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Abstract: In this paper, we consider a M AP/Ej/1 queue with working vacation. Cus-
tomers arrive according to a Markovian Arrival Process and service time follows generalized
Erlang distribution of order n. Service in the first £ stages is called the preliminary service
and service in the remaining n — k stages is called the main service. When the system be-
comes empty at the time of completion of a service, the server goes on working vacation.
During working vacation server provides only the preliminary service. After availing of the
preliminary service, the customers leave the system with probability p. Those who require
the main service, join a buffer of finite capacity N with complementary probability 1 — p.
The server switches to normal mode when the vacation expires, or N customers accumulate
in the buffer during working vacation, whichever occurs first. The customer in service at
the working vacation expiration epoch, continues to get his service in normal mode. Steady
state analysis of this system is performed. Several performance characteristics of interest are
computed. A cost function is constructed and the optimal values of N for the positive, zero
and negative correlation values of the Markovian arrival process are obtained.

Keywords: Erlang distribution, main service, Markovian arrival process (MAP), N-policy,
preliminary service, working vacation.

1. Introduction

The queueing system with server vacations has been well-studied since the late 1970’s.
Considering the importance of the subject, several researchers have been attracted to it, and a
good amount of studies have been conducted, especially from the early 1980’s. The first re-
view paper on vacation queueing models is by Doshi [2]. Several researchers concentrated
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on the classical queueing system and extended to vacation queueing models by allowing
idle servers to work on non-queueing jobs. Hence the vacation models are more applica-
ble in several areas, especially in the flexible manufacturing, computer and communications
systems, etc. Because of the acceptability of these applications, more researchers have con-
ducted studies on vacation models during the late 1980°s and the entire of the decade 1990.
These were surveyed in the book of Takagi [11] in 1991 and Tian and Zhang [12] in 2006.

Vacation in the queueing system takes place either because of the absence of customers
at a service completion epoch or due to server breakdown. The advantage of this server
vacation system is that it can utilize its time for other purposes. So it makes the queueing
model applicable to various real-world service systems. In the vacation queuing system,
the server does not provide service when he is on vacation. In contrast, in the working va-
cation scheme, the server works at a different rate instead of remaining idle/allotted some
other work during the vacation period. A queueing system with server vacation was first dis-
cussed in the paper by Levy and Yechiali [5]. Considering the scope of wide applications in
computer systems, communication networks, production management, etc., extensive stud-
ies have been conducted in Markovian queueing systems with working vacations. Servy and
Finn [7] introduced the concept of working vacation in which the server offers service at a
low rate during vacation if customers are available.

The concept of the N-policy was introduced by Yadin and Naor [14]. It means the
server provides service only when /N customers accumulate in the systems on completion of
a busy period. Extensive studies on vacation queueing systems under /N-policy have been
conducted since 1963. The N-policy makes the queueing model more applicable in vari-
ous scenarios, especially optimal management policy, computer processing, manufacturing,
transportation systems and so on.

In addition to Ke et al. [3], Tian et al. [13] and Panta et al. [6] are the review papers
on vacation queueing model. A review paper by Chandrasekaran et al. [1] provide the latest
research results on working vacation queueing systems.

Sreenivasan et al. [10] consider a working vacation queueing system in which the server
goes on vacation when the system becomes empty. On return the server provides service at
a low rate to customers joining the system. The vacation terminates when either the number
of customers in the system reaches /N or the vacation clock realises. Krishnamoorthy et al.
[4] consider two single server queueing models with non-preemptive priority and working
vacation under two distinct N-policies. Sinulal et al. [9] analyse a queueing system in which
the service is provided at two stations, station 1 and station 2, operating in tandem. Station 1
1s a multi-server station with ¢ identical servers working in parallel, and station 2 is equipped
with a single server called the specialist server. An arriving customer enters directly into
service at station 1 if at least one of the servers is idle, otherwise he joins an infinite capacity
queue. After receiving service at station 1, customers proceed either to station 2 or can exit
the system. There is a finite buffer between the two stations. When the buffer is not full,
a customer coming out of station 1 joins the buffer with probability p or leaves the system
with the complementary probability 1 — p. The server at station 2 will be turned on only if
the number of customers in the buffer reaches a threshold.
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In the paper [8], authors consider a single server queueing system with a working vaca-
tion. Service has n stages. Service in the first £ stages is called the preliminary service and
service in the remaining n — k stages is called the main service. When the system becomes
empty at the time of completion of service, the server goes on working vacation. Customers
who arrive during working vacation are provided only the main service. The server switches
to normal mode when the vacation expires, or N customers are served during a working
vacation, whichever occurs first. The customer in service at the working vacation expiration
epoch is served from the very beginning.

In the present model, we consider a single server queueing system in which customers
arrive according to Markovian Arrival Process. Service time follows generalized Erlang
distribution of order n. Service in the first k£ stages is called the preliminary service and
those in the remaining n — k stages is called the main service. When the system becomes
empty at the time of completion of a service, the server goes on a working vacation. During
working vacation the server provides only the preliminary service. After availing of the
preliminary service, the customers leave the system with probability p. Those who require
the main service to join a buffer of finite capacity N with complementary probability 1 — p.
The server switches to normal mode when the vacation expires or N customers accumulate
in the buffer during working vacation, whichever occurs first. The customer in service at the
working vacation expiration epoch will receive his service in normal mode.

We provide a few real-life examples which illustrate the queueing model described in
this paper. Suppose we are going to a tourist place where the tour operators are conduct-
ing boat trips for sightseeing. An entrance ticket is issued anytime during working hours
from the first counter. However, to get the tickets for the boat ride, the tourists have to
wait until there is a specified minimum number of passengers for a new trip. During busy
hours, the visitors may not have to spend long time in the waiting area as there are many
visitors. Nevertheless, during slack hours, tourists must wait for the boat ride. Another ex-
ample is hospitals where the Outpatients can get OP tickets during the entire OP hours. The
initial medical examinations, such as blood pressure, weight, pulse, etc., are recorded in the
screening room. Then they wait for consultation. Doctors conduct inpatient ward visits or
other duties during OP hours if no patient is waiting for consultation. But as the number of
patients in the OP queue reaches a specific number, the doctor returns to continue the OP
consultation.

Salient features of the model discussed in this paper are

* The n service stages are divided into two parts.

* In the working vacation mode, the server provides only the preliminary service.

* In the above mode, after availing of preliminary service, the customer can either leave

the system or he can join a buffer of finite capacity.

 Vacation is realized only when the vacation clock expires, or /V customers accumulate

in the buffer, whichever occurs first.
Notations and abbreviations used in this paper are
* CTMC: Continuous time Markov chain.
* [,: Identity matrix of order a.
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* LIQBD: Level independent Quasi-Birth and Death.

* MAP: Markovian Arrival Process.

* OP: Outpatient.

* e: Column vector of 1’s of appropriate order.

* e.(d): Column vector of order d with 1 in the ¢ position and the remaining entries
are zero.

* €(a): Row vector of order a with 1 in the b position and the remaining entries are
Zero.

The remaining part of this paper is arranged as follows. In Section 2, the model under
study is mathematically formulated. In Section 3, we perform the steady-state analysis of
the queueing model under study. The waiting time analysis of a tagged customer is provided
in Section 4. Some additional performance measures are computed and presented in Section
5. A cost function is constructed to find the optimal NV in Section 6. Numerical results are
discussed in Section 7. Finally, in Section 8, optimal N values are found for MAP with
positive correlation, zero correlation and negative correlation.

