

k + δQ+
k )(λg̃(si + xk) + B − i+ k) = ỹ(1− ρ)

Hence, (67) and (3.2) together forms non-homogenous system of B linearly independent
equations in B unknowns P+

n (0 ≤ n ≤ B − 1), solving them we uniquely determine P+
n

(0 ≤ n ≤ B − 1).
Now using (31) in (66) and then collecting the coefficients of yr (a ≤ r ≤ B) we get

∞∑
n=0

P+
n,rz

n =
O⃗(z, r)

K(z)
, a ≤ r ≤ B − 1, (68)

where

O⃗(z, r) = β+
r

B∑
i=r

yiM
(r)(z)K(z) + (1− α + αMos(z))yrM

(r)(z)zB−r

B−1∑
j=a

β+
j

B∑
i=j

yiM
(i)(z)− yrM

(r)(z)z−r

r∑
n=0

β+
n z

nK(z)

−(1− α + αMos(z))
B−1∑
i=a

yiM
(i)(z)

i∑
n=0

β+
n z

n+B−r−i

yrM
(r)(z)− (1− α + αMos(z))

B−1∑
n=0

β+
n z

nyBM
(B)(z)yrM

(r)(z)z−r

+
a−1∑
k=0

(P+
k (1− α) +W+

k + δQ+
k )N

(k)(z)zkyrM
(r)(z)zB−r

+(1− δ)
a−1∑
n=0

Q+
n

a−1∑
m=n

em,n

{(
gr−m

B∑
i=r

yiM
(r)(z) + yrM

(r)(z)z−r+m(X(z)

−
r−m∑
n=1

gnz
n)

)
K(z) + (1− α + αMos(z))yrM

(r)(z)zB−r

( B∑
l=a

gl−m

B∑
i=l

yiM
(l)(z) +

B∑
i=a

yiM
(i)(z)z−(i−m)(X(z)−

i−m∑
n=1

gnz
n)

)}
.

∞∑
n=0

P+
n,Bz

n =
O⃗(z, b)

K(z)
, (69)

where

O⃗(z, b) = (1− α + αMos(z))yBM
(B)(z)

B−1∑
j=a

β+
j

B∑
i=j

yiM
(i)(z)− (1− α + αMos(z))
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B−1∑
i=a

yiM
(i)(z)

i∑
n=0

β+
n z

n−iyBM
(B)(z)−

B−1∑
n=0

β+
n z

nyBM
B(z)z−B

(
K(z)

+(1− α + αMos(z))yBM
(B)(z)

)
+

a−1∑
k=0

(P+
k (1− α) +W+

k + δQ+
k )

N (k)(z)zkyBM
(B)(z) + (1− δ)

a−1∑
n=0

Q+
n

a−1∑
m=n

em,n

(
g
B−m

y
B
M (B)(z)

+yBM
(B)(z)z−B+m(X(z)−

B−m∑
n=1

gnz
n)

)
K(z)

+(1− δ)
a−1∑
n=0

Q+
n

a−1∑
m=n

em,n(1− α + αMos(z))yBM
(B)(z)

( B∑
l=a

gl−m

B∑
i=l

yiM
(l)(z) +

B∑
i=a

yiM
(i)(z)z−(i−m)(X(z)−

i−m∑
n=1

gnz
n)

)
.

For further investigation, we assume that the LST of the vacation time distribution and
service time distribution is a rational function, i.e., Ṽk(θ) = Fk(θ)

Ck(θ)
, S̃r(θ) = Fr(θ)

Cr(θ)
, and

S̃(θ) = F̂ (θ)

Ĉ(θ)
where Fk(θ), Ck(θ), Fr(θ), Cr(θ), F̂ (θ), and Ĉ(θ) are polynomials in θ. Even

distribution functions with transcendental LST can be rationalized by padé approximation.
Substituting Ṽk(λ− λX(z)) = Fk(λ−λX(z))

Ck(λ−λX(z))
, 0 ≤ k ≤ a− 1, S̃r(λ− λX(z)) = Fr(λ−λX(z))

Cr(λ−λX(z))
,

a ≤ r ≤ B, and S(λ − λX(z)) = F̂ (λ−λX(z))

