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Abstract: In this paper, we consider a MAP/Ek/1 queue with working vacation. Cus-
tomers arrive according to aMarkovian Arrival Process and service time follows generalized
Erlang distribution of order n. Service in the first k stages is called the preliminary service
and service in the remaining n − k stages is called the main service. When the system be-
comes empty at the time of completion of a service, the server goes on working vacation.
During working vacation server provides only the preliminary service. After availing of the
preliminary service, the customers leave the system with probability p. Those who require
the main service, join a buffer of finite capacity N with complementary probability 1 − p.
The server switches to normal mode when the vacation expires, orN customers accumulate
in the buffer during working vacation, whichever occurs first. The customer in service at
the working vacation expiration epoch, continues to get his service in normal mode. Steady
state analysis of this system is performed. Several performance characteristics of interest are
computed. A cost function is constructed and the optimal values of N for the positive, zero
and negative correlation values of the Markovian arrival process are obtained.

Keywords: Erlang distribution, main service, Markovian arrival process (MAP), N-policy,
preliminary service, working vacation.

1. Introduction
The queueing system with server vacations has been well-studied since the late 1970’s.

Considering the importance of the subject, several researchers have been attracted to it, and a
good amount of studies have been conducted, especially from the early 1980’s. The first re-
view paper on vacation queueing models is by Doshi [2]. Several researchers concentrated
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on the classical queueing system and extended to vacation queueing models by allowing
idle servers to work on non-queueing jobs. Hence the vacation models are more applica-
ble in several areas, especially in the flexible manufacturing, computer and communications
systems, etc. Because of the acceptability of these applications, more researchers have con-
ducted studies on vacation models during the late 1980’s and the entire of the decade 1990.
These were surveyed in the book of Takagi [11] in 1991 and Tian and Zhang [12] in 2006.

Vacation in the queueing system takes place either because of the absence of customers
at a service completion epoch or due to server breakdown. The advantage of this server
vacation system is that it can utilize its time for other purposes. So it makes the queueing
model applicable to various real-world service systems. In the vacation queuing system,
the server does not provide service when he is on vacation. In contrast, in the working va-
cation scheme, the server works at a different rate instead of remaining idle/allotted some
other work during the vacation period. A queueing system with server vacation was first dis-
cussed in the paper by Levy and Yechiali [5]. Considering the scope of wide applications in
computer systems, communication networks, production management, etc., extensive stud-
ies have been conducted in Markovian queueing systems with working vacations. Servy and
Finn [7] introduced the concept of working vacation in which the server offers service at a
low rate during vacation if customers are available.

The concept of the N -policy was introduced by Yadin and Naor [14]. It means the
server provides service only whenN customers accumulate in the systems on completion of
a busy period. Extensive studies on vacation queueing systems under N -policy have been
conducted since 1963. The N -policy makes the queueing model more applicable in vari-
ous scenarios, especially optimal management policy, computer processing, manufacturing,
transportation systems and so on.

In addition to Ke et al. [3], Tian et al. [13] and Panta et al. [6] are the review papers
on vacation queueing model. A review paper by Chandrasekaran et al. [1] provide the latest
research results on working vacation queueing systems.

Sreenivasan et al. [10] consider a working vacation queueing system in which the server
goes on vacation when the system becomes empty. On return the server provides service at
a low rate to customers joining the system. The vacation terminates when either the number
of customers in the system reaches N or the vacation clock realises. Krishnamoorthy et al.
[4] consider two single server queueing models with non-preemptive priority and working
vacation under two distinctN -policies. Sinulal et al. [9] analyse a queueing system in which
the service is provided at two stations, station 1 and station 2, operating in tandem. Station 1
is a multi-server station with c identical servers working in parallel, and station 2 is equipped
with a single server called the specialist server. An arriving customer enters directly into
service at station 1 if at least one of the servers is idle, otherwise he joins an infinite capacity
queue. After receiving service at station 1, customers proceed either to station 2 or can exit
the system. There is a finite buffer between the two stations. When the buffer is not full,
a customer coming out of station 1 joins the buffer with probability p or leaves the system
with the complementary probability 1 − p. The server at station 2 will be turned on only if
the number of customers in the buffer reaches a threshold.
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In the paper [8], authors consider a single server queueing system with a working vaca-
tion. Service has n stages. Service in the first k stages is called the preliminary service and
service in the remaining n− k stages is called the main service. When the system becomes
empty at the time of completion of service, the server goes on working vacation. Customers
who arrive during working vacation are provided only the main service. The server switches
to normal mode when the vacation expires, or N customers are served during a working
vacation, whichever occurs first. The customer in service at the working vacation expiration
epoch is served from the very beginning.

