
1. Introduction
Many stochastic models arising in queueing and storage applications can be formulated

as Markov chains that are stochastically monotone, in the sense that if the process is ini-
tialized with more “work” in the system, then the system remains more congested. To be
more precise, suppose that X = (Xn : n ≥ 0) takes values in a state space S ⊆ R. For
x ∈ S, let Px(·|X0 = x) be the probability on the path-space of X conditional on X0 = x
and let Ex(·) = E(·|X0 = x) be its associated expectation. We say that X is stochasti-
cally monotone if for each y ∈ S, Px(X1 > y) is non-decreasing as a function of x ∈ S.
Many birth-death chains on Z+ are stochastically monotone, as is the waiting time sequence
W = (Wn : n ≥ 0) satisfying the recursion

Wn+1 = [Wn + Zn+1]
+

for n ≥ 0, where Z1, Z2, ..., are independent and identically distributed (iid) random vari-
ables (rv’s), W0 ∈ S = R+, and [y]+

∆
= max(y, 0) for y ∈ R. Stochastically monotone

Markov chains are ubiquitous within single station queueing environments; see [15], [9],
and [8] for additional discussion and examples.

Consider such a Markov chain X , having a stationary distribution π = (π(dx) : x ∈ S).
Assume r : S → R is a “reward” function which is non-decreasing, so that r(x) ≤ r(y) for
x, y ∈ S with x ≤ y. This covers the great majority of performance measures used within
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the queueing setting. Let P = (P (x, dy) : x, y ∈ S) be the one-step transition kernel (or
matrix, when S is discrete), and let

πr =

∫

S

r(y)π(dy)

be the steady-state expectation of r(Xn). A fundamental object of interest in the analysis of
Markov chains is Poisson’s equation, in which we wish to find the function g for which

(P − I)g = −rc, (1.1)

where rc is the centered reward function given by rc(x) = r(x)− πr.
The solution g to (1.1) plays a key role in the analysis of the cumulative reward func-

tional Sn(r) =
∑n−1

j=0 r(Xj). In particular, the sequence of rv’s defined by

g(Xn) +
n−1∑
j=0

r(Xj)− n · πr (1.2)

is then a martingale (in the presence of appropriate integrability). The martingale structure
then implies that

ExSn(r) = nπr + g(x)− Exg(Xn).

When X is aperiodic and g is π-integrable, this leads to the approximation, valid for large
time horizons n, given by

ExSn(r) ≈ nπr + g(x)− πg.

The martingale representation (1.2) also allows one to apply martingale theory to establish
central limit theorems (CLT’s) and laws of the iterated logarithm (LIL’s) for Sn(r); see, for
example, [10] and [5].

We note also that the value function v = (v(x) : x ∈ S) for a Markov decision process
(MDP) associated with maximizing the long-run average reward n−1Sn(r) satisfies (1.1),
where P is the transition kernel (or matrix) associated with the dynamics of X under the
optimal policy.

In view of the importance of Poisson’s equation, this paper establishes the following fun-
damental result. In particular, when X is stochastically monotone and r is non-decreasing,
the solution g to Poisson’s equation must necessarily also be non-decreasing. This mono-
tonicity property implies, for example, that when constructing approximating numerical
schemes for computing MDP value functions or value functions for uncontrolled Markov
chains, the approximation should ideally be monotone when X is suitably monotone. When
value functions are computed via Monte Carlo simulation, the monotonicity can be imposed
as a “shape constraint” on the associated estimator, thereby improving estimator perfor-
mance; see, for example, [2]. It turns out that the monotonicity of g also plays a key role in
studying truncation schemes for numerically computing stationary distributions for stochas-
tically monotone chains; see [6].