2. Mathematical Formulation

We consider a single server queueing system in which customers arrive according to a
Markovian Arrival Process with representation (D, D) of order m. Let § be an invariant
vector of D = Dy + D, thatis, 0D = 0,0e = 1. Service time follows the generalised
Erlang distribution of order n. Service in the first £ stages is called the preliminary service;
service time in each of these stages is exponentially distributed with parameter #. Service
in the remaining n — k stages is called main service and service time in each of these stages
is exponentially distributed with parameter ¢. When the system becomes empty at the time
of completion of service, the server goes on a working vacation. During working vacation
server provides only the preliminary service. After availing preliminary service, a customer
leaves the system with probability p; those who require the main service also join a buffer of
finite capacity /V (with probability 1 — p). The duration of working vacation is exponentially
distributed with parameter 7). The server switches to normal mode when the vacation expires
or N customers accumulated in the buffer during working vacation, whichever occurs first.
The customer in service during the working vacation expiration epoch continues to receive
his service in normal mode. Once the working vacation is over, the server start serving
customers in the buffer in the order in which they entered it before proceeding to serve those
waiting in the main queue.

2.1. The OBD process

The model described in section 1 can be studied as an LIQBD process. First, we define
the following notations:
At time ¢,

N (t) : Number of customers in the queue ,
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J(t) = 0, ifthe server is in vacation mode.
~ | 1, ifthe server is in normal mode.
M (t) : Number of customers in the buffer,
S(t):

(t): The phase of service,
A(t): The phase of arrival.

{N(t), M(2), J(t),S(t
Q= {{(0,0,0, * ) 1
m}U{(q, h, OJJ) > 0;
q20;0§h§(N—l),lgzgn,lgjgm}}.
In the absence of customers in the system, no service can be provided; this is indicated by
’*#* in the position of service coordinate (fourth coordinate in the 5-tuple).

( )) : t > 0} is an LIQBD process with state space
<h<(N—-1);1<i<kl<j<m}U{(g,h1,4,7):

The infinitesimal generator of this CTMC is

B, By
B oA A
Q"= Ay A A

Here B is a square matrix of order Nm(k + n) + Nm which contains the transition
rates within the level 0; By is a (Nm(k + n) + Nm) x Nm(k + n) matrix which contains
transition rates from level 0 to level 1; By is a Nm(k + n) x (Nm(k 4+ n) + Nm) matrix
which contains transition rates from level 1 to level 0; A, represents transition rates from
nton + 1 forn > 1, A; represents transition rates within n for n > 1 and A, represents
transition rates from n to n — 1 for n > 2. All these are square matrices of order Nm(k +n).

Dy, C¢ 0 0 0 0 O O 0 0 0 O
P Cyo C; @ 0 0 O0 O 0 0 0 O
R 0 C, 0 0 0 0 O 0 0 0 O
0 0 C3 Cy Cs 0 O O 0 0 0 O
0O 0 0 P Cy b @ O 0 0 0 O
B=|0 00C 0 0 C; 0 0 0 0 0 O
0 0 0 0 0 (O35 Cy Cs 0 0 0 O
0o 0 0 0 0 O O O C;y Cy Cg 0
0o 0 0 0 0 O O O 0 P Cy Cs
0o 0 0 0 0 O O O Cs 0 0 O
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0 0 0 0 0 0 0
L,&D, 0 0 0 0 0 0
0 I,oD, 0 0 0 0 0
0 0 0 0 0 0 0
0 0 L®D, 0 0
By = 0 0 0 I,9D, 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 L,oD, 0
0 0 0 0 0 0 I,®D,
[0S 0 0T 00O O O O 0 0]
00C, 000000 O O 0 0
00 0 0S00TO0 0 O 0 0
00 0000000 0 O 0 0
B=100 0 00005 0 0 T 0 0 |»Where
00 0000000 0 O S
(00 000000 0 0 O 0 0
[ Do — 1,0 — I, I,,0 ]
Do — I — Iy I8
Co = ’
Do — 1,0 — I,y 1.0
i Dy — Ly — I, |

is a square matrix of order mk.

= [ Nlym 0 }is a mk X mn matrix.

[ Do — 1,0 1,0
Dy —I,,0 1,0

Dy —1,,0 1,0

2 Do~ In¢ Ind

DO - Im¢ Im¢
D() - Im¢ i

is a square matrix of order mn.

Cy = | €1(n) ®nl, | isam x mn matrix.
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Cy= [ Dy — L,n ] 1S a m X m matrix.

0
b eri(k+1)®1,0 0

Co

®!

is a square matrix of order mn.

[ In®@nl, ey(k)®0(1—p)l, 0 ]isamk x mn matrix.
Cr = [ e,(n) @ ¢l, 0 } is a square matrix of order mn.

Cs=[ D1 0 |isam x mk matrix.

P = | ex(k) ® Opl,, | isamk x m matrix.

Q= [ ex(k) ®0(1 —p)l,, | isamk x m matrix.

R = [ e.(n) ® ¢, } is a mn X m matrix.

S = [ ex(k)®6pl,, 0 } is a square matrix of order mk.

T = en(k)®0(1—p)L,, 0 ]isasquare matrix of order mk .

LetElz{CO Cl};Egz{O 0 :|;E3:|:CO 06};

0 CQ 0 05 0 C’2
(LoD 0 ], [S071,. [TO0],. [50
Ei=1"%9 In®D1]’E5_[O @]’Eﬁ_{o 0]’E7_[0 0]
Ao = Iy @ Ey
_— _
B, E
B, Eq
Ay =
B, E
B, E
o _
Ey Ey
E, B
./41: ' ..
E, B
Ey Ey
_ B, By
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3. Steady State Analysis

In this section, we perform the steady-state analysis of the queueing model under study.
The generator matrix is A = Ag + A; + As.

[ E1+ Ey+ E;5 Es 0
E, Ei+Es+ Ey Es
FEs FE1+FE,+ FE; Eg
A= .
Ey, Ei1+E;+Er Es
0 E, Es+Ey+ E7 |

WriteF0:E1+E4+E5;F1:EG;FQ:Eg;Fg:E1+E4+E7;F4:E3+E4—I—E7.

[y B0
F, F3 F
F, F3; F
Then A = ? _ ’ ) '
E, F3 B
| 0 F2 F4 i
Letm = [mo, M1, T2, cevenn.. ,m(n—1)] denote the steady state probability vector of the gen-

erator matrix A
Here each ;s are of dimension 1 x m(k + n).

A =0,me=1. (D

From equation (1), we get
oy +mF, =0 (2
oy +mFs +moly =0 3)
T +mFs+m3Fy, =0 4)
moFy +m3F5 +myFy =0 (5)
T(N—a) 1 +T(n_3) 5 + T (n_o) 2 =0 (6)
TN-3) 1+ TNn_oF3 +T(n_1)[2 =0 @)
TN 1 + T nv_)Fy =0 ®

From equation (8)
Tn-1) = —T(n-2) 1 Fy ©)
Take Uy_o) = —F1F !

m(N-1) = 7T(N—2)U(N—2) (10)
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From equation (7)
(v = —T (31 (F3 + Un_oyFa) " (11)
Take U3y = —Fi(Fs + Un_oyF) "
T(N—2) = T(n-3)Un—3) (12)
Similarly from equation (6) we get,
T(N-3) = T(N-2)U(n-a), (13)

where U(N_4) = —Fl(Fg + U(N_g)Fg)_l.
From equation (3) we get,
Ty = 7T1U1, (14)

where Uy = —Fy(F5 + UQFQ)_I From equation (2) we get,
™ = ’l'l'oUO (15)
where Uy = —Fy(Fy + Uy F) ™.

