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Abstract: A multi-server retrial queuing model with feedback is considered in this paper.
Input flow of calls is modeled using a Markovian Arrival Process (MAP ) and the service
time is assumed to follow an exponential distribution. An arriving call enters into service
should there be a free server. Otherwise, in accordance to Bernoulli trials, the call will enter
into an infinite orbit (referred to as a retrial orbit) to retry along with other calls to get into
service or will leave the system forever. After obtaining a service each call, independent
of the others, will either enter into a finite orbit (referred to as a feedback orbit) for another
service or leave the system forever. The decision to enter into the feedback orbit or not is
done according to another Bernoulli trial. Calls from these two buffers will compete with
the main source of calls based on signals received from two independent Poisson processes.
The rates of these processes depend on the phase of theMAP . The steady-state analysis of
the model is carried out and illustrative numerical examples including economical aspects
are presented.

Keywords: Delayed feedback, MAP flow, queueing, retrial queue, signals generation of
orbital calls.

1. Introduction and Literature Review
In classical retrial queueing models, the calls (or customers) will leave the system upon

receiving a service. However, in practice we encounter retrial queues in which the calls
need to be served again through a feedback mechanism. For example, in multiple access
telecommunication systems, the calls that are erroneously transmitted (or served) need to be
retransmitted. Such calls when finding all servers busy at the time of their arrivals usually
enter into a retrial orbit and compete for a free server. Hence, using retrial queues with
feedback (RQwFB) will bemore appropriate. Similar situations occur inwidely used client-
server systems as well as in queuing-inventory systems. In the latter case after ordering the
inventory, customers may have to return to the system to receive the inventory.
Corresponding author
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In dealing with queuing systems with feedback (QSwFB) it is necessary to distinguish
between two options to provide (re)services: instantaneous feedback (IFB) and delayed
feedback (DFB). In the case of IFB, any call requiring another service (with a certain
probability) will get attention immediately, whereas inDFB the call will enter into a buffer
(usually a finite buffer) with a certain probability if it needs to be served again. In both
the mechanisms with the corresponding complementary probability the calls will leave the
system. Such kinds of feedbacks are referred to Bernoulli feedback in the literature. Here,
we consider only models with Bernoulli feedback.

In the last three decades, QSwFB of both feedback types have been extensively stud-
ied in the literature. First, we look at the works dealing with QSwIFB. In the pioneer
work of Takacs [48], the feedback modelM/G/1 was studied using probability generating
functions (PGF ). The same model M/G/1 with vacations of server was investigated in
Wortman et al. [50]. In D’Avignon and Disney [12], the model M/G/1 with two inde-
pendent Poisson traffics and with non-preemptive priorities is examined. Berg and Boxma
[5] studied model M/M/1 with general feedback mechanism and it is shown that under
some conditions the given model approaches theM/G/1 with processor sharing queue dis-
cipline. In Hunter [20] the Laplace-Stieltjes transforms (LST ) of the sojourn time distribu-
tion for the model M/G/1/N with state-dependent feedback is derived and the difficulty
to invert these LST except for the cases when N = 1 and N = 2 is pointed out. In the
context of MAP/PH/1/N Dudin et al. [16], incorporated state-dependent departure and
feedback probabilities in random environment. They applied Neuts’ (Neuts [42]) matrix-
analytic method (MAM ) to study the model in steady state. A similar model is considered
in Krieger et al. [22]. Assuming that there are two Poisson flows to a single server system in
which there are two separate (infinite) buffers to hold each type of p-calls and only one type
calls can make feedback requests, Krishnamoorthy and Manjunath [24] analyze the model
in steady-state usingMAM . It is assumed that feedback calls (f -calls) are sent to the queue
of low priority calls. In Bouchentouf et al. [6] the feedback model M/M/1/N with server va-
cation, balking, reneging and retention of reneged calls is analyzed. The steady-state proba-
bilities for the number of calls in the system when the server is in busy and vacation periods
are derived through a recursive method. Similar but a multi-server model is investigated
in Bouchentouf et al. [7]. A single server Markovian system with group arrivals, multiple
vacation of server, impatient calls and retention of reneged calls is examined in Bouchentouf
and Guendouzi [8].

Note that, in all of the above mentioned works it is assumed that primary calls (p-calls)
and f -calls have the same channel holding times. Further, in these works it is assumed that
the departure and feedback probabilities are governed by Bernoulli trials with constant pa-
rameters. Melikov et al. [35] consider an un-buffered multi-channel system with different
channel occupancy times for p-calls and f-calls along with state-dependent Bernoulli prob-
abilities for calls’ departures and feedback probabilities. The model of single-channel and
buffered system withMMPP flow of p-calls is investigated in Melikov and Aliyeva [31].
The model of single-server QSwIFB with an exponential server switching time (to serve
f-calls) are investigated in Melikov et al. [32]. In Melikov et al. [34] models of QSwIFB
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with two heterogeneous servers are investigated. Note that in the works co-authored by Me-
likov, the space merging method was used to find the approximate values of steady-state
probabilities (see Ponomarenko et al. [46] and Melikov et al. [38]). In a recent paper, Ayya-
pan and Thilagavathy [4] look at MAP/PH/1 with unreliable main server and a standby
server who is serving at a lower rate under IFB scenario.