Our proof uses coupling arguments that may be of separate interest. Section 2 contains
statements of our main results, as well as our proofs.
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2. The Monotonicity Results
We discuss here our monotonicity results, starting with a simple proof that covers most

examples, and then developing theory that covers richer classes of models. Our theory
hinges on the following coupling of the Markov chain starting from x ∈ S with the chain
starting from y ∈ S. In particular, let

F (x, y) = Px(X1 ≤ y)

for x, y ∈ S, and set

F−1(x, u) = inf{z : F (x, z) ≥ u}

for u ∈ [0, 1]. For x ∈ S, let X0(x) = x and put

Xn+1(x) = F−1(Xn(x), Un+1)

for n ≥ 0, where U1, U2, ... is an iid sequence of rv’s uniformly distributed on [0, 1] under
the probability P (having associated expectation E). The key observation is that for each
x ∈ S,

P ((Xj(x) : j ≥ 0) ∈ ·) = Px((Xj : j ≥ 0) ∈ ·),

so that X(x) = (Xj(x) : j ≥ 0) has the same distribution as X under Px. This coupling
goes back to [7].

Because X is stochastically monotone, F−1(·, u) is non-decreasing for each u ∈ [0, 1].
Consequently, F−1(·, Un+1) is non-decreasing, and it follows by induction that for each
n ≥ 0, Xn(x) is a non-decreasing function of x ∈ S. Hence, if r is a non-decreasing
function rc(Xn(x)) is non-decreasing in x ∈ S. Thus, if rc(Xn(x)) is integrable, it is
evident that

n−1∑
j=0

Exrc(Xj)

is non-decreasing in x. As a result, if
∞∑
j=0

|Exrc(Xj)| < ∞ (2.1)

for x ∈ S, then

g(x)
∆
=

∞∑
j=0

Exrc(Xj) (2.2)

must be non-decreasing in x ∈ S. But if (2.1) holds, then it is easy to see that g as defined
by (2.2) is a solution of Poisson’s equation (1.1). We summarize our discussion thus far with
our first result.
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Proposition 1. Suppose that X is stochastically monotone and that r is non-decreasing.
If (2.1) holds for each x ∈ S, then g as defined by (2.2) is a non-decreasing solution of
Poisson’s equation (1.1).

As noted in [5], there exist Markov chains X for which (1.1) is solvable, and yet the
representation (2.2) for the solution fails to be valid. Consequently, we wish to develop
alternative proofs that are more general. The remainder of this paper is largely concerned
with extending the theory to this setting. We start by noting that [5] show that when r is
π-integrable, X is irreducible, and S ⊆ Z, then

gz(x) = Ex

τ−1∑
j=0

rc(Xj) (2.3)

always solves (1.1), where τ = inf{n ≥ 1 : Xn = z} is the first return time to any (fixed)
state z ∈ S. Furthermore, it is shown there that (1.2) is Px-integrable for x ∈ S and that

Mn
∆
= gz(Xn) +

n−1∑
j=0

rc(Xj)

is a Px-martingale adapted to (Fn : n ≥ 0), where Fn = σ(Xj : j ≤ n).
We now use our coupling to prove the following result.

Theorem 1. Suppose that X is an irreducible positive recurrent stochastically monotone
Markov chain taking values in S = Z+ having stationary distribution π. If r : S → R is a
π-integrable non-decreasing function, then

g0(x) = Ex

τ−1∑
j=0

rc(Xj) (2.4)

(with τ = inf{n ≥ 1 : Xn = 0}) is a non-decreasing solution of Poisson’s equation (1.1)
and (Mn : n ≥ 0) is a Px-martingale for each x ∈ S.

Proof. Fix z = 0 ≤ x < y. Expressed in terms of our coupling, the martingale structure of
(Mn : n ≥ 0) implies that

Mn(x)
∆
= g0(Xn(x)) +

n−1∑
j=0

rc(Xj(x))

and

Mn(y)
∆
= g0(Xn(y)) +

n−1∑
j=0

rc(Xj(y))

are both martingales adapted to (Gn : n ≥ 0), where Gn = σ(Xj(x), Xj(y) : 0 ≤ j ≤ n).
For w ∈ S, let τ(w) = inf{n ≥ 0 : Xn(w) = 0}. We now wish to apply optional sampling
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at time τ(y) to (Mn(x) : n ≥ 0) and (Mn(y) : n ≥ 0). Assuming temporarily that optional
sampling can be applied, we find that

g0(x) = Eg0(Xτ(y)(x)) + E

τ(y)−1∑
j=0

rc(Xj(x)) (2.5)

and

g0(y) = Eg0(Xτ(y)(y)) + E

τ(y)−1∑
j=0

rc(Xj(y)). (2.6)