(i+1) = ®;U;, where (16)

oo { “RF+ Uiy F) 7 if 0<i < (N = 3)
! —~FF[Nifi=N—2

T :’ﬂ'oUO (17)

my = Ul (18)

TN—2 :7T0U0U1U2....U(N,3) (19)
N-2

TN-—1 = 7T()UOU1U2....UN_3UN_2 = Ty H US. (20)
s=0

Substituting the values of 7r;’s in the normalizing condition e = 1 we have,

N-2 r
moll+ Y [[UJe=1. (21)
r=0 s=0
From equation (21), we can find .
Hence we can find 71, o, ..., T(n_1).
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3.1. Stability condition

The LIQBD description of the model indicates that the queueing system is stable if and
only if the left drift exceeds that of right drift. That is,

7TAO€ < wAse. (22)
N-2 r
wAge =mo[I+ > [[UdTnsx ® Dy)e (23)
r=0 s=0

7TA26 = [7T0E5+7T1(E7+E6>+7T2(E7+E6)+ ...... +7T(N_2)(E7+E6)+7T(N_1)E7]6 (24)

N-2 r N-3 r
nhse =mo[Es+ > [JUEr+ > [[U.Ede (25)
r=0 s=0 r=0 s=0
The stability condition is
N-2 r N-2 r N-3 r
moll+ > [[UJUnsk ® Di)e <mo[Es + Y [[UE-+ > [[U.Esle  (26)
r=0 s=0 r=0 s=0 r=0 s=0

3.2. The steady state probability vector of ()*

Let = be the steady state probability vector of ()*.

x = (Zo,Z1,%2 . ..), Where z is of dimension 1 X (Nm(k +n) + Nm) and 1, z,, . ..
are each of dimension 1 x Nm(k+n) . Under the stability condition, we have z; =
z;R"1,i > 2, where the matrix R is the minimal nonnegative solution to the matrix
quadratic equation

R2As+RA + Ay =0

and the vectors x( and xare obtained by solving the equations

9By +x1B1 =0 (27)
xoBy + a:l(Al + RAQ) =0 (28)

subject to the normalizing condition
zee+ 2z, (I —R) le=1 (29)

4. Waiting Time Analysis

The server may be on vacation or in normal mode. So depending on the server’s status,
we obtain the expected waiting time of a particular customer by conditioning on the fact that
at arrival epoch, the server is serving in vacation mode or normal mode.

10
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4.1. Case 1 — the server is in vacation mode

To find the expected waiting time of a tagged customer who joins as the r*" customer in
the queue, we consider the Markov Processes W, (t) = {(N(t), M(t), J(t),S(t)) : t > 0}
where
N (t): Rank of the customer in the queue at time ¢.
M (t): Number of customers in the buffer at time ¢.

J(t) = 0, 1if the server is in vacation mode at time ¢.
~ | 1, ifthe server is in normal mode at time ¢.

S(t): Phase of the service at time ¢.
The rank of the customer decrease by one when a customer ahead of him completes the
service. State space of W, (t) is
O ={{r,r—1,r—2,---,2,1} x{0,1,2,3,--- ,N — 1} x{0} x{1,2,,--- ,k}}U{{r,r—
Lr—2,--+,2,1}x{0,1,2,3,--- | N — 1} x{1}x{1,2,3--- ,n}}U{A}, where A denotes
the absorbing state - beginning of the preliminary service of the tagged customer.

The infinitesimal generator is

[ G H
—_— G H
0, = [ 0 0 ],where, W = is a square matrix of order
G H
L G -
F 0
0
N(n+k)rand WO = 0 is a matrix of order N (n + k)r x 1.
0
- H -
r G 0 -
Gy Gy
Gy Gy : :
G = o is a square matrix of order N(n + k).
Gy Gy
i Gy Gy |
[Gu G, ., [0 0] ., [Gu Gu
Gl‘{ 0 Glg}’Gz‘ {o GQJ’GS‘ 0 G|
~@+n) 0 ]
—(0+n) 0 . .
G = ) ) is a square matrix of order k.
—(0+mn) |

11
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G = [ nl, 0 ] is a k X n matrix.

SR -
—0 0

Gz = is a square matrix of order n.

Gia= [ nly ex(k)0(1—p) 0 | isamatrix of order k x n.

Gy = Ek+1(k(:)—|— )6 0 is a matrix of order k x n.
o H, -
Hz Hj
H = is a square matrix of order N(n + k).
Hz Hy
Hj

[Hy, 071, [Hyo0] . [Hyo
Hl_l 0 HIQ]’H%[ 0 0}’]{3_[ 0 0}'

H, = [ ex(k)dp 0 } is a square matrix of order k.
Hys = [ e,(n)¢ 0 ] is a square matrix of order n.
Hy = | ex(k)0(1 —p) 0 | is a square matrix of order k.
The initial probability vector is 8 = €1 (N (n + k)r).

Waiting time W, of a customer, who joins the queue as the rth customer is the time until
absorption. Therefore expected waiting time of the particular customer is

By, = B(=W) e,
Expected waiting time of a general customer = 22z, Ey; .

12
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4.2. Case 2 - the server is in normal mode

To find the expected waiting time of a particular customer who joins as the rth customer
in the queue, we consider the Markov Processes W,,(t) = {(N(t), M(t),S(t)) : t > 0}
where
N(t)- Rank of the customer in the queue at time ¢.
M (t)- Number of customers in the buffer at time ¢.
S(t)- Phase of the service at time ¢.
The state space of the Markov Process is
{rir—1,r—2---,21} x{0,1,2,3,--- ,(N=1)} x {1,2,3--- ;n} U{A;}
where A; denote the absorbing state - begining of the preliminary service of the tagged cus-
tomer.
The infinitesimal generator is

Wy 0 0 |
0 G H
W, W 13 Hio ' |
Qy = 0 0 ,wWhere, W, = : , 18 a square matrix
Gz Hio
i G13
of order N(n — k) + rn.
o
0
0. .
W= . |isa[N(n—k)+rn] x 1 matrix.
0
L 9
- ¢
- ¢
—¢ ¢ . .
T = —6 ¢ is a square matrix of order N (n — k).
I —¢ |

Tis = [ engn-ry(N(n —k))¢ 0 ] is a matrix of order N(n — k) x n.

Tll T12

Wll = |: O G13

1 is asquare matrix of order N(n — k) + n.

The initial probability vector isy = e;(N(n — k) + nr).
Expected waiting time of the tagged customer Ej;, = y(—W;) e.

Expected waiting time of a general customer=%22x, Fy; .

13
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5. Additional Performance Measures

 Probability that the server is idle:

N—-1 m
Pigie = E Topoxj + Lohosj-
h=0 j=1
* Probability that the system is in vacation mode:
N-1 m N-1

k. m N-1
PIPIETIEDD

ZTonoxj T+ Ziﬂooo*] +
g=1 h=0 i=1 j=1 h=0 j=1

00
Pnormal = E E :mthij

* Probability that no customers in the queue

Py = xge.

* Probability that there are ¢ customers in the queue:
P, =z..
* Expected number of customers in the queue:
o
ECQ = Z qree
q=1

» Expected number of customers in the system:

EC’S:Z(qulme

g=1

* Expected number of customers in the buffer:

00
hmthz] E
1

q=0

=2

oo N-1 n m
ECB=) ) Y
q=0 h=0 i=1

 Rate of switching to normal mode

00 kK m 0o m
RN = Z Z quh()z'jn + Z Z(L'q 01]]{79 1 — )

q=0 h=0 =1 j=1 qg=0 =1 j=1

k m
Z Z R gnoij

0 =1 j=1

>
I

Jj=

N—

[y

n

14
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6. Cost Function

To find optimal N, we construct a cost function as follows.
Let
C'V — Cost per unit time when service is in vacation mode.
C'N — Cost per unit time when service is in normal mode.
HC@) — Holding cost per customer in the queue.
CSN — Cost per unit time for switching to normal mode.
HC'B — Holding cost per cusomer in buffer.