In the present model, we consider a single server queueing system in which customers
arrive according to Markovian Arrival Process. Service time follows generalized Erlang
distribution of order n. Service in the first k stages is called the preliminary service and
those in the remaining n − k stages is called the main service. When the system becomes
empty at the time of completion of a service, the server goes on a working vacation. During
working vacation the server provides only the preliminary service. After availing of the
preliminary service, the customers leave the system with probability p. Those who require
the main service to join a buffer of finite capacityN with complementary probability 1− p.
The server switches to normal mode when the vacation expires or N customers accumulate
in the buffer during working vacation, whichever occurs first. The customer in service at the
working vacation expiration epoch will receive his service in normal mode.

We provide a few real-life examples which illustrate the queueing model described in
this paper. Suppose we are going to a tourist place where the tour operators are conduct-
ing boat trips for sightseeing. An entrance ticket is issued anytime during working hours
from the first counter. However, to get the tickets for the boat ride, the tourists have to
wait until there is a specified minimum number of passengers for a new trip. During busy
hours, the visitors may not have to spend long time in the waiting area as there are many
visitors. Nevertheless, during slack hours, tourists must wait for the boat ride. Another ex-
ample is hospitals where the Outpatients can get OP tickets during the entire OP hours. The
initial medical examinations, such as blood pressure, weight, pulse, etc., are recorded in the
screening room. Then they wait for consultation. Doctors conduct inpatient ward visits or
other duties during OP hours if no patient is waiting for consultation. But as the number of
patients in the OP queue reaches a specific number, the doctor returns to continue the OP
consultation.

Salient features of the model discussed in this paper are
• The n service stages are divided into two parts.
• In the working vacation mode, the server provides only the preliminary service.
• In the above mode, after availing of preliminary service, the customer can either leave
the system or he can join a buffer of finite capacity.

• Vacation is realized only when the vacation clock expires, orN customers accumulate
in the buffer, whichever occurs first.

Notations and abbreviations used in this paper are
• CTMC: Continuous time Markov chain.
• Ia: Identity matrix of order a.
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• LIQBD: Level independent Quasi-Birth and Death.
• MAP: Markovian Arrival Process.
• OP: Outpatient.
• eee: Column vector of 1′s of appropriate order.
• eeec(d): Column vector of order d with 1 in the cth position and the remaining entries
are zero.

• eeeb(a): Row vector of order a with 1 in the bth position and the remaining entries are
zero.

The remaining part of this paper is arranged as follows. In Section 2, the model under
study is mathematically formulated. In Section 3, we perform the steady-state analysis of
the queueing model under study. The waiting time analysis of a tagged customer is provided
in Section 4. Some additional performance measures are computed and presented in Section
5. A cost function is constructed to find the optimal N in Section 6. Numerical results are
discussed in Section 7. Finally, in Section 8, optimal N values are found for MAP with
positive correlation, zero correlation and negative correlation.

2. Mathematical Formulation

We consider a single server queueing system in which customers arrive according to a
Markovian Arrival Process with representation (D0, D1) of order m. Let δ be an invariant
vector of D = D0 + D1 that is, δD = 0, δe = 1. Service time follows the generalised
Erlang distribution of order n. Service in the first k stages is called the preliminary service;
service time in each of these stages is exponentially distributed with parameter θ. Service
in the remaining n− k stages is called main service and service time in each of these stages
is exponentially distributed with parameter ϕ. When the system becomes empty at the time
of completion of service, the server goes on a working vacation. During working vacation
server provides only the preliminary service. After availing preliminary service, a customer
leaves the system with probability p; those who require the main service also join a buffer of
finite capacityN (with probability 1−p). The duration of working vacation is exponentially
distributed with parameter η. The server switches to normal mode when the vacation expires
or N customers accumulated in the buffer during working vacation, whichever occurs first.
The customer in service during the working vacation expiration epoch continues to receive
his service in normal mode. Once the working vacation is over, the server start serving
customers in the buffer in the order in which they entered it before proceeding to serve those
waiting in the main queue.