Now we look at the works involving QSwDFB models. Takacs [49] also did the first
work in this direction. Using PGF approach, the author obtains expressions for the mean
queue length, mean waiting time in the queue, and the mean sojourn time in the system.
Pekoz and Joglekar [44] examine a multi-server queueing model in which the arrivals occur
according to a stationary ergodic flow process, general services, a finite-capacity for p-calls
and an infinite orbit for f-calls, where the number of feedbacks for each call is assumed to
be random. In Lee and Seo [28], the model M/G/1 with finite orbit is considered where
it is assumed that, when the orbit becomes full, all calls from the orbit will instantaneously
fed back to the buffer of the queuing system. A similar model is examined in Lee and Ahn
[27] but with the assumption that the feedback calls require a random time to move from the
orbit to the service area. Foley and Disney [18] study anM/G/1 queue with infinite buffer
with the assumption that the feedback calls spend an exponential amount of time in the orbit.
The model of the typeM/M/n with finite buffer and exponential sojourn time in the orbit
by the calls is investigated in Melikov et al. [36]. Here, the feedback probabilities depend
on the number of busy channels in the system at the call departure epochs. The theory
and applications of RQ can be found in the books of Artalejo and Gomez-Corral [1] and
Falin and Templeton [17], and in the review papers by Kim and Kim [21]) and Phung-Duc
[45]. In the literature, there are a few works devoted to retrial queues with delayed feedback
(RQwDFB). In this paper, we focus on one such RQwDFB model. In such systems, orbit(s)
are not only for p-calls, but also for the f -calls. It is important to note that often retrial
calls (r-calls) generated by p-calls differ from calls generated by f -calls in some way, for
example, in importance, the cost of losing them, waiting in orbit, and so on (see Section 5 as
well). Therefore, in this paper, we consider separate orbits for r-calls and f -calls, especially
since one of the orbits has a finite size, and the other has an infinite size.

To the best of our knowledge, the first work on RQwDFB was by Choi et al. [11].
In this paper, the authors consider M/M/c/c with infinite orbit. The joint PGF of the
number of busy servers and the number of calls in the retrial group is obtained for the cases
c = 1, 2. Krishna Kumar et al. [23] considered an M/M/c/N + c queue with constant
retrial rate. The authors employ Neuts’ matrix-analytic method (MAM ) to study the model.
The same model was investigated by Do [14] and applied the spectral expansion method of
Mitrani andChakka [39] to calculate the steady-state probabilities. Ayyapan et al. considered
an M/M/1 queue with loss under non-preemptive [2] and preemptive [3] priority service
disciplines. Two types of calls arrive and retrial, loss and feedback mechanisms are allowed
only for low priority calls only. In both the papers, the authors use MAM to analyze the
models.

Mokaddis et al. [40] considered RQwDFB of the typeM/G/1/1 with constant retrial
rate and single vacation where the server is subject to failures and repairs. In Lee [26], a
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single server system in which two types of calls arrive according to independent Poisson
flows is considered. An arriving priority call finding a free server immediately starts getting
a service; otherwise, the call will join the queue. An arriving non-priority call finding a free
server will get into service immediately; otherwise, the call will enter into a retrial orbit.

In Melikov et al. [33] MMPP/M/K/K with DFB model is considered. M/G/1-
type RQwDFB queueing models with negative calls under working vacation and working
breakdowns are studied in Rajadurai et al. [47]. The PGF of the numbers of calls in the
orbit under different server status are derived.

Recently Dimitriou and Phung-Duc [13] considered the Markovian single-server system
with two separated queues for retrial and feedback calls. They obtain the stability conditions
and uses the generating function technique to calculate the joint queue length distribution.

Note that the works indicated above are devoted to single-server RQwDFB models
with the exceptions of Krishna Kumar et al. [23], Do [14] and Melikov et al. [33]). Further,
in these works with the exception of Melikov et al. [33]), it is assumed that the retrial and
feedback probabilities are constant. These assumptions significantly limit the applications
of such models in practice since in practice RQwDFB models will have many servers and
further the decisions to enter the orbit or leave the system without getting additional services
often depend on the current state of the system.

In all of the above mentioned works, queueing models with instantaneous and delayed
feedbacks are investigated separately. Models with both instantaneous and delayed feed-
backs are investigated in Melikov et al. [37] and Dudin and Dudina [15]. In Dudin and
Dudina [15] the model of RQ with both instantaneous and delayed feedback of the type
MAP/PH/1 with unreliable transmission of calls is considered. Here it is assumed that
feedback phenomena can occur not after the completion of the service of the call, but as a
result of a failure in the period of transmission of the call. Orbit is common for retrial and
feedback calls.

It is worth pointing out that in all the works devoted to RQwDFB, r-calls that are gen-
erated by p-calls and r-calls that are generated by f -calls are not distinguished. However, the
calls that have not received any service should be different from the calls that have received
at least some service before leaving the system. The related to our study papers have been
summarized according to their main assumptions and presented in Table 1. This table clearly
illustrate the contribution of our study. In addition to this table note that the main differences
between the RQwDFB model studied here and the models considered in literature are as
follows:

1. We consider a multi-serverRQwDFB with a versatile point process, namely, Marko-
vian arrival process (MAP ) to model the arrivals of the primary calls.