Then expected cost is,

EC = kO x CV X Py + [k0+ (n — k)] X CN X Propma + ECQ x HCQ
+CSN x RN + HCB x ECB.

We take HCQ) =4, CSN =200, HCB =5,CV =8, CN = 10.

7. Numerical Results

For the arrival process of customers, we consider the following three sets of matrices for
DO and D1
1. MAP with positive correlation (MPC):

[ —2.0151  2.0151 0 [0 0 0
Dy = 0 —2.2787 0 ,Di =1 21996 0 0.0791 |.
i 0 0 —59.8481 | | 2.0773 0 57.7708 |
2. MAP with negative correlation (MNC):
[ —2.0151 2.0151 0 i [ 0 0 0
Dy = 0 —2.2787 0 ,Di=1] 00791 0 2.1996 |.
i 0 0 —59.8481 | | 57.7708 0 2.0773 |
3. MAP with zero correlation (MZC):
[ -1 0 1 0O 0 O
Dy = 0 -1 0 , Di=1095 0 0.05 ] .
0 0 —248 0.18 0 23

The arrival process labelled M NC' has correlated arrivals with the correlation between
two successive interarrival times given by -0.4559, the arrival process corresponding to the
one labelled M P A has correlated arrivals with the correlation between two successive in-
terarrival times given by 0.4559 and the arrival process labeled M ZC' has zero correlation

between two successive interarrival times. The arrival rate in all the above three cases is
A= 2.011.

15
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7.1. MAP with positive correlation (MPC)

Table 1. Effectof 0: Fixn =5N=4k=2m=3,¢0=12,n=5,p=0.1.

0 | ECQ ECS | ECB | Paw | Puormal | Pose | RN EC

10 | 208.4606 | 210.2758 | 0.9200 | 0.0611 | 0.9292 | 0.0708 | 0.0491 | 1379.90
11 | 128.5954 | 130°3095 | 0.8747 | 0.0960 | 0.8896 | 0.1104 | 0.0729 | 1068.70
12 | 93.7787 | 95.4046 | 0.8343 | 0.1273 | 0.8547 | 0.1453 | 0.0917 | 938.3411
13 | 74.9243 | 76.4755 | 0.7996 | 0.1544 | 0.8248 | 0.1752 | 0.1059 | 872.7115
14 | 63.2334 | 64.7213 | 0.7696 | 0.1779 | 0.7993 | 0.2007 | 0.1166 | 836.6233
15 | 55.3068 | 56.7406 | 0.7437 | 0.1984 | 0.7775 | 0.2225 | 0.1245 | 816.3720
16 | 49.5875 | 50.9746 | 0.7211 | 0.2164 | 0.7585 | 0.2415 | 0.1303 | 805.6202
17 | 452690 | 46.6155 | 0.7012 | 0.2322 | 0.7419 | 0.2581 | 0.1346 | 801.0482
18 | 41.8938 | 43.2047 | 0.6836 | 0.2464 | 0.7274 | 0.2726 | 0.1377 | 800.7470
19 | 39.1837 | 40.4630 | 0.6679 | 0.2590 | 0.7144 | 0.2856 | 0.1398 | 803.5381
20 | 36.9599 | 382111 | 0.6538 | 0.2704 | 0.7029 | 0.2971 | 0.1413 | 808.6515
21 | 35.1023 | 36.3283 | 0.6411 | 0.2808 | 0.6926 | 0.3074 | 0.1422 | 815.5612
22 | 33.5274 | 34.7306 | 0.6296 | 0.2902 | 0.6833 | 0.3167 | 0.1427 | 823.8940
23 | 32.1752 | 33.3578 | 0.6191 | 0.2988 | 0.6748 | 0.3252 | 0.1428 | 833.3772
24 | 31.0015 | 32.1654 | 0.6095 | 0.3067 | 0.6671 | 0.3329 | 0.1427 | 843.8059

Table 2. Effectof ¢: Fixn =5, N =4, k=2m =3,0 =10,n=5,p=0.1.

¢ ECQ ECS ECB Pidle Pnormal Pvac RN EC

12 | 208.4606 | 210.2758 | 0.9200 | 0.0611 | 0.9292 | 0.0708 | 0.0491 | 1379.90
13 | 125.5585 | 127.2693 | 0.8747 | 0.0979 | 0.8866 | 0.1134 | 0.0782 | 1063.5

14 | 89.7402 | 91.3587 | 0.8347 | 0.1317 | 0.8475 | 0.1525 | 0.1047 | 933.9435
15| 70.4792 | 72.0192 | 0.8006 | 0.1617 | 0.8130 | 0.1870 | 0.1279 | 869.8836
16 | 58.5898 | 60.0631 | 0.7715 | 0.1880 | 0.7827 | 0.2173 | 0.1481 | 834.8472
17 | 50.5517 | 51.9679 | 0.7466 | 0.2112 | 0.7559 | 0.2441 | 0.1659 | 814.8786
18 | 44.7629 | 46.1296 | 0.7251 | 0.2319 | 0.7322 | 0.2678 | 0.1815 | 803.6424
19 | 403978 | 41.7214 | 0.7063 | 0.2504 | 0.7110 | 0.2890 | 0.1954 | 797.8854
20 | 36.9896 | 38.2752 | 0.6897 | 0.2670 | 0.6919 | 0.3081 | 0.2078 | 795.7771
21 | 34.2551 | 35.5071 | 0.6750 | 0.2820 | 0.6747 | 0.3253 | 0.2189 | 796.2129
22 | 32.0127 | 33.2348 | 0.6619 | 0.2957 | 0.6590 | 0.3410 | 0.2290 | 798.4886
23 | 30.1406 | 31.3358 | 0.6502 | 0.3081 | 0.6448 | 0.3552 | 0.2381 | 802.1354
24 | 28.5542 | 29.7251 | 0.6396 | 0.3195 | 0.6317 | 0.3683 | 0.2464 | 806.8294
25 | 27.1926 | 28.3416 | 0.6300 | 0.3300 | 0.6198 | 0.3802 | 0.2540 | 812.3401
26 | 26.0114 | 27.1404 | 0.6212 | 0.3396 | 0.6087 | 0.3913 | 0.2610 | 818.4992

Tables 1 to 4 contain the effect of different parameters on various performance measures
and the cost function when the arrival process of the customers is MPC. Table 1 indicates
the effect of § on various performance measures and the cost function. When the values of
f(service rate of the first part of the service) increase, the values of EC'S, EC'Q, and EC' B
decrease. It is because the expected service time in the first stage of the service decreases.
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Table 3. Effectof n: Fixn =5,N=4k=2m=3,0=14,¢ = 15,p =0.1.
n ECQ ECS ECB Pidie Prormal Pyac RN EC

5 | 34.2249 | 35.4547 | 0.6529 | 0.2838 | 0.6806 | 0.3194 | 0.1831 | 745.1509
6 | 34.2239 | 35.4505 | 0.6500 | 0.2833 | 0.6836 | 0.3164 | 0.2012 | 750.3051
7