2.1. The QBD process

The model described in section 1 can be studied as an LIQBD process. First, we define
the following notations:
At time t,

N (t) : Number of customers in the queue ,
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J(t) =

{
0, if the server is in vacation mode.
1, if the server is in normal mode.

M(t) : Number of customers in the buffer,
S(t): The phase of service,
A(t): The phase of arrival.

{(N (t),M(t), J(t), S(t), A(t)) : t ≥ 0} is an LIQBD process with state space
Ω= {{(0, 0, 0, ∗, j) : 1 ≤ j ≤ m}

∪
{(0, h, 0, ∗, j) : 1 ≤ h ≤ (N − 1); 1 ≤ j ≤

m}
∪
{(q, h, 0, i, j) : q ≥ 0; 0 ≤ h ≤ (N − 1); 1 ≤ i ≤ k; 1 ≤ j ≤ m}

∪
{(q, h, 1, i, j) :

q ≥ 0; 0 ≤ h ≤ (N − 1); 1 ≤ i ≤ n; 1 ≤ j ≤ m}}.
In the absence of customers in the system, no service can be provided; this is indicated by
’*’ in the position of service coordinate (fourth coordinate in the 5-tuple).

The infinitesimal generator of this CTMC is

Q∗ =


B1 B0

B2 A1 A0

A2 A1 A0

. . . . . . . . .

 .

Here B1 is a square matrix of order Nm(k + n) + Nm which contains the transition
rates within the level 0; B0 is a (Nm(k + n) +Nm) ×Nm(k + n) matrix which contains
transition rates from level 0 to level 1; B2 is a Nm(k + n) × (Nm(k + n) + Nm) matrix
which contains transition rates from level 1 to level 0; A0 represents transition rates from
n to n + 1 for n ≥ 1, A1 represents transition rates within n for n ≥ 1 and A2 represents
transition rates from n to n−1 for n ≥ 2. All these are square matrices of orderNm(k+n).

B1 =



D0 C8 000 000 000 000 000 000 000 000 000 000
P C0 C1 Q 000 000 000 000 000 000 000 000
R 000 C2 000 000 000 000 000 000 000 000 000
000 000 C3 C4 C8 000 000 000 000 000 000 000
000 000 000 P C0 C1 Q 000 000 000 000 000
000 000 C5 000 000 C2 000 000 000 000 000 000
000 000 000 000 000 C3 C4 C8 000 000 000 000

. . . . . . . . . . . .
000 000 000 000 000 000 000 000 C3 C4 C8 000
000 000 000 000 000 000 000 000 000 P C0 C6

000 000 000 000 000 000 000 000 C5 000 000 C2



.
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B0 =



000 000 000 000 000 000 000
Ik ⊗D1 000 000 000 000 000 000

000 In ⊗D1 000 000 000 000 000
000 000 000 000 000 000 000
000 000 Ik ⊗D1 000 000
000 000 000 In ⊗D1 000 000 000

. . . . . . . . .
000 000 000 000 000 000 000
000 000 000 000 000 Ik ⊗D1 000
000 000 000 000 000 000 In ⊗D1


.

B2 =



000 S 000 000 T 000 000 000 000 000 000 000 000
000 000 C7 000 000 000 000 000 000 000 000 000 000
000 000 000 000 S 000 000 T 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 S 000 000 T 000 000

. . . . . . . . . . . .
000 000 000 000 000 000 000 000 000 000 000 S 000
000 000 000 000 000 000 000 000 000 000 000 000 000


, where

C0 =


D0 − Imθ − Imη Imθ

D0 − Imθ − Imη Imθ
. . . . . .

D0 − Imθ − Imη Imθ
D0 − Imη − Imθ


is a square matrix of ordermk.

C1 =
[
ηIkm 000

]
is amk ×mn matrix.