Ĉ(λ−λX(z))
in (68)-(69) after some simplification we

obtain
∞∑
n=0

P+
n,rz

n =
Lr(z)

Dr(z)
, a ≤ r ≤ B. (70)

Where Lr(z) and Dr(z) are polynomials of degree ur and dr, respectively, and Dr(z) is
monic. We will now apply the partial fraction method to (70) for obtaining the joint prob-
abilities Pn,r (n ≥ 0, a ≤ r ≤ B). Since (70) is analytic in |z| ≤ 1, therefore, the zeros
of Dr(z) (a ≤ r ≤ B) lying inside and on the unit circle |z| = 1 do not play any role in
getting Pn,r (n ≥ 0, a ≤ r ≤ B). Hence, in order to obtain all the joint probabilities Pn,r

(n ≥ 0, a ≤ r ≤ B) we need to know about all the zeros ofDr(z) (a ≤ r ≤ B) of modulus
greater than one. Let γ1,r, γ2,r, ..., γlr,r be the zeros of Dr(z) of modules greater than one

with multiplicity τ1,r, τ2,r, ..., τlr,r, respectively, such that
lr∑

j=1

τj,r ≤ dr. We discuss here the

following two cases:

Case I : dr ≤ ur

Applying the partial fraction method to the right hand side of (70) we obtain
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∞∑
n=0

P+
n,rz

n =
ur−dr∑
i=0

ϱiz
i +

lr∑
j=1

τj,r∑
i=1

Bi,j,r

(z − γj,r)τj,r−i+1
, (71)

where

Bi,j,r =
1

(i− 1)!

[
di−1

dzi−1

(
Lr(z)

dτj,r

dzτj,r
(z − γj,r)

τj,r

dτj,r

dzτj,r
(Dr(z))

)]
z=γj,r

, (72)

a ≤ r ≤ B, j = 1, 2, ..., lr, i = 1, 2, ..., τj,r.

Accumulating the coefficients of zn (n ≥ 0) from both side of (71), we obtain for a ≤ r ≤ B,

P+
n,r =


(
ϱn +

lr∑
j=1

τj,r∑
i=1

Bi,j,r

(−1)τj,r−i+1γ
τj,r+n−i+1

j,r

(
τj,r−i+n
τj,r−i

))
, 0 ≤ n ≤ ur − dr,(

lr∑
j=1

τj,r∑
i=1

Bi,j,r

(−1)τj,r−i+1γ
τj,r+n−i+1

j,r

(
τj,r−i+n
τj,r−i

))
, n > ur − dr.

(73)

Case II : dr > ur

We remove the first summation term of the right hand side of (71) and hence, for a ≤ r ≤ B,
we obtain

P+
n,r =

( lr∑
j=1

τj,r∑
i=1

Bi,j,r

(−1)τj,r−i+1γ
τj,r+n−i+1
j,r

(
τj,r − i+ n

τj,r − i

))
, n ≥ 0. (74)

Equation (73) [or (74)] gives the joint probabilities of queue and server content at service
(FES) completion epoch.

Theorem 1.

W+
n,r = α

n∑
i=0

P+
i,rqn−i, n ≥ 0, a ≤ r ≤ B. (75)

Proof. Using (34), and collecting the coefficients of yr (a ≤ r ≤ B) from both the side of
(56) we get

∞∑
n=0

W+
n,rz

n =
∞∑
n=0

P+
n,rαMos(z)z

n (76)

Using (43) in the above expression and collecting the coefficients of zn (n ≥ 0) we get
desired outcome.