But under our coupling, Xτ(y)(x) ≤ Xτ(y)(y) = 0. Since S = Z+, Xτ(y)(x) ≥ 0, so it
follows that Xτ(y)(x) = 0. So,

g0(x)− g0(0) = E

τ(y)−1∑
j=0

rc(Xj(x))

and

g0(y)− g0(0) = E

τ(y)−1∑
j=0

rc(Xj(y)).

The monotonicity of rc implies that

τ(y)−1∑
j=0

rc(Xj(x)) ≤
τ(y)−1∑
j=0

rc(Xj(y)), (2.7)

thereby implying that g0(x) ≤ g0(y).
We now need to establish the validity of optional sampling. Note that τ(y) ∧ n

∆
=

min(n, τ(y)) is a bounded stopping time, so it follows from the optional sampling theorem
(see, for example, Theorem 6.2.2 in [13]) that

EMτ(y)∧n(x) = EM0(x) = g0(x). (2.8)

The validity of (2.5) follows from (2.8), once we prove that (Mτ(y)∧n : n ≥ 0) is a uniformly
integrable sequence. Note that

|Mτ(y)∧n(x)| ≤ |g0(Xτ(y)∧n(x))|+
τ(y)−1∑
j=0

|rc(Xj(x))|. (2.9)
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Because rc is non-decreasing, rc can be expressed as rc(x) = r̃c(x) + rc(0), where r̃c is
non-decreasing and non-negative. Hence,

τ(y)−1∑
j=0

|rc(Xj(x))| ≤
τ(y)−1∑
j=0

r̃c(Xj(x)) + |rc(0)|τ(y)

≤
τ(y)−1∑
j=0

r̃c(Xj(y)) + |rc(0)|τ(y)

=

τ(y)−1∑
j=0

|rc(Xj(y))|+ 2|rc(0)|τ(y).

Recall that

E

τ(y)−1∑
j=0

|rc(Xj(y))|+ 2|rc(0)|τ(y) = Ey

τ−1∑
j=0

|rc(Xj)|+ 2|rc(0)|Eyτ.

The latter expectations are finite because rc is π-integrable and X is positive recurrent; see
Section 2 of [5] for details. Hence, the latter term on the right-hand side of (2.9) is integrable
(and therefore trivially uniformly integrable).

We now argue that the other term appearing on the right-hand side of (2.9), namely
(g0(Xτ(y)∧n) : n ≥ 0), is also uniformly integrable. Note that |g0(Xτ(y)∧n(x))| → |g0(Xτ(y)(x))|
a.s. as n → ∞. As argued earlier, Xτ(y)(x) = 0, so uniform integrability follows (see The-
orem 4.6.3 of [4]) if

E|g0(Xτ(y)∧n(x))| → |g0(0)| = 0

as n → ∞, which is a consequence of establishing that

E|g0(Xn(x))|I(τ(y) ≥ n) → 0 (2.10)

as n → ∞.
Let βn(x) = inf{j > n : Xj(x) = 0}, and observe that

g0(Xn(x)) = E[

βn(x)−1∑
j=n

rc(Xj(x))|Xn(x)].
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In view of the fact that βn(x) ≤ βn(y), the left-hand side of (2.10) can be upper bounded by

E

βn(x)−1∑
j=n

|rc(Xj(x))|I(τ(y) > n) ≤ E

βn(x)−1∑
j=n

|rc(Xj(y))|I(τ(y) > n)

≤ E

βn(y)−1∑
j=n

|rc(Xj(y))|I(τ(y) > n)

= E

τ(y)−1∑
j=n

|rc(Xj(y))|I(τ(y) > n)

= Ey

τ−1∑
j=n

|rc(Xj)|I(τ > n) → 0,

proving (2.10). A similar (but easier) argument proves (2.6), thereby proving the theorem.