C2 =



D0 − Imθ Imθ
D0 − Imθ Imθ

. . . . . .
D0 − Imθ Imθ

D0 − Imϕ Imϕ
. . . . . .

D0 − Imϕ Imϕ
D0 − Imϕ


is a square matrix of ordermn.

C3 =
[
eeek+1(n)⊗ ηIm

]
is am×mn matrix.
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C4 =
[
D0 − Imη

]
is am×m matrix.

C5 =

[
000 000

eeek+1(k + 1)⊗ Imϕ 000

]
is a square matrix of ordermn.

C6 =
[
Ik ⊗ ηIm eeek(k)⊗ θ(1− p)Im 000

]
is amk ×mn matrix.

C7 =
[
eeen(n)⊗ ϕIm 000

]
is a square matrix of ordermn.

C8 =
[
D1 000

]
is am×mk matrix.

P =
[
eeek(k)⊗ θpIm

]
is amk ×m matrix.

Q =
[
eeek(k)⊗ θ(1− p)Im

]
is amk ×m matrix.

R =
[
eeen(n)⊗ ϕIm

]
is amn×m matrix.

S =
[
eeek(k)⊗ θpIm 000

]
is a square matrix of ordermk.

T =
[
eeek(k)⊗ θ(1− p)Im 000

]
is a square matrix of ordermk .

Let E1 =

[
C0 C1

000 C2

]
; E2 =

[
000 000
000 C5

]
; E3 =

[
C0 C6

000 C2

]
;

E4 =

[
Ik ⊗D1 000

000 In ⊗D1

]
; E5 =

[
S 000
000 C7

]
; E6 =

[
T 000
000 000

]
; E7 =

[
S 000
000 000

]
.

A0 = IN ⊗ E4

A2 =



E5 E6

E7 E6

E7 E6

. . . . . .
E7 E6

E7 E6

E7


.

A1 =



E1 000
E2 E1

E2 E1

. . . . . .
E2 E1

E2 E1

E2 E3


.
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3. Steady State Analysis
In this section, we perform the steady-state analysis of the queueing model under study.

The generator matrix is A = A0 +A1 +A2.

A =



E1 + E4 + E5 E6 000
E2 E1 + E4 + E7 E6

E2 E1 + E4 + E7 E6

. . . . . . . . .
E2 E1 + E4 + E7 E6

000 E2 E3 + E4 + E7


.

Write F0 = E1 + E4 + E5;F1 = E6;F2 = E2;F3 = E1 + E4 + E7;F4 = E3 + E4 + E7.

Then A =



F0 F1 000
F2 F3 F1

F2 F3 F1

. . . . . . . . .
F2 F3 F1

000 F2 F4


.

Let πππ = [πππ0,πππ1,πππ2, .........,πππ(N−1)] denote the steady state probability vector of the gen-
erator matrix A
Here each πππi’s are of dimension 1×m(k + n).

πππA = 0,πeπeπe = 1. (1)

From equation (1), we get

πππ0F0 + πππ1F2 = 000 (2)

πππ0F1 + πππ1F3 + πππ2F2 = 000 (3)

πππ1F1 + πππ2F3 + πππ3F2 = 000 (4)

πππ2F1 + πππ3F3 + πππ4F2 = 000 (5)

πππ(N−4)F1 + πππ(N−3)F3 + πππ(N−2)F2 = 000 (6)

πππ(N−3)F1 + πππ(N−2)F3 + πππ(N−1)F2 = 000 (7)

πππ(N−2)F1 + πππ(N−1)F4 = 000 (8)

From equation (8)

πππ(N−1) = −πππ(N−2)F1F
−1
4 (9)

Take U(N−2) = −F1F
−1
4

πππ(N−1) = πππ(N−2)U(N−2) (10)
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From equation (7)

πππ(N−2) = −πππ(N−3)F1(F3 + U(N−2)F2)
−1 (11)

Take U(N−3) = −F1(F3 + U(N−2)F2)
−1

πππ(N−2) = πππ(N−3)U(N−3) (12)

Similarly from equation (6) we get,

πππ(N−3) = πππ(N−4)U(N−4), (13)

where U(N−4) = −F1(F3 + U(N−3)F2)
−1.