8

9

34.2239 | 35.4483 | 0.6480 | 0.2830 | 0.6863 | 0.3137 | 0.2171 | 754.8219
34.2243 | 35.4472 | 0.6466 | 0.2827 | 0.6886 | 0.3114 | 0.2310 | 758.7844
34.2248 | 35.4466 | 0.6455 | 0.2824 | 0.6907 | 0.3093 | 0.2433 | 762.2725
10 | 34.2255 | 35.4464 | 0.6447 | 0.2822 | 0.6925 | 0.3075 | 0.2541 | 765.3560
11 | 34.2261 | 35.4464 | 0.6440 | 0.2819 | 0.6941 | 0.3059 | 0.2637 | 768.0940
12 | 34.2267 | 35.4465 | 0.6435 | 0.2818 | 0.6956 | 0.3044 | 0.2722 | 770.5358
13 | 34.2273 | 35.4466 | 0.6431 | 0.2816 | 0.6969 | 0.3031 | 0.2798 | 772.7227
14 | 34.2278 | 35.4468 | 0.6428 | 0.2814 | 0.6981 | 0.3019 | 0.2866 | 774.6892
15 | 34.2283 | 35.4471 | 0.6425 | 0.2813 | 0.6992 | 0.3008 | 0.2928 | 776.4643
16 | 34.2288 | 35.4473 | 0.6423 | 0.2812 | 0.7002 | 0.2998 | 0.2983 | 778.0722
17 | 34.2292 | 35.4475 | 0.6421 | 0.2811 | 0.7011 | 0.2989 | 0.3033 | 779.5336
18 | 34.2296 | 35.4477 | 0.6420 | 0.2810 | 0.7019 | 0.2981 | 0.3079 | 780.8662
19 | 34.2299 | 35.4479 | 0.6418 | 0.2809 | 0.7027 | 0.2973 | 0.3120 | 782.0849

Table 4. Effectof p: Fixn =5N =4 k=2 m=3,0=14,n=5,¢ = 15.

p ECQ ECS ECB Pidle Pnormal Pvac RN EC
0.1 | 34.2249 | 35.4547 | 0.6529 | 0.2838 | 0.6806 | 0.3194 | 0.1831 | 745.1509
0.15 | 34.2059 | 35.4341 | 0.6518 | 0.2859 | 0.6782 | 0.3218 | 0.1837 | 743.9812
0.2 | 34.1866 | 35.4130 | 0.6507 | 0.2881 | 0.6758 | 0.3242 | 0.1843 | 742.8013
0.25 | 34.1669 | 35.3916 | 0.6496 | 0.2903 | 0.6733 | 0.3267 | 0.1849 | 741.6114
0.3 | 34.1468 | 35.3697 | 0.6485 | 0.2926 | 0.6709 | 0.3291 | 0.1856 | 740.4118
0.35 | 34.1263 | 35.3475 | 0.6474 | 0.2948 | 0.6684 | 0.3316 | 0.1863 | 739.2029
0.4 | 34.1056 | 35.3249 | 0.6462 | 0.2971 | 0.6659 | 0.3341 | 0.1870 | 737.9852
0.45 | 34.0845 | 35.3020 | 0.6450 | 0.2994 | 0.6633 | 0.3367 | 0.1878 | 736.7592
0.5 | 34.0631 | 35.2787 | 0.6438 | 0.3018 | 0.6607 | 0.3393 | 0.1886 | 735.5254
0.55 | 34.0415 | 35.2552 | 0.6426 | 0.3042 | 0.6581 | 0.3419 | 0.1895 | 734.2845
0.6 | 34.0197 | 35.2315 | 0.6413 | 0.3066 | 0.6555 | 0.3445 | 0.1904 | 733.0370
0.65 | 33.9977 | 35.2075 | 0.6400 | 0.3090 | 0.6528 | 0.3472 | 0.1913 | 731.7833
0.7 | 33.9755 | 35.1834 | 0.6387 | 0.3115 | 0.6501 | 0.3499 | 0.1923 | 730.5237

The value of the £ C' decreases to reach the minimum value at # = 18, and after that, the val-
ues increase. The minimum value of the cost function, in this case, is 800.7470. P,.., Pie,
and RN increase when the 6 values increase. But P, decreases when 0 increases.

Table 2 indicates the effect of ¢ on various performance measures and the cost function.
When the values of ¢(service rate of the second part of the service) increase, the values
of EC'S, EC(Q, and ECB decrease. It is because the expected service time in the main
service decreases. The value of the FC decreases to reach the minimum value at ¢ = 20,
and then the value increases. The minimum cost, in this case, is 795.7771. P,.., P;g., and
RN increase when the ¢ value increases since the expected service rate in main services
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increases. But P, decreases when ¢ increases.

Table 3 indicates the effect of 7 on various performance measures and the cost function.
As n increases, the server turns to normal mode quickly. So the values of P,,. decrease.
When the values of 7 increase, there are only very small changes in the values of EC'S,
ECQ, ECB, and P, 4. The value of the F'C increases when the value 7 increases. P, and
RN also increase, since the vacation realizes speedily when 7 increases.

Table 4 indicates the effect of p on various performance measures and the cost function.
When the p value increases, the number of customers who leave the system after availing of
the first part of the service increases. So the values of EC'B, EC' and, P,,,,mq decrease. But
the values of Py, P, and RN decrease when p increases.

7.2. MAP with negative correlation (MNC)

Table 5. Effectof 0: Fixn =5 N =4 k=2m=3,¢0=12,n=5,p =0.1.
0 | ECQ | ECS | ECB | Pue | Puormat | Poae | RN EC

10 | 10.1840 | 11.9983 | 0.9283 | 0.0559 | 0.9299 | 0.0701 | 0.0742 | 592.1588
11 | 5.6622 7.3499 | 0.8772 | 0.0953 | 0.8814 | 0.1186 | 0.1222 | 583.5764
12 | 4.0358 5.6198 | 0.8338 | 0.1282 | 0.8417 | 0.1583 | 0.1592 | 587.5558
13 | 3.2048 47022 | 0.7964 | 0.1562 | 0.8086 | 0.1914 | 0.1879 | 595.5141
14 | 2.7029 4.1268 | 0.7637 | 0.1803 | 0.7807 | 0.2193 | 0.2103 | 605.4496
15 | 2.3682 3.7286 | 0.7349 | 0.2013 | 0.7569 | 0.2431 | 0.2279 | 616.6098
16 | 2.1295 3.4347 | 0.7092 | 0.2196 | 0.7363 | 0.2637 | 0.2418 | 628.6294
17 | 1.9511 3.2076 | 0.6862 | 0.2359 | 0.7185 | 0.2815 | 0.2527 | 641.2997
18 | 1.8128 3.0260 | 0.6654 | 0.2504 | 0.7029 | 0.2971 | 0.2613 | 654.4880
19 | 1.7025 2.8771 | 0.6465 | 0.2635 | 0.6891 | 0.3109 | 0.2680 | 668.1027
20 | 1.6126 2.7524 | 0.6293 | 0.2752 | 0.6769 | 0.3231 | 0.2732 | 682.0770
21 | 1.5380 2.6462 | 0.6135 | 0.2859 | 0.6660 | 0.3340 | 0.2771 | 696.3600
22 | 1.4750 2.5546 | 0.5989 | 0.2902 | 0.6562 | 0.3438 | 0.2801 | 710.9118
23 | 14212 24746 | 0.5855 | 0.3044 | 0.6474 | 0.3526 | 0.2822 | 725.7001
24 | 1.3747 | 2.4040 | 0.5731 | 0.3126 | 0.6395 | 0.3605 | 0.2837 | 740.6984

Tables 5 to 8 contain the effect of different parameters on various performance measures
and the cost function when the arrival process of the customers is MNC. Table 5 indicates
the effect of § on various performance measures and the cost function. When the values of
f(service rate of the first part of the service) increase, the values of £C'S, EC(), and EC'B
decrease. It is because the expected service time in the first stage of the service decreases.
The value of the EC' decreases to reach the minimum value at § = 11, and after that, the
values increase. In this case, the cost function’s minimum value is 583.5764. P,,., P;q., and
RN increase when the 6 values increase. But P,,, decreases when ¢ increases.