2. We consider separate orbits for retrial and feedback calls so as to distinguish between
these types of calls.

3. The retrial rates from the orbit as well as from the feedback group depend on the phase
of theMAP .

In the following table, we use the following abbreviations: AP - Arrival Process; SP -
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Service Process; NoS - Number of Servers; SR - Server Reliability (R - Reliable, U -
Unreliable); SV - Server vacation; BS - Buffer Size (F - Finite, I - Infinite); S&SO - Size
and Structure of Orbits for r- and f -calls (C =Common orbit; S = Separate);NCT - Number
of p-Calls Types; RP - Retrial process (LRR - Linear Retrial Rate; CRR - Constant Retrial
Rate.

Table 1. Comparisons between the published RQwDFB models
Reference AP SP NoS SR SV BS S&SO NCT RP

[2] Poisson Exp 1 R No F I, C 2 Exp, LRR
[3] Poisson Exp 1 R No F I, C 2 Exp, LRR
[11] Poisson Exp 1 & 2 R No 0 I, C 1 Exp, LRR
[13] Poisson Exp multiple R No F I, C 1 Exp, CRR
[22] Poisson Exp multiple R No F I, C 1 Exp, CRR
[24] Poisson G 1 R Yes I I, C 2 Exp, LRR
[33] MMPP Exp multiple R No 0 I, C 1 Exp, LRR
[39] Poisson G 1 U Yes 0 I, C 1 G
[46] Poisson G 1 U Yes I I, C 1† G,CRR
Here MAP Exp multiple R No 0 I, S, F 1 Signal

†: with negative calls

It is clear that, taking into account the above listed assumptions will increase the utility
of the model in practice.

For use in sequel, we register a number of notation. By e, we denote a column vector
of appropriate dimension (which will be clear in the context) consisting of 1’s. By∆(a) we
denote a diagonal matrix whose diagonal elements are given by the elements of the vector
a.

By Îr we denote a square matrix of order r such that the only non-zero number is 1 and
it occurs in the last (namely, rth) diagonal position.

By Ĩr we denote the following square matrix of order r.

Ĩr =



0 1
0 1

0 1
. . . . . .

0 1
0


. (1)

The Kronecker product ofA andB, denoted byA⊗B, is a matrix of dimensionmp×nq
and is given by

A⊗ B =


a11B a12B · · · a1nB
a21B a12B · · · a1nB
... ... · · · ...

am1B an2B · · · amnB

 .

67



© Melikov, Chakravarthy, Aliyeva

The Kronecker sum, denoted by, A⊕ B, is defined as

A⊕ B = A⊗ In + Im ⊗ B,

where Ir is an identity matrix of dimension r.
The paper is organized as follows. In Section 2, the model under study is described and

the steady-state analysis of the model is performed in Section 3. Illustrative numerical are
presented in Section 4. Some concluding remarks are given in Section 5.

2. Model Assumptions
We assume that calls arrive according to a MAP with parameter matrices (D0, D1) of

orderm. These calls are referred to as primary calls or simply p−calls. It is well-known that
MAP , a versatile Markovian point process introduced by Neuts [41], enables one to model
even correlated arrivals into the arrival process and generalizes some of the classical ones
such as Poisson process, Markov modulated Poisson process, PH− renewal process among
others.

A (continuous-time) MAP is characterized by parameter matrices (D0, D1) such that
D = D0 +D1 is an irreducible generator of the underlying continuous-time Markov chain
governing theMAP . While, transitions within D0 correspond to no arrivals to the system,
the transitions governed by D1 are those of the arrivals to the system. Suppose that δ is the
invariant vector of D. That is,

δD = 0, δ e = 1. (2)

The arrival rate, λ, is given by λ = δD1e.
We refer the reader to, for example, Chakravarthy [9]), He [19], Lucantoni, et.al. [30],

Lucantoni [29], and Neuts [43], for more details on Markovian arrival processes and their
applications.

The p−calls are processed by one of c servers in the system. The service times of the
calls are exponential and are independent of the type of calls served. Let the service rate be
denoted by µ.

An arriving p−call finding all servers busy will be lost with probability α; with proba-
bility 1− α will enter into an orbit, denoted as Or, of infinite size, and try to capture a free
server through a retrial mechanism. Calls coming out of orbit Or are referred as r−calls.

A processed p−call leaves the system with probability β; or with probability 1−β needs
to be served again. Such calls are referred to as feedback calls or simply f−call. These calls
enter into an orbit, say, Of , of finite size, say, N , and try to capture a free server through a
retrial mechanism. If this buffer is full when a feedback call needs to get processed, it will
be considered lost.

Calls in orbits Or and Of enter into service only through the signals arriving at their
respective orbits. That is, at the time the signals reach Or (or Of ) and if there is at least
one call waiting in the orbit with at least one free server, the signals will be considered
successful and one of the waiting calls will enter into service. The signals are independent
of the numbers in the orbits. Since we are dealing with continuous time, only one call (either
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from Or or Of ) will be successful and the signals are transferrable in the sense that if there
is no customer in one orbit at the time of receiving a signal, a call from another orbit cannot
enter into service. Thus, each orbit receives their signals to let one of the waiting calls to
enter into service. If there are no calls waiting or no free server, then the signals will be
unsuccessful.

The signals are generated according to two Poisson processes, one for r−calls and one
for f− calls. The rates of these two processes depend on the phase of theMAP . Thus, the
signals toOr occur according to a Poisson process with rate θ(r)j , 1 ≤ j ≤ m, and the signals
to Of occur according to a Poisson process with rate θ(f)j , 1 ≤ j ≤ m. This idea of using
signals was recently introduced by Chakravarthy [10] as a way to provide a reasonable fair
treatment to all orbiting customers seeking service. Further, this allows one to study retrial
queueing models as level-independent queues.