From equation (3) we get,
πππ2 = πππ1U1, (14)

where U1 = −F1(F3 + U2F2)
−1 From equation (2) we get,

πππ1 = πππ0U0 (15)

where U0 = −F1(F3 + U1F2)
−1.

πππ(i+1) = πππiUi,where (16)

Ui =

{
−F1(F3 + U(i+1)F2)

−1, if 0 ≤ i ≤ (N − 3)
−F1F

−1
4 , if i = N − 2

πππ1 = πππ0U0 (17)

πππ2 = πππ0U0U1 (18)

πππN−2 = πππ0U0U1U2....U(N−3) (19)

πππN−1 = πππ0U0U1U2....UN−3UN−2 = πππ0

N−2∏
s=0

Us. (20)

Substituting the values of πππi’s in the normalizing condition πeπeπe = 1 we have,

πππ0[I +
N−2∑
r=0

r∏
s=0

Us]eee = 1. (21)

From equation (21), we can find πππ0.
Hence we can find πππ1,πππ2, ....,πππ(N−1).
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3.1. Stability condition

The LIQBD description of the model indicates that the queueing system is stable if and
only if the left drift exceeds that of right drift. That is,

πππA0e < πππA2e. (22)

πππA0e = πππ0[I +
N−2∑
r=0

r∏
s=0

Us](In+k ⊗D1)eee (23)

πππA2e = [πππ0E5+πππ1(E7+E6)+πππ2(E7+E6)+ ......+πππ(N−2)(E7+E6)+πππ(N−1)E7]eee (24)

πππA2e = πππ0[E5 +
N−2∑
r=0

r∏
s=0

UsE7 +
N−3∑
r=0

r∏
s=0

UsE6]eee (25)

The stability condition is

πππ0[I +
N−2∑
r=0

r∏
s=0

Us](In+k ⊗D1)eee ≤ πππ0[E5 +
N−2∑
r=0

r∏
s=0

UsE7 +
N−3∑
r=0

r∏
s=0

UsE6]eee (26)

3.2. The steady state probability vector of Q∗

Let xxx be the steady state probability vector of Q∗.
xxx = (xxx0,xxx1,xxx2 . . .), where xxx0 is of dimension 1 × (Nm(k + n) +Nm) and xxx1,xxx2, . . .

are each of dimension 1 × Nm(k + n) . Under the stability condition, we have xxxi =
xxx1Ri−1, i ≥ 2, where the matrix R is the minimal nonnegative solution to the matrix
quadratic equation

R2A2 +RA1 + A0 = 0

and the vectors xxx0 and xxx1are obtained by solving the equations

xxx0B0 + xxx1B1 = 0 (27)
xxx0B0 + xxx1(A1 +RA2) = 0 (28)

subject to the normalizing condition

xxx0eee+ xxx1(I −R)−1eee = 1 (29)

4. Waiting Time Analysis
The server may be on vacation or in normal mode. So depending on the server’s status,

we obtain the expected waiting time of a particular customer by conditioning on the fact that
at arrival epoch, the server is serving in vacation mode or normal mode.
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4.1. Case 1 – the server is in vacation mode

To find the expected waiting time of a tagged customer who joins as the rth customer in
the queue, we consider the Markov Processes Wv(t) = {(N (t),M(t), J(t), S(t)) : t ≥ 0}
where
N (t): Rank of the customer in the queue at time t.
M(t): Number of customers in the buffer at time t.

J(t) =

{
0, if the server is in vacation mode at time t.
1, if the server is in normal mode at time t.

S(t): Phase of the service at time t.
The rank of the customer decrease by one when a customer ahead of him completes the
service. State space ofWv(t) is
Ω1 = {{r, r−1, r−2, · · · , 2, 1}×{0, 1, 2, 3, · · · , N − 1}×{0}×{1, 2, , · · · , k}}∪{{r, r−
1, r−2, · · · , 2, 1}×{0, 1, 2, 3, · · · , N − 1}×{1}×{1, 2, 3 · · · , n}}∪{∆}, where∆ denotes
the absorbing state - beginning of the preliminary service of the tagged customer.