Table 6 indicates the effect of ¢ on various performance measures and the cost function.
When the values of ¢(service rate of the second part of the service) increase, the values of
ECS, ECQ,and EC B decrease. Itis because the expected service time in the second part of
the service decreases. The value of the F/C decreases to reach the minimum value at ¢ = 13,
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Table 6. Effect of ¢: Fixn =5,N=4k=2,m =3,0 =10,n=5,p=0.1.
¢ ECQ ECS ECB Pidie Prormal Pyac RN EC

12 | 10.1840 | 11.9983 | 0.9283 | 0.0559 | 0.9299 | 0.0701 | 0.0742 | 592.1588
13 | 5.5247 7.2121 | 0.8790 | 0.0971 | 0.8783 | 0.1217 | 0.1280 | 589.7377
14 | 3.8671 5.4526 | 0.8393 | 0.1323 | 0.8343 | 0.1657 | 0.1732 | 598.0930
15| 3.0242 | 4.5264 | 0.8068 | 0.1628 | 0.7965 | 0.2035 | 0.2116 | 608.7482
16 | 2.5167 3.9497 | 0.7796 | 0.1893 | 0.7636 | 0.2364 | 0.2447 | 619.9843
17 | 2.1788 3.5537 | 0.7567 | 0.2127 | 0.7347 | 0.2653 | 0.2735 | 631.2870
18 | 1.9384 3.2636 | 0.7371 | 0.2334 | 0.7091 | 0.2909 | 0.2987 | 642.4799
19 | 1.7588 3.0413 | 0.7202 | 0.2519 | 0.6864 | 0.3136 | 0.3210 | 653.5043
20 | 1.6198 2.8652 | 0.7055 | 0.2685 | 0.6659 | 0.3341 | 0.3408 | 664.3472
21 | 1.5090 | 2.7219 | 0.6926 | 0.2835 | 0.6475 | 0.3525 | 0.3585 | 675.0140
22 | 1.4187 | 2.6029 | 0.6812 | 0.2971 | 0.6308 | 0.3692 | 0.3744 | 685.5173
23 | 1.3437 | 2.5024 | 0.6710 | 0.3096 | 0.6156 | 0.3844 | 0.3888 | 695.8718
24 | 1.2805 2.4164 | 0.6619 | 0.3210 | 0.6017 | 0.3983 | 0.4019 | 706.0924
25 | 1.2264 | 2.3419 | 0.6537 | 0.3314 | 0.5889 | 0.4111 | 0.4138 | 716.1929
26 | 1.1797 | 2.2766 | 0.6463 | 0.3411 | 0.5772 | 0.4228 | 0.4247 | 726.1859

Table 7. Effectof n: Fixn=5N=4k=2m=3,0=14,¢ = 15,p=0.1.
ECQ | ECS | ECB | Puw | Pormal | Poae | RN EC
1.4859 | 2.6407 | 0.6513 | 0.2868 | 0.6525 | 0.3475 | 0.3270 | 628.7896
1.4838 | 2.6343 | 0.6441 0.2858 | 0.6599 | 0.3401 | 0.3396 | 634.9674
1.4830 | 2.6315 | 0.6393 | 0.2851 | 0.6659 | 0.3341 | 0.3514 | 640.3678
1.4829 | 2.6308 | 0.6361 0.2844 | 0.6710 | 0.3290 | 0.3617 | 644.9881
1.4831 | 2.6311 | 0.0.6339 | 0.2839 | 0.6753 | 0.3247 | 0.3705 | 648.9134
10 | 1.4835 | 2.6320 | 0.6323 | 0.2834 | 0.6790 | 0.3210 | 0.3779 | 652.2472
1| 1.4840 | 2.6333 | 0.6312 | 0.2831 | 0.6821 | 0.3179 | 0.3842 | 655.0871
12 | 1.4845 | 2.6347 | 0.6304 | 0.2827 | 0.6849 | 0.3151 | 0.3894 | 657.5175
13 | 1.4850 | 2.6361 | 0.6297 | 0.2825 | 0.6873 | 0.3127 | 0.3937 | 659.6086
14 | 1.4855 | 2.6376 | 0.6293 | 0.2822 | 0.6894 | 0.3106 | 0.3974 | 661.4182
15 | 1.4859 | 2.6389 | 0.6289 | 0.2820 | 0.6913 | 0.3087 | 0.4005 | 662.9931
16 | 1.4864 | 2.6403 | 0.6286 | 0.2818 | 0.6930 | 0.3070 | 0.4031 | 664.3715
17 | 1.4868 | 2.6415 | 0.6284 | 0.2816 | 0.6945 | 0.3055 | 0.4053 | 665.5846
18 | 1.4871 | 2.6427 | 0.6283 | 0.2815 | 0.6959 | 0.3041 | 0.4072 | 666.6576
19 | 1.4875 | 2.6438 | 0.6282 | 0.2814 | 0.6971 | 0.3029 | 0.4089 | 667.6117

O| 0 Q| N N33

and then the value increases. The minimum cost, in this case, is 589.7377. P, Pige, and
RN increase when the ¢ value increases since the expected service rate in main services
increases. But P, decreases when ¢ increases.

Table 7 indicates the effect of 77 on various performance measures and the cost function.
As n increases, the server turns to normal mode quickly. So the values of P,,. decrease.
When the values of the 7 increase, there are only very small changes in the values of £C'S,
ECQ, ECB, and P,g.. The value of the £'C' increases when the value 7 increases. P, and
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Table 8. Effectof p: Fixn =5, N=4k=2m=3,0=14,1n=5,¢ = 15.

p ECQ ECS ECB Pidie Prormal Pyac RN EC
0.1 | 1.4859 | 2.6407 | 0.6513 | 0.2868 | 0.6525 | 0.3475 | 0.3270 | 628.7896
0.15 | 1.4747 | 2.6218 | 0.6463 | 0.2905 | 0.6481 | 0.3519 | 0.3265 | 626.3916
0.2 | 1.4633 | 2.6026 | 0.6413 | 0.2943 | 0.6436 | 0.3564 | 0.3265 | 624.0468
0.25 | 1.4518 | 2.5832 | 0.6361 | 0.2982 | 0.6391 | 0.3609 | 0.3270 | 621.7476
0.3 | 1.4402 | 2.5636 | 0.6309 | 0.3022 | 0.6344 | 0.3656 | 0.3279 | 619.4874
0.35 | 1.4285 | 2.5437 | 0.6255 | 0.3062 | 0.6296 | 0.3704 | 0.3293 | 617.2598
04 | 1.4167 | 2.5236 | 0.6201 | 0.3104 | 0.6247 | 0.3753 | 0.3310 | 615.0586
0.45 | 1.4048 | 2.5034 | 0.6146 | 0.3147 | 0.6197 | 0.3803 | 0.3331 | 612.8778
0.5 | 1.3927 | 2.4829 | 0.6091 | 0.3190 | 0.6146 | 0.3854 | 0.3356 | 610.7114
0.55 | 1.3806 | 2.4623 | 0.6035 | 0.3235 | 0.6094 | 0.3906 | 0.3384 | 608.532
0.6 | 1.3684 | 2.4415 | 0.5978 | 0.3280 | 0.6040 | 0.3960 | 0.3415 | 606.3968
0.65 | 1.3562 | 2.4205 | 0.5921 | 0.3327 | 0.5986 | 0.4014 | 0.3449 | 604.2355
0.7 | 1.3438 | 2.3995 | 0.5863 | 0.3374 | 0.5930 | 0.4070 | 0.3485 | 602.0623

RN also increase, since the vacation realizes speedily when 7 increases.