A pictorial description of the model under study is displayed in the Figure 1 below.

Figure 1. Pictorial description of the model under study
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By keeping track of
1. N1(t) = Number of calls in Or

2. N2(t) = Number of calls in Of

3. J(t) = Number of busy servers
4. K(t) = Phase of theMAP

we can study the model as a continuous-time Markov process.
The process {(N1(t), N2(t), J(t), K(t)) : t ≥ 0} can be verified to be a Markov process

with state space given by

Ω = {(i1, i2, j, k) : i1 ≥ 0, 0 ≤ i2 ≤ N, 0 ≤ j ≤ c, 1 ≤ k ≤ m}.

Let i1 denote the level consisting of the states {(i1, i2, j, k) : 0 ≤ i2 ≤ N, 0 ≤ j ≤ c, 1 ≤
k ≤ m}, for i1 ≥ 0. Note that this level consists of (N + 1)(c+ 1)m states.

3. Steady-state Analysis
The model described in Section 2 can be studied as aQBD− process with infinitesimal

generator Q given by

Q =


B0 A0

A2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

 , (3)

where the matrices B0, A0, A1, and A2 are as given below in (block) partitioned form.

B0 =


B̃1 B̃0

B̃2 B̃1 B̃0

B̃2 B̃1 B̃0

. . . . . . . . .
B̃2 B̃1 + B̃0

 , (4)

with

B̃1 =



D0 D1

βµI D0 − µI D1

2βµI D0 − 2µI D1

3βµI D0 − 3µI D1

. . . . . . . . .
cβµI D0 + αD1 − cµI


, (5)
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B̃0 =



0
(1− β)µI 0

2(1− β)µI 0
3(1− β)µI 0

. . .
c(1− β)µI 0


, (6)

B̃2 =


0 ∆(θ(F ))

0 ∆(θ(F ))
. . .
0 ∆(θ(F ))

0

 , (7)

A0 = (1− α)
(
IN+1 ⊗ Îc+1 ⊗D1

)
,

A1 = B0 −
(
I ⊗ [(Ic+1 − Îc(c+ 1))]⊗∆(θ(R))

)
,

A2 = IN+1 ⊗ Ĩc+1 ⊗∆(θ(R)),

θ(R) = (θ
(r)
1 , · · · , θ(r)m ), θ(F ) = (θ

(f)
1 , · · · , θ(f)m ).

(8)

Suppose that A = A0 + A1 + A2 and π = (π0, · · · ,πN) is the invariant vector of A.
That is,

πA = 0 and πe = 1. (9)

First, verify that the matrix A is of the form

A =



C̃1 B̃0

B̃2 C1 B̃0

B̃2 C1 B̃0

. . . . . . . . .
B̃2 C1 B̃0

B̃2 C1 + B̃0


, with C1 = C̃1 − (I − Îc+1)⊗∆(θ(F )),

(10)
and

C̃1 =



D0 −∆(θ(R)) D1 +∆(θ(R))

βµI D0 −∆(θ(R))− µI D1 +∆(θ(R))

2βµI D0 −∆(θ(R))− 2µI D1 +∆(θ(R))
. . . . . . . . .

(c− 1)βµI D0 −∆(θ(R))− (c− 1)µI D1 +∆(θ(R))
cβµI D0 +D1 − cµI


.

(11)
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From the steady-state equations related to the vector π of A, which in partitioned form π =
π0,0,π0,1, · · · ,πN,c−1,πN,c, we get the following results.
Result 1. We have

N∑
i=0

c∑
j=0

πi,j = δ, (12)

where δ is as given in Equation (2).
Result 2. We have

N∑
i=1

c−1∑
j=0

πi,j∆(θ(F ))e = (1− β)µ
N−1∑
i=0

c∑
j=1

j πi,je. (13)

Using the classical result onQBD− process (see, Neuts [42]), the stability condition, namely,
πA0e < πA2e, for our model reduces to the one given in the following result.
Result 3. The stability condition for our model under study is

(1− α)
N∑
i=0

πi,cD1e <
N∑
i=0

c−1∑
j=0

πi,j∆(θ(R))e. (14)

Note that in equation (14) the left-hand side corresponds toπA0e and that the right-hand side
isπA2e. Also, the stability condition can be intuitively explained as follows noting that orbit
Or is of infinite size and the orbit Of is of finite size. The left-hand side of equation (14)
corresponds to the rate of customers getting into orbit Or while the right-hand side of the
same equation gives the rate ofOr customers getting out ofOr. Obviously, input rate should
be less than the output rate. For use in sequel, we define the traffic intensity, ρ, as

ρ =
πA0e

πA2e
.

3.1. Steady-state vector

Since we are dealing with QBD− process, the steady-state vector, x is of matrix-
geometric type (see, Neuts [42]) under the stability condition that ρ < 1 (or equivalently
the condition given in Equation (14) and is given by

xi = x0R
i, i ≥ 0, (15)

where R is the rate matrix obtained as the minimal nonnegative solution to the matrix-
quadratic equation:

R2A2 +RA1 + A0 = 0, (16)

and the vector x0 is obtained by solving the following system of equations:

x0[B0 +RA2] = 0 and x0(I −R)−1e = 1. (17)
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While one can use the logarithmic-reduction algorithm of Latouche and Ramaswami [25] for
computing R when the dimension of R is manageable, it is strongly advised to exploit the
structure of the sparsity of the coefficient matrices. First note that the sparsity of A0 makes
the structure of R to be of the form:

R =


R0,0 R0,1 · · · R0,N

R1,0 R1,1 · · · R1,N
... ... · · · ...