Theorem 1 provides a general monotonicity theory for solutions to Poisson’s equation
when the state space is discrete. We finish this section by developing the corresponding
theory when the state space S is a continuous state space. In particular, we assume that
S = R+. Our first result concerns the case where X is a positive recurrent Harris chain; see
[11] for a complete discussion of this class of Markov chains. Specifically, we will invoke
the following assumption

A1. There exist b, λ > 0, a probability φ on R+, and non-negative functions
vi : R+ → R+ (i = 1, 2) such that

a) sup{Exvi(X1) : 0 ≤ x ≤ b} < ∞, i = 1, 2;
b) sup{|r(x)| : 0 ≤ x ≤ b} < ∞;
c) Exv1(X1) ≤ v1(x)− 1, x > b;
d) Exv2(X1) ≤ v2(x)− |r(x)|, x > b;
e) Px(X1 ∈ ·) ≥ λφ(·), x ∈ [0, b].

We now provide a couple of queueing examples, so as to illustrate condition A1.

Example 1. Let W = (Wn : n ≥ 0) be the Markov chain on S = R+ associated with the
waiting time sequence for the G/G/1 queue with first in/first out (FIFO) queue discipline
(See also the Introduction for a discussion of this model.). Then,

F (x, y) = P (Z1 ≤ y − x)

for x, y ∈ R+, where Z1 is the difference of the service time and inter-arrival time associated
with the first customer to enter the queue. For any non-negative function h : R+ → R+, it
is easily verified that

Exh(W1) = Eh([x+ Z1]
+).
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Assume that Z1 has a positive continuous density fZ(·) on R, and that EZ1 < 0 with
EZ2

1 < ∞. (The condition EZ1 < 0 is a natural stability condition for the G/G/1 queue
and asserts that the arrival rate is strictly less than the service rate.) Note that if we set
v1(x) = 2x/|EZ1|, then

Exv1(W1)− v1(x) =
2

|EZ1|
E([x+ Z1]

+ − x)

→ −2

as x → ∞. Furthermore, if we put v2(x) = x2/|EZ1|, then

(Exv2(W1)− v2(x))

x
=

1

|EZ1|x
E(([x+ Z1]

+)2 − x2)

→ −2

as x → ∞. So, there exists b < ∞ for which

Exv1(W1) ≤ v1(x)− 1

and

Exv1(W1) ≤ v2(x)− x

for x > b. Hence, if r(x) = x, conditions a)-d) of A1 are clearly satisfied. Finally, for
y ≥ 0,

Px(W1 ∈ dy) = P (Z1 ≤ −x)δ0(dy) + fZ(y − x)dy,

where δ0(·) is a unit point mass distribution at 0. It follows that for 0 ≤ x ≤ b,

Px(W1 ∈ dy) ≥ P (Z1 ≤ −b)δ0(dy) + inf
0≤x≤b

fZ(y − x)dy

∆
= λφ(dy),

where

φ(dy) =
(P (Z1 ≤ −b)δ0(dy) + inf0≤x≤b fZ(y − x)dy)

λ
,

λ = P (Z1 ≤ −b) +

∫

R+

inf
0≤x≤b

fZ(y − x)dy.

This validates condition e) of A1 for Example 1.

Example 2. Consider an infinite server queue in which arrivals occur according to a renewal
process with arrival times (Λn : n ≥ 0), and in which the n’th customer to arrive requires
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processing time Vn. Suppose that Xn is the maximum remaining service time across all
customers present in the system at time Λn. Then, X = (Xn : n ≥ 0) satisfies the recursion

Xn+1 = max(Xn − χn+1, Vn+1),

where χn+1 = Λn+1 − Λn for n ≥ 0.
We assume that Λ0 = 0 and (χn : n ≥ 1) is an iid sequence independent of (Vn : n ≥ 1),

with EV 2
1 + Eχ2

1 < ∞ and for which P (χ1 > y)P (V1 > y) > 0 for y ∈ R. Then,
X = (Xn : n ≥ 0) is a Markov chain taking values in S = R+. If, v1(x) = 2x/Eχ1, note
that