Thus we complete here the evaluation of the joint probabilities of queue and server con-
tent at service (FES and SOS) completion epoch and the joint probabilities of queue length
and vacation type at vacation termination epoch.
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3.3. Joint probabilities at arbitrary epoch

In the previous section we have successfully achieved the joint probabilities of the queue
and server content at service (FES and SOS) completion epoch, as well as the joint probabil-
ities of the queue size and the vacation type at vacation termination epoch. In this section,
we now turn our objective for getting these probabilities at arbitrary epoch.
Theorem 2. The probabilities Rn (0 ≤ n ≤ a − 1), Pn,r (Wn,r) (n ≥ 0, a ≤ r ≤ B) and
Q

[k]
n (n ≥ k, 0 ≤ k ≤ a− 1) are given by,

Rn =

n∑
m=0

en,mQ
+
m

E
, 0 ≤ n ≤ a− 1 (exist only for SV ), (77)

P0,r =

β+
r (

B∑
i=r

yi) + (1− δ)
a−1∑
n=0

a−1∑
m=n

em,ngr−mQ
+
n

B∑
i=r

yi − P+
0,r

E
, n ≥ 0, (78)

Pn,r =
n∑

j=1

Pn−j,rgj +

β+
n+ryr + (1− δ)

a−1∑
m=0

Q+
m

a−1∑
j=m

ej,mgn+r−jyr − P+
n,r

E
,

n ≥ 1, a ≤ r ≤ B, (79)

Q
[k]
k =

P+
k (1− α) +W+

k + δQ+
k −Q

[k]+
k

E
, 0 ≤ k ≤ a− 1, (80)

Q[k]
n =

n−k∑
i=1

giQ
[k]
n−i −

Q
[k]+
n

E
, n ≥ k + 1, 0 ≤ k ≤ a− 1, (81)

W0,r =
P+
0,rα−W+

0,r

E
, a ≤ r ≤ B, (82)

Wn,r =
n∑

j=1

Wn−j,rgj +
P+
n,rα−W+

n,r

E
, n ≥ 1, a ≤ r ≤ B. (83)

where E = λf + (1− δ)
a−1∑
n=0

n∑
m=0

en,mQ
+
m,

Proof. Dividing (1) by σ−1 and using Lemma 2, Lemma 3 and (29), we obtain

R0 =

(1−
a−1∑
n=0

Rn)Q
+
0

λf
. (84)

Similarly, from (45), we obtain

Rn =

(1−
a−1∑
i=0

Ri)
n∑

m=0

m∑
k=0

en,mQ
[k]+
m

λf
, 0 ≤ n ≤ a− 1. (85)
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Using (84) in (85), we obtain

Rn =
R0

Q+
0

n∑
m=0

m∑
k=0

en,mQ
[k]+
m , 0 ≤ n ≤ a− 1. (86)

Using (86) in (84) after some algebraic manipulation, we obtain

R0 =
Q+

0

λf +
a−1∑
n=0

n∑
m=0

m∑
k=0

en,mQ
[k]+
m

. (87)

Using (87) in (86), we obtain

Rn =

n∑
m=0

en,mQ
+
m

λf +
a−1∑
j=0

a−1∑
l=j

el,jQ
+
j

, 0 ≤ n ≤ a− 1. (88)

Setting θ = 0 in (18)-(23), we get

λP0,r =
a−1∑
k=0

Q[k]
r (0)

B∑
i=r

yi +
B∑

j=a

(Pr,j(0)(1− α) +Wr,j(0))
r∑

i=r

yi

+(1− δ)λ
a−1∑
j=0

Rjgr−j

B∑
i=r

yi − P0,r(0), a+ 1 ≤ r ≤ B, (89)

λPn,r = λ
n∑

j=1

Pn−j,rgj +
B∑

j=a

(Pn+r,j(0)(1− α) +Wn+r,j(0))yr +
a−1∑
k=0

Q
[k]
n+r(0)yr

+λ
a−1∑
j=0

Rjgn+r−jyr − Pn,r(0), n ≥ 1, a ≤ r ≤ B − 1, (90)

λQ
[k]
k =

B∑
r=a

(Pk,r(0)(1− α)+Wk,r(0))+δ
k∑

j=0

Q
[j]
k (0)−Q

[k]
k (0), 0 ≤ k ≤ a− 1, (91)

λQ[k]
n = λ

n−k∑
i=1

giQ
[k]
n−1 −Q[k]

n (0), n ≥ k + 1, 0 ≤ k ≤ a− 1, (92)

λW0,r = P0,r(0)α−W0,r(0), a ≤ r ≤ B, (93)

λWn,r = λ

n∑
j=1

Wn−j,rgj + Pn,r(0)α−Wn,r(0), n ≥ 1, a ≤ r ≤ B. (94)