RN,0 RN,1 · · · RN,N

 , Ri,j =


0 0 · · · 0
0 0 · · · 0
... ... · · · ...

R
(i,j)
0 R

(i,j)
1 · · · R

(i,j)
c

 , (18)

where R(i,j)
r , 0 ≤ i, j ≤ N, 0 ≤ r ≤ c, are matrices of dimensionm. We need to exploit it

to solve Equation (16). The details are as follows.
Simplifications: The following simplifications can easily be verified.

1. The matrix, RA2 = {Ri,j(Ĩc+1 ⊗∆(θ(R)))}, is such that the non-zero blocks (which
are the last row blocks in (c+ 1)st block) in Ri,j(Ĩc+1 ⊗∆(θ(R))) are given by

Ri,j(Ĩc+1 ⊗∆(θ(R))) =


0 0 0 · · · 0
0 0 0 · · · 0
... ... ... · · · ...
0 R

(i,j)
0 ∆(θ(R)) R

(i,j)
1 ∆(θ(R)) · · · R

(i,j)
c−1∆(θ(R))

 .

2. The matrix R2A2 = {Si,j} is such that the non-zero blocks (which are the last row
blocks in (c+ 1)st block) in Si,j are given by

Si,j =


0 0 0 · · · 0
0 0 0 · · · 0
... ... ... · · · ...

0
N∑
k=0

R
(i,k)
c R

(k,j)
0 ∆(θ(R))

N∑
k=0

R
(i,k)
c R

(k,j)
1 ∆(θ(R)) · · ·

N∑
k=0

R
(i,k)
c R

(k,j)
c−1 ∆(θ(R))

 .

3. Suppose that T = RA1 = {Ti,j}. Then using the structure of R and A1, we first note
that Ti,j is of the form by

Ti,j =


0 0 · · · 0
0 0 · · · 0
... ... · · · ...

T
(i,j)
0 T

(i,j)
1 · · · T

(i,j)
c

 .

The non-zero blocks of T are as follows.

T
(i,0)
0 = R

(i,0)
0 (D0 −∆(θ(R))) + βµR

(i,0)
1 ,

For 1 ≤ i ≤ N, 1 ≤ r ≤ c− 1,

T (i,0)
r = R

(i,0)
r−1D1 +R(i,0)

r (D0 − rµI −∆(θ(R))) + (r + 1)βµR
(i,0)
r+1 +R

(i,1)
r−1∆(θ(F )),
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T (i,0)
c = R

(i,0)
c−1D1 +R(i,0)

c (D0 − cµI + αD1) + R
(i,1)
c−1∆(θ(F )),

For 1 ≤ i ≤ N, 1 ≤ j ≤ N − 1,

T
(i,j)
0 = (1− β)µR

(i,j−1)
1 +R

(i,j)
0 (D0 −∆(θ(R))−∆(θ(F ))) + βµR

(i,j)
1 ,

For 1 ≤ i ≤ N, 1 ≤ j ≤ N − 1, 1 ≤ r ≤ c− 1,

T
(i,j)
r = (r + 1)(1− β)µR

(i,j−1)
r+1 +R

(i,j)
r−1D1 +R

(i,j)
r (D0 − rµI −∆(θ(R))−∆(θ(F )))

+(r + 1)βµR
(i,j)
r+1 +R

(i,j+1)
r−1 ∆(θ(F )),

T (i,j)
c = R

(i,j)
c−1D1 +R(i,j)

c (D0 − cµI + αD1) + R
(i,j+1)
c−1 ∆(θ(F )),

For 1 ≤ i ≤ N,

T
(i,j)
0 = (1− β)µR

(i,j−1)
1 +R

(i,j)
0 (D0 −∆(θ(R))−∆(θ(F ))) + βµR

(i,j)
1 ,

For 1 ≤ i ≤ N, 1 ≤ j ≤ N − 1, 1 ≤ r ≤ c− 1,

T
(i,j)
r = r(1− β)µR

(i,j−1)
r+1 +R

(i,j)
r−1D1 +R

(i,j)
r (D0 − rµI −∆(θ(R))−∆(θ(F )))

+(r + 1)βµR
(i,j)
r+1 +R

(i,j+1)
r−1 ∆(θ(F )),

T (i,j)
c = R

(i,j)
c−1D1 +R(i,j)

c (D0 − cµI + αD1) + R
(i,j+1)
c−1 ∆(θ(F )),

T
(i,N)
0 = (1− β)µR

(i,N−1)
1 +R

(i,N)
0 (D0 −∆(θ(R))−∆(θ(F ))) + µR

(i,N)
1 ,

For 1 ≤ i ≤ N, 1 ≤ r ≤ c− 1,

T
(i,N)
r = (r + 1)(1− β)µR

(i,N−1)
r+1 +R

(i,N)
r−1 D1 +R

(i,N)
r (D0 − rµI −∆(θ(R))−∆(θ(F )))

+(r + 1)βµR
(i,j)
r+1 ,

T
(i,0)
0 = R

(i,N)
c−1 D1 +R(i,N)

c (D0 − cµI + αD1).