Exv1(X1)− v1(x) =
2

Eχ1

Emax(−χ1, V1 − x)

→ −2

as x → ∞. Similarly, if v2(x) = x2/Eχ1, then

1

x
(Ev2(X1)− v2(x)) =

1

xEχ1

Emax
(
(x− χ1)

2 − x2, V 2
1 − x2

)

→ −2

as x → ∞. As in Example 1, there exists b < ∞ such that

Exv1(X1) ≤ v1(x)− 1

and

Exv2(X1) ≤ v2(x)− x

for x > b. Hence, conditions a)-d) are easily seen to hold for Example 2 with r(x) = x.
As for condition e), note that

Px(X1 ∈ dy) ≥ P (V1 ∈ dy, x− χ1 < y)

= P (V1 ∈ dy)P (χ1 > x− y)

for x, y ∈ R+. Hence, for 0 ≤ x ≤ b and y > b,

Px(X1 ∈ dy) ≥ P (V1 ∈ dy)P (χ1 ≥ 0)

= λφ(dy),

where

φ(dy) =
P (V1 ∈ dy)

P (V1 > b)
, y > b

and

λ = P (V1 > b),

establishing that e) also holds for Example 2 with r(x) = x.

Queueing Models and Service Management

35



[1] and [12] noted that condition e) allows one to “split” the transition kernel P over
[0, b], so that one can then write

Px(X1 ∈ ·) = λφ(·) + (1− λ)Q(x, ·) (2.11)

for x ∈ [0, b], where Q(x, ·) is a probability on S for each x ∈ [0, b]. The mixture (2.11)
then allows one to interpret transitions from x ∈ [0, b] in terms of a “randomization”. In
particular, if Xn ∈ [0, b], then Xn+1 is distributed according to φ with probability λ and
distributed according to Q(Xn, ·) with probability 1−λ. Every time that X distributes itself
according to φ, the Markov chain “regenerates.” More precisely, the regeneration time τ is
a randomized stopping time, in which τ is adapted to a filtration involving the history of
the sequence ((Xj, βj) : j ≥ 0), where βj is a Bernoulli rv in which βj = 1 whenever the
mixture of component φ is chosen (with probability λ) and βj = 0 otherwise; see p.98-100
of [11] for details.

Let τ be the first time that X distributes itself according to φ. We are now ready to
state a theorem that provides a continuous state space analog to the discrete state space
representation (2.3) for the solution of Poisson’s equation.

Theorem 2. Let X = (Xn : n ≥ 0) be a Markov chain satisfying A1. Then, X possesses a
unique stationary distribution π and r is π-integrable. If rc(x) = r(x)− πr for x ≥ 0, then

Ex

τ−1∑
j=0

|rc(Xj)| < ∞

for each x ∈ R+ and

g̃(x) = Ex

τ−1∑
j=0

rc(Xj)

is a finite-valued solution of Poisson’s equation for which

g̃(Xn) +
n−1∑
j=0

rc(Xj)

is a Px-martingale for each x ∈ R+.

Proof. Condition e) implies that [0, b] is a small set, in the terminology of [11]. In view
of conditions a) and c), we may apply Theorem 11.3.4 of [11], thereby ensuring that X
has a unique stationary distribution π. Furthermore, conditions a), b), and d), together with
Theorem 14.3.7 of [11] imply that

∫

R+

π(dx)|r(x)| ≤ sup{Exv2(X1)− v2(x) + |r(x)| : 0 ≤ x ≤ b} < ∞.
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Since πr is finite-valued, we may put rc(x) = r(x)− πr.
In view of conditions a)-d), we may apply the Comparison Theorem (p. 344, [11]) to

conclude that

Ex

τ−1∑
j=0

|rc(Xj)| ≤ v2(x) + |πr|v1(x) + βEx

τ−1∑
j=0

I(Xj ≤ b) (2.12)

where

β = sup{|πr|v1(x) + v2(x) : 0 ≤ x ≤ b}.