Table 8§ indicates the effect of p on various performance measures and the cost function.
When the p value increases, the number of customers who leave the system after availing of
the first part of the service increases. So the values of EFC'B, EC, and P,,,,,. decrease. But

the values of P4, Pyac, and RN decrease.

7.3. MAP with zero correlation (MZC)

Table 9. Effectof 6: Fixn =5, N =4, k=2 m =3,¢0=12,n=5,p=0.1.

0 ECQ ECS ECB | Pae | Poormal | Poac RN EC

10 | 12.6023 | 14.4141 | 0.9271 | 0.0554 | 0.9325 | 0.0675 | 0.0620 | 600.4481
11 | 6.8200 | 8.5020 | 0.8750 | 0.0947 | 0.8854 | 0.1146 | 0.1029 | 585.9489
12 | 4.7560 | 6.3319 | 0.8309 | 0.1275 | 0.8467 | 0.1533 | 0.1344 | 587.5102
13 | 3.7096 | 5.1971 | 0.7931 | 0.1554 | 0.8143 | 0.1857 | 0.1588 | 594.0701
14 | 3.0826 | 4.4955 | 0.7603 | 0.1793 | 0.7870 | 0.2130 | 0.1777 | 603.0575
15 | 2.6676 | 4.0166 | 0.7316 | 0.2002 | 0.7636 | 0.2364 | 0.1923 | 613.5131
16 | 2.3740 | 3.6679 | 0.7062 | 0.2185 | 0.7435 | 0.2565 | 0.2036 | 624.9775
17 | 2.1561 | 3.4018 | 0.6835 | 0.2346 | 0.7259 | 0.2741 | 0.2122 | 637.1930
18 | 1.9884 | 3.1917 | 0.6632 | 0.2490 | 0.7106 | 0.2894 | 0.2188 | 649.9982
19 | 1.8556 | 3.0213 | 0.6449 | 0.2620 | 0.6970 | 0.3030 | 0.2236 | 663.2840
20 | 1.7480 | 2.8801 | 0.6284 | 0.2736 | 0.6850 | 0.3150 | 0.2272 | 676.9720
21 | 1.6591 | 2.7611 | 0.6132 | 0.2842 | 0.6743 | 0.3257 | 0.2296 | 691.0033
22 | 1.5846 | 2.6594 | 0.5994 | 0.2938 | 0.6646 | 0.3354 | 0.2312 | 705.3321
23 | 1.5212 | 2.5714 | 0.5868 | 0.3026 | 0.6560 | 0.3440 | 0.2321 | 719.9220
24 | 1.4667 | 2.4945 | 0.5751 | 0.3106 | 0.6481 | 0.3519 | 0.2324 | 734.7429
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Table 10. Effect of ¢: Fixn=5N=4,k=2m=3,0=10,n=5,p=0.1.
¢ ECQ ECS ECB Pidie Prormal Pyac RN EC

12 | 12.6023 | 14.4141 | 0.9271 | 0.0554 | 0.9325 | 0.0675 | 0.0620 | 600.4481
13 | 6.6390 8.3177 | 0.8759 | 0.0966 | 0.8820 | 0.1180 | 0.1097 | 592.1543
14 | 4.5339 6.1039 | 0.8341 | 0.1318 | 0.8387 | 0.1613 | 0.1515 | 598.4154
15| 3.4721 49518 | 0.7995 | 0.1623 | 0.8011 | 0.1989 | 0.1884 | 608.1076
16 | 2.8382 42422 | 0.7705 | 0.1888 | 0.7682 | 0.2318 | 0.2212 | 618.8830
17 | 2.4200 3.7596 | 0.7459 | 0.2122 | 0.7391 | 0.2609 | 0.2504 | 629.9858
18 | 2.1250 3.4094 | 0.7249 | 0.2330 | 0.7132 | 0.2868 | 0.2767 | 641.1229
19 | 1.9066 3.1432 | 0.7067 | 0.2515 | 0.6901 | 0.3099 | 0.3003 | 652.1720
20 | 1.7389 2.9338 | 0.6908 | 0.2682 | 0.6692 | 0.3308 | 0.3218 | 663.0823
21 | 1.6064 2.7647 | 0.6769 | 0.2832 | 0.6504 | 0.3496 | 0.3413 | 673.8361
22 | 1.4993 2.6252 | 0.6646 | 0.2969 | 0.6333 | 0.3667 | 0.3591 | 684.4311
23 | 1.4110 2.5081 | 0.6537 | 0.3093 | 0.6176 | 0.3824 | 0.3755 | 694.8728
24 | 1.3370 2.4083 | 0.6439 | 0.3207 | 0.6033 | 0.3967 | 0.3905 | 705.1699
25 | 1.2742 2.3223 | 0.6351 | 0.3312 | 0.5901 | 0.4099 | 0.4044 | 715.3324
26 | 1.2202 2.2474 | 0.6272 | 0.3409 | 0.5779 | 0.4221 | 0.4173 | 725.3706

Table 11. Effectof n: Fixn=5N =4 k=2 m=3,0=14,¢ = 15,p = 0.1.

n ECQ ECS ECB Pidle Pnormal Pvac RN EC

5 | 1.5893 | 2.7084 | 0.6406 | 0.2860 | 0.6586 | 0.3414 | 0.2922 | 625.2544
6 | 1.5841 | 2.6937 | 0.6313 | 0.2852 | 0.6644 | 0.3356 | 0.3105 | 631.8012
7 | 1.5808 | 2.6840 | 0.6248 | 0.2846 | 0.6693 | 0.3307 | 0.3279 | 637.6762
8 | 1.5786 | 2.6674 | 0.6202 | 0.2841 | 0.6743 | 0.3266 | 0.3437 | 642.8655
9 | 1.5772 | 2.6727 | 0.6167 | 0.2836 | 0.6768 | 0.3232 | 0.3578 | 647.4312
10 | 1.5761 | 2.6693 | 0.6141 | 0.2832 | 0.6798 | 0.3202 | 0.3704 | 651.4529

11 | 1.5754 | 2.6667 | 0.6121 | 0.2829 | 0.6825 | 0.3175 | 0.3815 | 655.0075
12 | 1.5749 | 2.6648 | 0.6105 | 0.2826 | 0.6848 | 0.3152 | 0.3915 | 658.1629
13 | 1.5746 | 2.6634 | 0.6092 | 0.2824 | 0.6869 | 0.3131 | 0.4004 | 660.9767
14 | 1.5743 | 2.6622 | 0.6082 | 0.2821 | 0.6887 | 0.3113 | 0.4084 | 663.4974
15 | 1.5741 | 2.6614 | 0.6073 | 0.2819 | 0.6904 | 0.3096 | 0.4155 | 665.7654
16 | 1.5740 | 2.6607 | 0.6066 | 0.2818 | 0.6919 | 0.3081 | 0.4220 | 667.8145
17 | 1.5739 | 2.6601 | 0.6060 | 0.2816 | 0.6932 | 0.3068 | 0.4279 | 669.6731
18 | 1.5738 | 2.6597 | 0.6055 | 0.2815 | 0.6945 | 0.3055 | 0.4332 | 671.3649
19 | 1.5738 | 2.6593 | 0.6050 | 0.2813 | 0.6956 | 0.3044 | 0.4381 | 672.9103