4. In terms of matrices of dimension m, the matrix R is computed in blocks and the
needed equations are as follows.

R
(i,0)
0 = βµR

(i,0)
1 [∆(θ(R))−D0]

−1, 0 ≤ i ≤ N, (19)

R
(i,0)
r =

[ N∑
k=0

R
(i,k)
c R

(k,0)
c−1 ∆(θ(R)) + R

(i,0)
r−1D1 ++(r + 1)βµR

(i,0)
r+1

+R
(i,1)
r−1∆(θ(F ))

]
[rµI +∆(θ(R))−D0]

−1, 0 ≤ i ≤ N, 1 ≤ r ≤ c− 1,
(20)

R
(i,0)
c =

[ N∑
k=0

R
(i,k)
c R

(k,0)
c−1 ∆(θ(R)) + R

(i,0)
c−1D1 +R

(i,1)
c−1∆(θ(F ))

+(1− α)D1

]
[cµI −D0 − αD1]

−1, , 0 ≤ i ≤ N,
(21)
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R
(i,j)
0 =

[
βµR

(i,j)
1 + (1− β)µR

(i,j−1)
1

]
[∆(θ(R)) + ∆(θ(F ))−D0]

−1,

0 ≤ i ≤ N, 1 ≤ j ≤ N − 1,
(22)

R
(i,j)
r =

[ N∑
k=0

R
(i,k)
c R

(k,j)
c−1 ∆(θ(R)) + (r + 1)(1− β)µR

(i,j−1)
r+1 +R

(i,j)
r−1D1

+(r + 1)βµR
(i,j)
r+1 +R

(i,j+1)
r−1 ∆(θ(F ))

]
[rµI +∆(θ(R)) + ∆(θ(F ))−D0]

−1,

0 ≤ i ≤ N, 1 ≤ j ≤ N − 1, 1 ≤ r ≤ c− 1,

(23)

R(i,j)
c =

[ N∑
k=0

R(i,c)
c R

(k,j)
c−1 ∆(θ(R)) + R

(i,j)
c−1D1 +R

(i,j+1)
c−1 ∆(θ(F ))

]
[cµI −D0 − αD1]

−1,

0 ≤ i ≤ N, 1 ≤ j ≤ N − 1, (24)

R
(i,N)
0 =

[
µR

(i,N)
1 + (1− β)µR

(i,N−1)
1

]
[∆(θ(R)) + ∆(θ(F ))−D0]

−1, (25)

R
(i,N)
r =

[ N∑
k=0

R
(i,k)
c R

(k,N)
c−1 ∆(θ(R)) + (r + 1)βµR

(i,j)
r+1 +R

(i,N)
r−1 D1

+(r + 1)(1− β)µR
(i,N−1)
r+1

]
[rµI +∆(θ(R)) + ∆(θ(F ))−D0]

−1,

0 ≤ i ≤ N, 1 ≤ r ≤ c− 1,

(26)

R
(i,N)
c =

[ N∑
k=0

R
(i,k)
c R

(k,N)
c−1 ∆(θ(R)) + R

(i,N)
c−1 D1

+(1− α)D1

]
[cµI −D0 − αD1]

−1, 0 ≤ i ≤ N.
(27)

Remarks: 1. Note that the recursive equations given in (19) through (27) are computed
in that order until two successive iterates (element-by-element) are close enough (say to a
pre-specified tolerance level, ϵ. Typically this level is chosen as ϵ = 10−9 or so.
2. It is worth pointing out that the computational complexity when using equation (16) versus
equations (19) through (27) to find the rate matrix R. In the former case (without exploiting
the structure of the rate matrix) the complexity is of the order O((N + 1)3(c + 1)3m3) per
iterate, whereas when exploiting the structure of the coefficient matrices, this complexity
reduces to O(m3) per iterate. [Note here we used the facts that (i) O(km) = O(m); (ii)
O(m2 + m) = O(m2); (iii) O(km3) = O(m3), where k is some positive constant.] It is
well-known that using the logarithmic-quadratic procedure reduces the number of iterates
and hence the cut-off points (for N and c) to determine when to use one over the other
depends on the values ofN and c. Specifically, this depends on the value of [(N+1)(c+1)]3.
Obviously, exploiting the structure of R results in significant savings in the computational
time and operations when N and c are large.

3.2. System performance measures

In order to qualitatively compare several models (or scenarios) we need to develop a few
system performance measures. Here, we will give a few and others can be similarly devel-
oped. We first partition the vectorx = (x0,x1, · · · ) andx0 = (x0,0, · · · ,x0,c, · · · ,xN,0, · · · ,
xN,c).

75



© Melikov, Chakravarthy, Aliyeva

We define

a = (a0,0, · · · ,a0,c, · · · ,aN,0, · · · ,aN,c)a0(I −R)−1.

1. The probability that the system is idle is x0,0e.
2. The probability that all servers are idle is a0,0e.

3. The probability that exactly i servers are busy is
N∑
k=0

ak,ie, 0 ≤ i ≤ c.

4. The mean number of servers busy is
c∑

i=0

N∑
k=0

ak,ie.

5. The probability that exactly i are waiting in the feedback buffer is
c∑

j=0

ai,je, 0 ≤ i ≤ N.