With the aid of the splitting idea discussed earlier, we see that

Px(τ > Tk+1|X0, ..., XTk
) = (1− λ),

where Tk is the time step at which X visits [0, b] for the k’th time, and hence

P (τ > Tk) = (1− λ)k.

It follows that

Ex

τ−1∑
j=0

I(Xj ≤ b) = Ex

∞∑
j=1

I(τ > Tj) =
1

λ
.

Consequently, (2.12) implies that

Ex

τ−1∑
j=0

|rc(Xj)| < ∞ (2.13)

for all x ∈ R.
With the knowledge that g̃ is finite-valued, then by conditioning on X1, we find that

g̃(x) = rc(x) +

∫

R+

g̃(y)Px(X1 ∈ dy) (2.14)

for x > b, whereas

g̃(x) = rc(x) + (1− λ)

∫

R+

g̃(y)Q(x, dy) (2.15)

for x ≤ b.
Since X regenerates at time τ and has distribution φ at that time, it is well known (see,

for example, [14]) that

0 = πrc =
Eφ

∑τ−1
j=0 rc(Xj)

Eφτ
=

∫
R+

φ(dx)g̃(x)

Eφτ
, (2.16)
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(where Eφ(·) is the expectation under which X0 has distribution φ) so that (2.15) becomes

g̃(x) = rc(x) + (1− λ)

∫

R+

g̃(y)Q(x, dy) + λ

∫

R+

g̃(y)φ(dy)

= rc(x) +

∫

R+

g̃(y)Px(X1 ∈ dy),

proving that Poisson’s equation is solved by g̃.
To prove the martingale property, we note that

Ex|rc(Xn)| = Ex|rc(Xn)|I(τ > n) +
n∑

j=1

Px(τ = j)Eφ|rc(Xn−j)| (2.17)

and

Eφ|rc(Xn)| = Eφ|rc(Xn)|I(τ > n) +
n∑

j=1

Pφ(τ = j)Eφ|rc(Xn−j)| (2.18)

(where Pφ(·) is the probability under which X0 has distribution φ). But the π-integrability
of r ensures that

Eφ

τ−1∑
j=0

|rc(Xj)| < ∞ (2.19)

(using the same regenerative identity as in (2.16)), so that Eφ|rc(Xn)|I(τ > n) < ∞ for
n ≥ 0. Also, (2.13) guarantees that Ex|rc(Xn)|I(τ > n) < ∞ for n ≥ 0. It follows from an
induction based on the recursions (2.17) and (2.18) that rc(Xn) is Px-integrable for n ≥ 0.

We can similarly analyze the Px-integrability of g̃(Xn). The same inductive argument,
based on equations analogous to (2.17) and (2.18), establishes the integrability provided that
we show

Ex|g̃(Xn)|I(τ > n) < ∞

and

Eφ|g̃(Xn)|I(τ > n) < ∞

for n ≥ 0. Set βn = inf{j > n : X regenerates at time j}. Then,

Ex|g̃(Xn)|I(τ > n) = Ex|
βn−1∑
j=n

rc(Xj)|I(τ > n)

≤ Ex

βn−1∑
j=n

|rc(Xj)|I(τ > n)

= Ex

τ−1∑
j=n

|rc(Xj)|I(τ > n) < ∞,
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due to (2.13). Similarly,

Eφ|g̃(Xn)|I(τ > n) ≤ Eφ

τ−1∑
j=n

|rc(Xj)|I(τ > n) < ∞,

due to (2.19). Hence,

g̃(Xn) +
n−1∑
j=0

rc(Xj)

is Px-integrable for n ≥ 0. The martingale property then follows easily from the fact that g̃
solves Poisson’s equation.

We now proceed to prove that g̃ is monotone when X and r are suitably monotone.

Theorem 3. Suppose that X is a stochastically monotone Markov chain satisfying A1. If
the function r appearing in A1 is non-decreasing, then g̃ is non-decreasing.

Proof. To prove this result, we modify the coupling discussed earlier. In particular, for
0 ≤ x ≤ y, we modify the dynamics of ((Xn(x), Xn(y)) : n ≥ 0) when Xn(y) ≤ b.