Dividing (89) by σ−1, respectively, and then using Lemma 2, Lemma 3, (25) and (29), we
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obtain

P0,r =

(
1− (1− δ)

a−1∑
i=0

Ri

){
(P+

r (1− α) +W+
r +Q+

r )
B∑
i=r

yi

+(1− δ)
a−1∑
n=0

a−1∑
m=n

gr−mem,nQ
+
n

B∑
i=r

yi − P+
0,r

}
λf

. (95)

Using (85) in (95), we simply obtain (78).
Applying similar process for (90), (91), (92), (93), and (94) respectively, after some

algebraic manipulation we get desired outcome (79), (80), (81), (82), and (83).

4. Performance Measures
Performance measure is the procedure that collects the information of the system and

helps the manager to run the system smoothly. Since all the steady state probabilities are
known, the present section presents some important performance measures of the model
under consideration.

1. Queue length (i.e., the number of customer in the queue without the number of cus-
tomer with the server) distribution is given by,

P queue
n =


(1− δ)Rn +

B∑
r=a

(Pn,r +Wn,r) +
n∑

k=0

Q
[k]
n , 0 ≤ n ≤ a− 1,

B∑
r=a

(Pn,r +Wn,r) +
a−1∑
k=0

Q
[k]
n , n ≥ a.

2. System length (i.e., the number of customer in the queue with the number of customer
with the server) distribution is given by,

P system
n =



Rn +
n∑

k=0

Q
[k]
n , 0 ≤ n ≤ a− 1,

n∑
m=a

(Pn−m,m +Wn−m,m) +
a−1∑
k=0

Q
[k]
n , a ≤ n ≤ B,

B∑
r=a

(Pn−r,r +Wn−r,r) +
a−1∑
k=0

Q
[k]
n , n ≥ B + 1.

3. The server content distribution when the server is busy in FES, is given by,

FESser
r =

∞∑
n=0

Pn,r

B∑
j=a

∞∑
n=0

Pn,j

, (a ≤ r ≤ B) .
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4. The server content distribution when the server is busy in SOS, is given by,

SOSser
r =

∞∑
n=0

Wn,r

B∑
j=a

∞∑
n=0

Wn,j

, (a ≤ r ≤ B) .

5. The server content distribution when the server is busy, is given by,

P ser
r =

∞∑
n=0

(Pn,r+Wn,r)

B∑
j=a

∞∑
n=0

(Pn,j+Wn,j)

, (a ≤ r ≤ B) .

6. Distribution of the vacation type when the server is on vacation is given by,

Q
[k]
vac=

∞∑
n=k

Q
[k]
n

a−1∑
l=0

∞∑
n=l

Q
[l]
n

, 0 ≤ k ≤ a− 1.

7. The probability that the server is in a dormant state is Pdor=(1− δ)
a−1∑
n=0

Rn.

8. The probability that the server is busy is Pbusy=
∞∑
n=0

B∑
r=a

(Pn,r +Wn,r).

9. The probability that the server is on vacation is Qvac=
∞∑
n=0

min(n,a−1)∑
k=0

Q
[k]
n .

10. The probability that the server is idle is Pidle=(1− δ)Pdor +Qvac.

11. The expected number of customers in the queue (Lq) is given by

Lq = (1− δ)
a−1∑
n=0

nRn+
∞∑
n=0

B∑
r=a

n(Pn,r +Wn,r)+
a−1∑
k=0

∞∑
n=k

nQ
[k]
n =(1− δ)

a−1∑
n=0

nP queue
n +

∞∑
n=a−δa

nP queue
n .

12. The expected number of customers in the system (Ls) is given by

Ls = (1− δ)
a−1∑
n=0

nRn +
∞∑
n=0

B∑
r=a

(n+ r)(Pn,r +Wn,r) +
a−1∑
k=0

∞∑
n=k

nQ
[k]
n .

13. The expected waiting time of a customer in the queue (Wq) is given by
Wq =

Lq

λg̃
.

14. The expected waiting time of a customer in the system (Ws) is given by
Ws =

Ls

λg̃
.

15. Expected number of customers with the server when server is busy (Lser) is given by

Lser =
B∑

r=a

(rP ser
r ).