The infinitesimal generator is

Q1 =

[
W W 0

000 0

]
, where, W =


G H

G H
. . . . . .

G H
G

 is a square matrix of order

N(n+ k)r and W 0 =



000
000
000

000
H

 is a matrix of order N(n+ k)r × 1.

G =



G1 000
G2 G1

G2 G1

. . . . . .
G2 G1

G2 G3


is a square matrix of order N(n+ k).

G1 =

[
G11 G12

000 G13

]
; G2 =

[
000 000
000 G21

]
; G3 =

[
G11 G14

000 G13

]
.

G11 =


−(θ + η) θ

−(θ + η) θ
. . . . . .

−(θ + η)

 is a square matrix of order k.
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G12 =
[
ηIk 000

]
is a k × n matrix.

G13 =



−θ θ
−θ θ

. . . . . .
−θ θ

−ϕ ϕ
−ϕ ϕ

. . . . . .
−ϕ


is a square matrix of order n.

G14 =
[
ηIk eeek(k)θ(1− p) 000

]
is a matrix of order k × n.

G21 =

[
000 000

eeek+1(k + 1)ϕ 000

]
is a matrix of order k × n.

H =


H1 H2

H3 H2

. . . . . .
H3 H2

H3

 is a square matrix of order N(n+ k).

H1 =

[
H11 000
000 H12

]
; H2 =

[
H21 000
000 000

]
; H3 =

[
H11 000
000 000

]
.

H11 =
[
eeek(k)θp 000

]
is a square matrix of order k.

H12 =
[
eeen(n)ϕ 000

]
is a square matrix of order n.

H21 =
[
eeek(k)θ(1− p) 000

]
is a square matrix of order k.

The initial probability vector is βββ = eee1(N(n+ k)r).
Waiting time Wv of a customer, who joins the queue as the rth customer is the time until
absorption. Therefore expected waiting time of the particular customer is

Er
Wv

= βββ(−W )−1e.
Expected waiting time of a general customer = Σ∞

r=1xxxrE
r
Wv
.

12
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4.2. Case 2 - the server is in normal mode

To find the expected waiting time of a particular customer who joins as the rth customer
in the queue, we consider the Markov Processes Wn(t) = {(N(t),M(t), S(t)) : t ≥ 0}
where
N(t)- Rank of the customer in the queue at time t.
M(t)- Number of customers in the buffer at time t.
S(t)- Phase of the service at time t.
The state space of the Markov Process is
{r, r − 1, r − 2, · · · , 2, 1} × {0, 1, 2, 3, · · · , (N − 1)} × {1, 2, 3 · · · , n} ∪ {∆1}
where∆1 denote the absorbing state - begining of the preliminary service of the tagged cus-
tomer.
The infinitesimal generator is

Q2 =

[
W1 W 0

1

000 0

]
, where, W1 =


W11 000 000
000 G13 H12

. . . . . .
G13 H12

G13

, is a square matrix
of order N(n− k) + rn.

W 0
1 =



0
0
0
...
0
ϕ


is a [N(n− k) + rn]× 1 matrix.

T11 =



−ϕ ϕ
−ϕ ϕ

−ϕ ϕ
−ϕ ϕ

. . . . . .
−ϕ


is a square matrix of order N(n− k).

T12 =
[
eN(n−k)(N(n− k))ϕ 000

]
is a matrix of order N(n− k)× n.

W11 =

[
T11 T12

000 G13

]
is asquare matrix of order N(n− k) + n.

The initial probability vector is γγγ = eee1(N(n− k) + nr).
Expected waiting time of the tagged customer Er

Wn
= γγγ(−W1)

−1e.
Expected waiting time of a general customer=Σ∞

r=1xxxrE
r
Wn

.

13
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5. Additional Performance Measures
• Probability that the server is idle:

Pidle =
m∑
j=1

xxx000∗j +
N−1∑
h=0

m∑
j=1

xxx0h0∗j.