For w ∈ R+ and v ∈ [0, b], put

G(v, w) =
F (v, w)− λφ([0, w])

1− λ
,

and note that 1 − G(·, w) is non-decreasing for each w ≥ 0 (since this is also true of
1− F (·, w)).

When Xn(x) ≤ Xn(y) ≤ b, we distribute Xn+1(y) according to φ with probabil-
ity λ and put Xn+1(x) = Xn+1(y). Otherwise, with probability 1 − λ, put Xn+1(x) =
G−1(Xn(x), Un+1) and Xn+1(y) = G−1(Xn(y), Un+1). This modified coupling preserves
the distribution of X under Px and the distribution of (X, τ) under Py while maintaining the
ordering Xn(x) ≤ Xn(y) for n ≥ 0 and forcing Xτ (x) to equal Xτ (y).

Because X(x) may visit [0, b] earlier than X(y), it may regenerate and distribute itself
according to φ at a time τ ′ earlier than τ . In particular, when Xn(x) ≤ b < Xn(y) (so that
X(x) has the potential to regenerate at time n + 1, but X(y) does not), we put Xn+1(x) =
F−1(Xn(x), Un+1) and Xn+1(y) = F−1(Xn(y), Un+1). A regeneration for X(x) occurs at
time n+ 1 with probability w(Xn(x), Xn+1(x)), where

w(x, y) = λ

[
dφ

dPx(X1 ∈ ·)

]
(y)

is the Radon-Nikodym derivative of λφ with respect to Px(X1 ∈ ·) (which exists because φ
must be absolutely continuous with respect to Px(X1 ∈ ·)). Then, the distribution of (X, τ)
under Px matches the distribution of (X(x), τ ′).
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The rest of the argument follows the proof used to verify Theorem 1. In particular, we
consider the martingales

g̃(Xn(x)) +
n−1∑
j=0

rc(Xj(x)) (2.20)

and

g̃(Xn(y)) +
n−1∑
j=0

rc(Xj(y)), (2.21)

analogously to the martingales (Mn(x) : n ≥ 0) and (Mn(y) : n ≥ 0) used in Theorem
1. The key is then to prove that optional sampling can be applied to (2.20) and (2.21) at
time τ . The associated uniform integrability argument is essentially identical to that used in
Theorem 1, and is therefore omitted, proving the result.

In view of Examples 1 and 2, Theorem 3 implies that Poisson’s equation has a non-
decreasing solution for r(x) = x for both systems.

In some applications, it is important to know that the solution g̃ to Poisson’s equation is
continuous on R+.

Proposition 2. Suppose that Xn is a stochastically monotone Markov chain and that F−1(·, y)
is continuous on R+ for each y ≥ 0. If the function r appearing in A1 is continuous and
non-decreasing, then g̃ is continuous.

Proof. Suppose that xn → x ≥ 0 as n → ∞ with xn ≤ y for all n ≥ 1. The proof of
Theorem 3 establishes that if x < y, then

g̃(xn)− g̃(x) = E
τ−1∑
j=0

[rc(Xj(xn))− rc(Xj(x))].

Since rc(F
−1(·, Un)) is continuous, it follows that

τ−1∑
j=0

[rc(Xj(xn))− rc(Xj(x))] → 0 a.s.

as n → ∞. Furthermore, since rc(Xj(·)) is non-decreasing,

τ−1∑
j=0

|rc(Xj(xn))− rc(Xj(x))| ≤ 2
τ−1∑
j=0

|rc(Xj(y))|+ 2τ |rc(0)|. (2.22)

The argument of Theorem 1 proves that (2.22) is integrable, so that the Dominated Conver-
gence Theorem applies. So g̃(xn) → g̃(x) as n → ∞, proving the continuity of g̃.
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Our final result concerns a class of Markov chains on R+ that need not be Harris recur-
rent and need not satisfy A1. In particular, we assume that for 0 ≤ x ≤ y, there exists ρ < 1
such that