50



Queueing Models and Service Management

16. Expected vacation type taken by server when server is in vacation (Lvac) is given by

Lvac =
a−1∑
k=0

(kQ
[k]
vac).

5. Numerical Results

Through the use of several graphs and tables, we present a variety of numerical results
in this section to illustrate the behavior of the performance measures of the model under in-
vestigation. First, we present some results in form of graphs (Figure 1 and Figure 2) based
on the blood or swab testing procedure as presented in the introduction section. Figure 1 and
Figure 2 represents the influence of the arrival rate of the samples on Lq and Qvac, respec-
tively, for SV and MV. Samples are coming in the health center in groups with probability
g1 = 0.4, g2 = 0.25, g3 = 0.30, g4 = 0.05, gn = 0, n ≥ 5. Health worker tests a mixed
sample during FES, and this mixed sample is formed by taking a group of samples from the
queue. FES time follows Erlang (E3) service time distribution with batch size dependent
service rate µr = 4.1

r+1
, 4 ≤ r ≤ 7. If the mixed sample diagnosed positive then the health

worker chooses mixed sample of 4 individual samples for the next test (FES), otherwise, he
keeps the priority in mind to test mixed sample of 7 individual samples in the next test (FES).
Probability that the test result of mixed sample is diagnosed positive is α = 0.3. In case of
positive diagnosed mixed sample in FES the health worker tests these mixed sample indi-
vidually in a single kit treated as batch service (i.e., the health worker performs SOS) with
E3 distribution with a service rate of 1.5. Probability that the health worker test the mixed
sample of the 4, 5, 6, and 7 individual samples is y4 = 0.3, y5 = 0, y6 = 0, and y7 = 0.7,
respectively. Vacation time of the health worker follows Erlang (E2) distribution with rate
νk = νk−1 + 0.1 (1 ≤ k ≤ 3) where ν0 = 0.2. Since the increasing arrival rate increases
the traffic, as a result, the expected queue length will also increase, which has been reflected
in Figure 1 for both the vacation policy (SV and MV). Further, in MV policy chance that
the server is on vacation is higher than for SV policy. As a result, in MV policy, the traffic
in the system will be more than for SV policy. Thus, for a fixed value of λ in MV policy,
the expected queue length is higher than in SV policy, which can also be seen in Figure 1.
Thus, Figure 1 is on the expected direction. Further, if we increase the arrival rate, then the
probability that the server is busy will also increase. Thus, the probability that the server is
on vacation will decrease, which can be seen in Figure 2. As in MV policy, the server takes
repeated vacations until it finds the required number of customers in the queue for service
at the end of the vacation. Therefore for MV policy, the probability that the server is on
vacation will be higher than for SV policy which can be seen in Figure 2.

For further justification of the presented model, we present Figure 3 and Figure 4 in
which the the behavior of λ versesWs and Lvac are reflected, respectively. The service time
of each batch in FES follows a 2 - stage hyper-exponential (HE2) distribution with a service
rate of µr = ( 0.6

µ1,r
+ 0.4

µ2,r
)−1 where µj,r =

15
3j+r

, 1 ≤ j ≤ 2, 3 ≤ r ≤ 6. The service time in
SOS follows an exponential distribution with a service rate of 5.5. The vacation time of the
server follow the E2 distribution with a vacation rate of νk = νk−1 + 2.1, 1 ≤ k ≤ 2 where
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ν0 = 4.2. The other input parameters are taken as follows: α = 0.4, g1 = 0.7, g2 = 0.2,
g3 = 0.06, g4 = 0.04, gn = 0, n ≥ 5. y4 = 0.4, y5 = 0, y6 = 0, y7 = 0.6. Since
increasing the arrival rate increases the traffic in the system, as a result,Ws and Lvac should
also increase, which has been observed in Figure 3 and Figure 4. Further, in MV, server takes
the repeated number of vacation therefore, in MV policy, traffic will be higher than for SV
policy. Thus, for a fixed value of λ in MV policy, Ws and Lvac should be greater than for
SV policy. Hence, Figure 3 and Figure 4 are on the expected direction.
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Figure 1. Effect of λ on Lq
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Figure 2. Effect of λ on Qvac
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Figure 3. Effect of λ onWs
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Figure 4. Effect of λ on Lvac