• Probability that the system is in vacation mode:

Pvacation =
∞∑
q=1

N−1∑
h=0

k∑
i=1

m∑
j=1

xxxqh0ij +
N−1∑
h=0

m∑
j=1

xxx0h0∗j +
m∑
j=1

xxx000∗j +
N−1∑
h=0

k∑
i=1

m∑
j=1

xxx0h0ij

• Probability that system is in normal mode:

Pnormal =
∞∑
q=1

N−1∑
h=0

n∑
i=1

m∑
j=1

xxxqh1ij

• Probability that no customers in the queue

P0 = xxx0eee.

• Probability that there are q customers in the queue:

Pq = xxxqeee.

• Expected number of customers in the queue:

ECQ =
∞∑
q=1

qxxxqeee

• Expected number of customers in the system:

ECS =
∞∑
q=1

(q + 1)xxxqeee

• Expected number of customers in the buffer:

ECB =
∞∑
q=0

N−1∑
h=0

n∑
i=1

m∑
j=1

hxxxqh1ij +
∞∑
q=0

N−1∑
h=0

k∑
i=1

m∑
j=1

hxxxqh0ij

• Rate of switching to normal mode

RN =
∞∑
q=0

N−1∑
h=0

k∑
i=1

m∑
j=1

xxxqh0ijη +
∞∑
q=0

n∑
i=1

m∑
j=1

xxxq(N−1)0ijkθ(1− p)

14
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6. Cost Function
To find optimal N, we construct a cost function as follows.

Let
CV – Cost per unit time when service is in vacation mode.
CN – Cost per unit time when service is in normal mode.
HCQ – Holding cost per customer in the queue.
CSN – Cost per unit time for switching to normal mode.
HCB – Holding cost per cusomer in buffer.

Then expected cost is,

EC = kθ × CV × Pvac + [kθ + (n− k)ϕ]× CN × Pnormal + ECQ×HCQ

+CSN ×RN +HCB × ECB.

We take HCQ = 4, CSN = 200, HCB = 5, CV = 8, CN = 10.

7. Numerical Results
For the arrival process of customers, we consider the following three sets of matrices for

D0 and D1

1. MAP with positive correlation (MPC):

D0 =

 −2.0151 2.0151 0
0 −2.2787 0
0 0 −59.8481

, D1 =

 0 0 0
2.1996 0 0.0791
2.0773 0 57.7708

.
2. MAP with negative correlation (MNC):

D0 =

 −2.0151 2.0151 0
0 −2.2787 0
0 0 −59.8481

, D1 =

 0 0 0
0.0791 0 2.1996
57.7708 0 2.0773

.
3. MAP with zero correlation (MZC):

D0 =

 −1 0 1
0 −1 0
0 0 −2.48

, D1 =

 0 0 0
0.95 0 0.05
0.18 0 2.3

.
The arrival process labelledMNC has correlated arrivals with the correlation between

two successive interarrival times given by -0.4559, the arrival process corresponding to the
one labelled MPA has correlated arrivals with the correlation between two successive in-
terarrival times given by 0.4559 and the arrival process labeled MZC has zero correlation
between two successive interarrival times. The arrival rate in all the above three cases is
λ = 2.011.

15
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7.1. MAP with positive correlation (MPC)

Table 1. Effect of θ: Fix n = 5, N = 4, k = 2,m = 3, ϕ = 12, η = 5, p = 0.1.
θ ECQ ECS ECB Pidle Pnormal Pvac RN EC

10 208.4606 210.2758 0.9200 0.0611 0.9292 0.0708 0.0491 1379.90
11 128.5954 130’3095 0.8747 0.0960 0.8896 0.1104 0.0729 1068.70
12 93.7787 95.4046 0.8343 0.1273 0.8547 0.1453 0.0917 938.3411
13 74.9243 76.4755 0.7996 0.1544 0.8248 0.1752 0.1059 872.7115
14 63.2334 64.7213 0.7696 0.1779 0.7993 0.2007 0.1166 836.6233
15 55.3068 56.7406 0.7437 0.1984 0.7775 0.2225 0.1245 816.3720
16 49.5875 50.9746 0.7211 0.2164 0.7585 0.2415 0.1303 805.6202
17 45.2690 46.6155 0.7012 0.2322 0.7419 0.2581 0.1346 801.0482
18 41.8938 43.2047 0.6836 0.2464 0.7274 0.2726 0.1377 800.7470
19 39.1837 40.4630 0.6679 0.2590 0.7144 0.2856 0.1398 803.5381
20 36.9599 38.2111 0.6538 0.2704 0.7029 0.2971 0.1413 808.6515
21 35.1023 36.3283 0.6411 0.2808 0.6926 0.3074 0.1422 815.5612
22 33.5274 34.7306 0.6296 0.2902 0.6833 0.3167 0.1427 823.8940
23 32.1752 33.3578 0.6191 0.2988 0.6748 0.3252 0.1428 833.3772
24 31.0015 32.1654 0.6095 0.3067 0.6671 0.3329 0.1427 843.8059