6. The probability that exactly i r-calls in the orbit is xie = x0R
ie, i ≥ 0.

7. The mean number of r−calls in the orbit is
∞∑
i=1

ixie = x0(I −R)−2e− 1.

8. The probability that an arrival is lost due to all server busy is α
λ

N∑
k=0

ak,cD1e.

9. The probability that an served f− call (needing another service) is lost due to lack of

buffer is (1− β)
N∑
k=1

kaN,ke.

4. Illustrative Examples
In this sectionwe illustrate a few numerical examples out ofmanywe generated. Further,

we will discuss an optimization numerically. These examples are generated using a Fortran
code. We used a number of internal accuracy checks to verify the written code.

First we look at the behavior of selected performance measures as α and β are varied.
Towards this end, we consider five MAP arrivals: 1) the inter-arrival times are modeled
using an Erlang of order 2 with parameter 2; 2) the inter-arrival times are exponentially
distributed with parameter 1; 3) the inter-arrival times are modeled using hyperexponential
distribution with parameters 1.9 and 0.19 with mixing probabilities, respectively, 0.9 and 0.1;
4) the inter-arrival times are modeled using a MAP that has a 1-lag correlation coefficient
(CC) value of - 0.3267; 5) the inter-arrival times are modeled using a MAP that has a 1-
lag CC value of 0.3267. The representation matrices (D0, D1) for these five cases are as
follows.
MAP1 : MAP for Erlang arrivals

D0 =

(
−2 2
0 −2

)
, D1 =

(
0 0
2 0

)
.

MAP2 : MAP for Poisson arrivals

D0 = (−1), D1 = (1)
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MAP3 : MAP for arrival with hyperexponential distribution

D0 =

(
−1.9 0.19
0 −0.19

)
, D1 =

(
1.71 0.19
0.171 0.019

)
.

MAP4 : MAP with negative CC

D0 =

 −1.25 1.25 0
0 −1.25 0
0 0 −2.5

 , D1 =

 0 0 0
1.2375 0 0.0125
0.0250 0 2.4750

 .

MAP5 : MAP with positive CC

D0 =

 −1.25 1.25 0
0 −1.25 0
0 0 −2.5

 , D1 =

 0 0 0
0.0125 0 1.2375
2.4750 0 0.0250

 .

The five MAPs are qualitatively different as seen above. Further, the standard deviation
(SDA) of the five MAPs are, respectively, 0.7071, 1, 2.2447, 1.0392, and 1.0392. We fix
λ = 1, µ = 2, c = 5, N = 10, and vary α and β from 0 to 0.9. Note that the rate matrix R is
of dimension 11× 6×m = 66m.

In Figure 2 we plot the probability that the system is idle. A quick look at this shows
that as β is increased this probability also increases for all five MAPs considered. This is
probably due to the fact that an increase in β creates a reduction in the load due to f -calls
needing additional services. Further, this measure appears to be insensitive to the changes
in α when β is increased.

The plot of the probability that all servers idle (this one is different from the system idle
probability as it is possible for r− and f− calls to be waiting in their respective buffers) is
displayed in Figure 3. The trend for this measure when varying β is similar to the ones seen
in Figure 2.

In Figure 4 the mean number of busy servers is plotted as a function of α and β under
various scenarios. As is to be expected (due to a reduction in the load to the system from
f -calls), we see a decreasing trend in all the cases as β is increased. However, this measure
is not significantly affected by a change in α. This fact (of insensitivity to α) is not surprising
as it is known from classical queues as well as classical retrial queues that the mean number
of busy servers depend only on the arrival and the service rates.

Themean number of r− calls waiting in the retrial orbit is plotted under various scenarios
in Figure 5. While this measure appears to decrease as β is increased (for a fixed α) under all
scenarios, the rate of decrease depends not only on the type of MAP but also on the value
of α. In the case of MAPs with a large variability MAP3 or with a positive correlation
(MAP5, it appears that the rate of change is small as compared to the otherMAPs.

In Figures 6 and 7, respectively, we plot the mean number of f−calls in the feedback
buffer and the loss probability of an f−call due to the feedback buffer being full at the time
of such a requirement. A decreasing trend under all scenarios as β is increased (when α is
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fixed) in seen, which are as expected. While varying of α has almost no effect on the mean
number of f -calls in orbit Of , we do notice the sensitivity in varying α on the probability of
f -call getting lost for β up to a certain point. Beyond this point we notice the insensitivity
to α on this measure too.

Finally, in Figure 8, we plot the loss probability of an r−call at an arrival epoch due to
all servers being busy. Obviously, one would expect this measure to exhibit sensitivity to α
and is clearly seen in the plots under all scenarios. For all theMAPswe notice a value of β,
say, β∗ (note that β∗ depends on α and the type ofMAP ), such that an upward trend in this
measure is seen as β is increased (for a fixed α) up to β = β∗ and after this point the measure
decreases as β is increased (for a fixed α). This is seen for all values of α. Further, we see
an interesting fact for positively correlated arrivals, namely, forMAP5. There appears to be
more than one peak as β is increased when α is fixed. This phenomenon of an upward trend
followed by a downward trend is due to a similar trend in the traffic intensity. The intricate
dependence of the traffic intensity ρ (see Equation (14)) on the parameters α and β for fixed
values of the other input parameters, is plotted under various scenarios in Figure 9.