Table 1 and Table 2 present the steady state joint probabilities at service (FES and SOS)
completion, vacation completion and arbitrary epoch for M/G

(a,Y )
r /1 queue with SOS and

SV. Service time for both the FES and SOS follow the E3 distribution, and vacation time
follows E2 distribution. The other input parameters are taken as λ = 26.098, µr = 67.5

r

(4 ≤ r ≤ 7), µ = 17.5, and νk = νk−1 + 2.35 where ν0 = 1.01 (1 ≤ k ≤ 3). g1 = 0.45,
g2 = 0.20, g3 = 0.35, gn = 0 (n ≥ 4). y4 = 0.2, y5 = 0, y6 = 0, y7 = 0.8. The detail of
Table 1 is given as follows:

• The first column presents the number of customers present in the queue (excluding the
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number in service).
• 2nd to 5th column present the joint probabilities of the queue and server content at
service (FES) completion epoch.

• 6th to 9th column present the joint probabilities of the queue and server content at
service (SOS) completion epoch.

• The 10th to 13th column presents the joint probabilities of the queue length and vaca-
tion type at the vacation termination epoch.

• 14th column presents the queue length distribution at service or vacation completion
epoch.

The detail of Table 2 is given as follows:
• The first column presents the number of customers present in the queue (excluding the
number in service).

• second column presents the probability that the system is in the state (n, 0).
• 3rd to 6th column present the joint probabilities of queue and server content during
FES at arbitrary epoch.

• 7th to 10th column present the joint probabilities of queue and server content during
SOS at arbitrary epoch.

• 11th to 14th column present the joint probabilities of queue length and vacation type
at arbitrary epoch.

• Last column presents the queue length distribution at arbitrary epoch.
• Performance measures (viz., Lq, Ls,Wq, etc.) can be seen just below of the table.

Similarly, Table 3 presents the steady state joint probabilities at service (FES and SOS) com-
pletion epoch and vacation completion completion epoch for MV, and Table 4 presents the
steady state joint probabilities at arbitrary epoch forM/G

(a,Y )
r /1 queue with SOS and MV.

The input parameters, notations, and the service (vacation) time distribution are taken the
same as taken for Table 1 and for Table 2.
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Table

1.Steady
state

jointprobabilitiesfor
M

X
/G

(a
,Y

)
r

/1
queue

w
ith

SV
and

SO
S
atservice

(vacation)com
pletion

epoch
n

P
+n
,4

P
+n
,5

P
+n
,6

P
+n
,7

W
+n
,4

W
+n
,5

W
+n
,6

W
+n
,7

Q
[0
]+

n
Q

[1
]+

n
Q

[2
]+

n
Q

[3
]+

n
P

+n
+

Q
+n

0
0.0038

0.0024
0.0021

0.0016
0.0003

0.0002
0.0002

0.0001
0.0000

0.0000
0.0000

0.0000
0.0109

1
0.0025

0.0013
0.0012

0.0027
0.0004

0.0002
0.0002

0.0003
0.0000

0.0003
0.0000

0.0000
0.0091

2
0.0025

0.0010
0.0010

0.0037
0.0004

0.0002
0.0002

0.0005
0.0000

0.0002
0.0007

0.0000
0.0105

3
0.0034

0.0015
0.0016

0.0051
0.0007

0.0003
0.0003

0.0008
0.0001
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6. Conclusion
In this paper, we have analyzed the infinite-buffer bulk arrival batch size dependent bulk

service queue and the queue length dependent SV (MV) with second optional service. The
server operates the customer according to the (a, Y ) rule. The fundamental mathematical
analysis of the model includes mainly the supplementary variable techniques and bivariate
generating function technique. The considered model analyzed the joint probabilities of the
queue and server content at service completion (arbitrary) epoch and the joint probabilities
of queue length and vacation type at vacation termination (arbitrary) epoch. Practical mo-
tivation and the numerical behavior of the considered model are also provided to validate
our model in real life congestion control. The present model can be generalized with a more
general arrival process (viz., BMAP ).
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