E|F−1(x, U1)− F−1(y, U1)|2 ≤ ρ|x− y|2; (2.23)

such a Markov chain is said to be contractive on average. Let κn : R+ → R+ be the random
mapping defined by

κn(x) = F−1(x, Un)

for n ≥ 1. Observe that

Xn(x) = (κn ◦ κn−1 ◦ ... ◦ κ1)(x)

has precisely the same distribution as

X̃n(x) = (κ1 ◦ κ2 ◦ ... ◦ κn)(x)

for n ≥ 1. If X0(x) = X̃0(x), X̃n(·) enjoys the same monotonicity property as does Xn(·),
so that X̃n(x) ≤ X̃n(y).

Assume that r is Lipschitz, so that there exists c < ∞ for which

|r(x)− r(y)| ≤ c1/2|x− y|.

Then, (2.23) implies that

E|r(X̃k+1(x))− r(X̃k(x))|2 ≤ cE|X̃k+1(x)− X̃k(x)|2

= cE|F−1((κ2 ◦ ... ◦ κk+1(x), U1))− F−1((κ2 ◦ ... ◦ κk)(x), U1)|2

≤ cρE|(κ2 ◦ ...κk+1(x))− (κ2 ◦ ...κk)(x)|2

= cρE|F−1((κ3 ◦ ... ◦ κk+1)(x), U2)− F−1((κ3 ◦ ... ◦ κk)(x), U2)|2

≤ cρ2E|(κ3 ◦ ... ◦ κk+1)(x)− (κ3 ◦ ... ◦ κk)(x)|2

≤ ...

≤ cρkE|κk+1(x)− x|2

= cρkE|κ1(x)− x|2.

Hence, if

Ex|X1 − x|2 < ∞. (2.24)

(r(X̃k(x)) : k ≥ 0) is evidently a Cauchy sequence in the space of square integrable rv’s
and hence converges in mean square to a limit r(X̃∞(x)). [3] show that (2.23) and (2.24)
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imply that X has a unique stationary distribution π and that r(X̃∞(x)) has the distribution
of r(X0) under π. Hence, Cauchy-Schwarz implies that

|Exrc(Xn)| = |Er(X̃n(x))− Er(X̃∞(x))|

≤
∞∑
j=n

|Er(X̃j(x))− Er(X̃j+1(x))|

≤
∞∑
j=n

E1/2|r(X̃j(x))− r(X̃j+1(x))|2

≤ c1/2
∞∑
j=n

ρj/2E1/2|X1(x)− x|2,

and consequently,

∞∑
k=0

|Exrc(Xk)| < ∞,

and a solution g to Poisson’s equation can then be defined by (2.2). Since

∞∑
j=0

rc(X̃j(x)) ≤
∞∑
j=0

rc(X̃j(y))

for x ≤ y, it follows that g is non-decreasing. Similarly, we find that

|Exrc(Xn)− Eyrc(Xn)| ≤ c1/2E1/2|Xn(x)−Xn(y)|2

≤ c1/2ρn/2|x− y|

so that

|g̃(x)− g̃(y)| ≤ c1/2

1− ρ1/2
|x− y|

and hence g̃ is Lipschitz. We have proved our final result.

Theorem 4. Suppose that X is a stochastically monotone Markov chain satisfying (2.23)
and (2.24). If r is a non-decreasing Lipschitz function, then g as defined by (2.2) is a finite-
valued non-decreasing Lipschitz solution to Poisson’s equation (1.1).

3. Conclusion
In this paper, we have developed theoretical results that establish monotonicity of the

solution to Poisson’s equation when the underlying Markov chain is stochastically monotone
and the reward function is monotone, in the setting that the state space of the chain is a subset
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of the totally ordered real line. Such real-valued Markov chains arise in many queueing-
related applications. An interesting generalization of this work would involve development
of corresponding theory when the underlying Markov chain is stochastically monotone with
respect to a partially ordered state space (as often occurs when a queueing network’s state
space is vector-valued).
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[10] Maigret, N. (1978). Théorème de limite centrale fonctionnel pour une chaı̂ne de
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