Tables 9 to 12 contain the effect of different parameters on various performance mea-
sures and the cost function when the arrival process of the customers is MZC. Table 9 in-
dicates the effect of 6 on various performance measures and the cost function. When the
values of f(service rate of the first part of the service) increase, the values of £C'S, EC'Q,
and FC B decrease. It is because the expected service time in the first stage of the service
decreases. The value of the £C' decreases to reach the minimum value at & = 11, and after
that, the values increase. The minimum value of the cost function, in this case, is 585.9489.
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Table 12. Effectof p: Fixn =5N =4,k =2,m=3,0 =14,n =5,¢ = 15.
p ECQ ECS ECB Pidie Prormal Pyac RN EC
0.1 | 1.5893 | 2.7084 | 0.6406 | 0.2860 | 0.6586 | 0.3414 | 0.2922 | 625.2544
0.15 | 1.5785 | 2.6901 | 0.6363 | 0.2894 | 0.6544 | 0.3456 | 0.2938 | 623.3943
0.2 | 1.5675 | 2.6715 | 0.6319 | 0.2929 | 0.6501 | 0.3499 | 0.2958 | 621.5304
0.25 | 1.5563 | 2.6526 | 0.6274 | 0.2966 | 0.6457 | 0.3543 | 0.2980 | 619.6617
0.3 | 1.5449 | 2.6333 | 0.6228 | 0.3003 | 0.6411 | 0.3589 | 0.3005 | 617.7870
0.35 | 1.5333 | 2.6137 | 0.6181 | 0.3041 | 0.6364 | 0.3636 | 0.3033 | 615.9045
0.4 | 1.5215 | 2.5937 | 0.6133 | 0.3081 | 0.6316 | 0.3684 | 0.3064 | 614.0122
0.45 | 1.5095 | 2.5734 | 0.6085 | 0.3122 | 0.6266 | 0.3734 | 0.3099 | 612.1075
0.5 | 1.4973 | 2.5527 | 0.6035 | 0.3164 | 0.6215 | 0.3785 | 0.3136 | 610.1871
0.55 | 1.4849 | 2.5316 | 0.5985 | 0.3207 | 0.6162 | 0.3838 | 0.3177 | 608.2472
0.6 | 1.4723 | 2.5102 | 0.5934 | 0.3251 | 0.6107 | 0.3893 | 0.3220 | 606.2834
0.65 | 1.4594 | 2.4884 | 0.5882 | 0.3297 | 0.6051 | 0.3949 | 0.3267 | 604.2906
0.7 | 1.4463 | 2.4661 | 0.5829 | 0.3345 | 0.5993 | 0.4007 | 0.3317 | 602.2627

P,uc, Piaie, and RN increase when the 6 values increase. But P, decreases when the 6
increases.

Table 10 indicates the effect of ¢ on various performance measures and the cost function.
When the values of ¢(service rate of the second part of the service) increase, the values of
ECS, ECQ, and EC B decrease. It is because the expected service time in the main service
decreases. The value of the E'C' decreases to reach the minimum value at ¢ = 13 and then the
value increases. The minimum cost, in this case, is 592.1543. P,,., P;q., and RN increase
when the ¢ value increases since the expected service rate in main services increases. But
P, decreases when ¢ increases.

Table 11 indicates the effect of n on various performance measures and the cost function.
As n increases, the server turns to normal mode quickly. So the values of P,,. decrease.
When the values of the 7 increase, there are only very small changes in the values of EC'S,
ECQ, ECB, and P, 4. The value of the FC increases when the value 7 increases. P, and
RN also increase, since the vacation realizes speedily when 7 increases.

Table 12 indicates the effect of p on various performance measures and the cost function.
When the p value increases, the number of customers who leave the system after availing of
the first part of the service increases. So the values of EFC'B, EC, and P,,,,,. decrease. But
the values of P,g., P,ac, and RN decrease.

8. Optimal N

To find optimal N, we consider the following cost function.

EC = kO x CV X Pye + [k + (n — k)8] X CN X Prorma
+ECQ x HCQ + CSN x RN + HCB x ECB.
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8.1. MAP with positive correlation (MPC)

Table 13. Fixn=5k=2,m=3,0 =14, =15,n=5,p=0.1
N ECQ ECB Pnor Pvac RN EC

34.2296 | 0.6477 | 0.6811 | 0.3189 | 0.2495 | 758.6822
342276 | 0.6510 | 0.6807 | 0.3193 | 0.1906 | 746.7418
34.2249 | 0.6529 | 0.6806 | 0.3194 | 0.1831 | 745.1509
342231 | 0.6541 | 0.6805 | 0.3195 | 0.1811 | 744.6837
34.2222 | 0.6549 | 0.6804 | 0.3196 | 0.1801 | 744.4759
34.2216 | 0.6553 | 0.6804 | 0.3196 | 0.1797 | 744.3742
34.2213 | 0.6556 | 0.6804 | 0.3196 | 0.1795 | 744.3236
342211 | 0.6557 | 0.6804 | 0.3196 | 0.1794 | 744.2984
342211 | 0.6558 | 0.6804 | 0.3196 | 0.1793 | 744.2858
34.2210 | 0.6558 | 0.6804 | 0.3196 | 0.1793 | 744.2795
342210 | 0.6558 | 0.6804 | 0.3196 | 0.1793 | 744.2764
34.2210 | 0.6558 | 0.6804 | 0.3196 | 0.1793 | 744.2748
34.2210 | 0.6558 | 0.6804 | 0.3196 | 0.1793 | 744.2741
34.2210 | 0.6558 | 0.6804 | 0.3196 | 0.1793 | 744.2737
34.2210 | 0.6558 | 0.6804 | 0.3196 | 0.1793 | 744.2735
34.2210 | 0.6558 | 0.6804 | 0.3196 | 0.1793 | 744.2734
34.2210 | 0.6558 | 0.6804 | 0.3196 | 0.1793 | 744.2734
34.2210 | 0.6558 | 0.6804 | 0.3196 | 0.1793 | 744.2734
34.2210 | 0.6558 | 0.6804 | 0.3196 | 0.1793 | 744.2734
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From Table 13, we get the expected cost corresponding to different values of N when
the arrival process is M PC'. We fixn =5k =2,m =3,0 = 14,¢ = 15,7 = 5. In this
case, the minimum cost is 744.2734, obtained at N = 17. Therefore the optimal value of N
is 17. After that cost remains constant because the vacation realization will happen.

8.2. MAP with negative correlation (MNC)

From Table 14, we get the expected cost corresponding to different values of N when
the arrival process is M NC. We fixn =5,k =2,m = 3,0 = 14,¢ = 15,n = 5. In this
case, the minimum cost is 601.9418, obtained at N = 8. Therefore the optimal value of N
is eight; after that cost remains constant because the vacation realization will happen.

8.3. MAP with zero correlation (MZC)

From Table 15, we get the expected cost corresponding to different values of N when
the arrival process is M ZC'. We fixn =5,k =2m = 3,0 = 14,¢ = 15,7 = 5. In this
case, the minimum cost is 622.2760, obtained at N = 14. Therefore the optimal value of N
is 14. After that cost remains constant because the vacation realization will happen.
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Table 14. Fixn=5k=2,m=3,0=14,0=15,n=5,p=0.1

N

ECQ

ECB

Pnor

Pvac

RN

EC

1.3432

0.5836

0.5936

0.4064

0.4195

616.5412

1.3440

0.5862

0.5931

0.4069

0.3528

602.9791

1.3438

0.5863

0.5930
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9. Conclusion

In this paper, we considered a M AP/ E}, /1 queue with working vacation and N-Policy.
During the working vacation, the server provides only the preliminary service. After availing
of the preliminary service, a customer leaves the system with probability p and those who

25



© Sindhu, Krishnamoorthy

require the main service join a buffer of finite capacity N with complementary probability 1 —
p. We analysed this model by using the matrix-analytic method. Several system performance
characteristics were computed. Also, we constructed a cost function to find optimal V.
Finally, we performed some numerical experiments to evaluate some performance measures
and found optimal cost function values. We obtained the optimal values of /V using the cost
function for the Markovian arrival process’s positive, zero and negative correlation values.
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