These figures allow us to study the sensitivity of performance measures to the type of
MAP, i.e. flow with zero, positive and negative CC. From figures 1-7 we conclude that the
impact of CC on performance measures is negligible.

4.1. Investigation of economic measures

We now investigate the effects of the parameters α and β of the Bernoulli trials on some
selected economic measures of the system in the case whenN = 10 and c = 5. Towards this
end we define a number of costs and the economic measures along with the needed notations.
These are displayed in Table 2 below.

Table 2. Costs, economic measures, and notations
Notation Definition

cbp Cost per unit time when a p-call balks
cbf Cost per unit time when a f -call balks
cwr Cost per unit time when a r-call waits in orbit
cwf Cost per unit time when a f -call waits in orbit
cser Cost per unit time when one server is idle
rser Revenue earned by providing service to a call
Pp Probability that p-call is lost
Pf Probability that f -call is lost
Lr Mean number of r-calls in Or

Lf Mean number of f -calls in Of

BCav Mean number of busy servers
TC Total expected cost per unit time of the system
TR Total expected revenue per unit time of the system
TP Total expected profit per unit time of the system
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Figure 2. P(system is idle) under various scenarios
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Figure 3. P(all servers are idle) under various scenarios
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Figure 4. Mean number of servers busy under various scenarios
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Figure 5. Mean number in retrial orbit under various scenarios
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Figure 6. Mean number in feedback orbit under various scenarios
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Figure 7. P(an f−call is lost) under various scenarios
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Figure 8. P(an r−call is lost) under various scenarios
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Figure 9. Traffic intensity (ρ) under various scenarios
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The three economic measures, TC, TR, and TP are computed as follows.

TC = cbpPp + cbfPf + cwr Lr + cwf Lf + cser
(
5− BCav

)
,

TR = rserµBCav,

TP = TR− TC.

We look at different costs: cbp = 5, cbf = 2.5, cwr = 1, cwf = 0.5, cser = 0.6, rser = 25, and
compute the economic measures as functions of α and β under different scenarios for the
arrival process.

In Figures 10-12, we display the graphs of the three economic measures under different
scenarios. The optimum values, namely, the minimum for TC and the maximum for TR
and TP , along with their corresponding α and β values under various scenarios are listed in
Table 3 below. Note that values of (α, β) are shown within square parentheses.

The maximum for TR occurring at (0, 0) is intuitive sinceBCav is a decreasing function
of both α and β. Thus, when all balked calls go to their orbit with certainty (which occurs
when α = 0), and when all processed calls enter into feedback buffer with certainty (which
occurs when β = 0), the total revenue has to go up. A similar argument justifies theminimum
of TC occurring at (0, 0.9). This is the case for all five arrival processes considered. The
maximum for TP occurs when β is closer to 0 than 0.9, and depends on the type of the
arrival process.

While the optimum values of TR, TP, and TC appear to be close to each other for the
MAPs considered, the graphs of these measures show the sensitivity to the variability in the
inter-arrival times as well as to the 1-lag correlation coefficient, especially when β is varied.

Table 3. Optimum values of the three economic measures
Arrival TC∗(min) TR∗(max) TP ∗(max)
MAP1 0.0581 [(0,0.9)] 74.370 [(0,0)] 66.48305 [(0,0.3)]
MAP2 0.0588 [(0,0.9)] 74.270 [(0,0)] 66.08205 [(0,0.3)]
MAP3 0.0625 [(0,0.9)] 74.070 [(0,0)] 64.82940 [(0,0.2)]
MAP4 0.0586 [(0,0.9)] 74.295 [(0,0)] 66.2831 [(0,0.3)]
MAP5 0.0656 [(0,0.9)] 74.105 [(0,0)] 65.6587 [(0,0.2)]

87



© Melikov, Chakravarthy, Aliyeva

Figure 10. Economic measure, TC, as a function of α and β under various scenarios
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Figure 11. Economic measure, TR, as a function of α and β under various scenarios
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Figure 12. Economic measure, TP , as a function of α and β under various scenarios

5. Concluding Remarks
We analyzed a multi-server RQwDFB in which the calls arrive according to a versa-

tile Markovian point process. There are two buffers, one infinite to hold the primary calls
when all servers are busy (modeled using a Bernoulli trial), and the other a finite buffer to
hold feedback calls (again using possibly a different Bernoulli trial). All feedback calls find-
ing the buffer full will be lost. Calls from the two orbits try to capture a free served based
on getting their respective signals that are generated by two independent Poisson processes
with (possibly) different parameters which depend on the phase of the arrival process. The
steady-state analysis of the model is carried out using the matrix-analytic method. Behav-
ior of selected performance measures versus retrial and feedback probabilities for different
MAP arrivals is investigated. Moreover, the cost-profit analysis of the model is performed
and the impact of various scenarios for the arrival process as well as retrial and feedback
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probabilities on the total expected cost-profit of the system are presented in tabular form.
The analysis carried out in this paper is very useful to choose the best service scheme that
is used to maximize the profit of the system. The model can further be optimized for other
parameters controllable. The model studied in this paper can be generalized in a number
of ways. First, we can replace the Poisson signals with non-Poisson signals such as phase
type or MAP . Secondly, exponential service times can be replaced with phase type distri-
butions. Finally, the servers can be made as heterogeneous. In these cases, the dimensions
of the problem will be increased and a careful planning the numerical implementation is
needed. These issues are subject further investigations.
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