Table 2. Effect of ϕ: Fix n = 5, N = 4, k = 2,m = 3, θ = 10, η = 5, p = 0.1.
ϕ ECQ ECS ECB Pidle Pnormal Pvac RN EC

12 208.4606 210.2758 0.9200 0.0611 0.9292 0.0708 0.0491 1379.90
13 125.5585 127.2693 0.8747 0.0979 0.8866 0.1134 0.0782 1063.5
14 89.7402 91.3587 0.8347 0.1317 0.8475 0.1525 0.1047 933.9435
15 70.4792 72.0192 0.8006 0.1617 0.8130 0.1870 0.1279 869.8836
16 58.5898 60.0631 0.7715 0.1880 0.7827 0.2173 0.1481 834.8472
17 50.5517 51.9679 0.7466 0.2112 0.7559 0.2441 0.1659 814.8786
18 44.7629 46.1296 0.7251 0.2319 0.7322 0.2678 0.1815 803.6424
19 40.3978 41.7214 0.7063 0.2504 0.7110 0.2890 0.1954 797.8854
20 36.9896 38.2752 0.6897 0.2670 0.6919 0.3081 0.2078 795.7771
21 34.2551 35.5071 0.6750 0.2820 0.6747 0.3253 0.2189 796.2129
22 32.0127 33.2348 0.6619 0.2957 0.6590 0.3410 0.2290 798.4886
23 30.1406 31.3358 0.6502 0.3081 0.6448 0.3552 0.2381 802.1354
24 28.5542 29.7251 0.6396 0.3195 0.6317 0.3683 0.2464 806.8294
25 27.1926 28.3416 0.6300 0.3300 0.6198 0.3802 0.2540 812.3401
26 26.0114 27.1404 0.6212 0.3396 0.6087 0.3913 0.2610 818.4992

Tables 1 to 4 contain the effect of different parameters on various performance measures
and the cost function when the arrival process of the customers is MPC. Table 1 indicates
the effect of θ on various performance measures and the cost function. When the values of
θ(service rate of the first part of the service) increase, the values of ECS, ECQ, and ECB
decrease. It is because the expected service time in the first stage of the service decreases.
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Table 3. Effect of η: Fix n = 5, N = 4, k = 2,m = 3, θ = 14, ϕ = 15, p = 0.1.
η ECQ ECS ECB Pidle Pnormal Pvac RN EC

5 34.2249 35.4547 0.6529 0.2838 0.6806 0.3194 0.1831 745.1509
6 34.2239 35.4505 0.6500 0.2833 0.6836 0.3164 0.2012 750.3051
7 34.2239 35.4483 0.6480 0.2830 0.6863 0.3137 0.2171 754.8219
8 34.2243 35.4472 0.6466 0.2827 0.6886 0.3114 0.2310 758.7844
9 34.2248 35.4466 0.6455 0.2824 0.6907 0.3093 0.2433 762.2725
10 34.2255 35.4464 0.6447 0.2822 0.6925 0.3075 0.2541 765.3560
11 34.2261 35.4464 0.6440 0.2819 0.6941 0.3059 0.2637 768.0940
12 34.2267 35.4465 0.6435 0.2818 0.6956 0.3044 0.2722 770.5358
13 34.2273 35.4466 0.6431 0.2816 0.6969 0.3031 0.2798 772.7227
14 34.2278 35.4468 0.6428 0.2814 0.6981 0.3019 0.2866 774.6892
15 34.2283 35.4471 0.6425 0.2813 0.6992 0.3008 0.2928 776.4643
16 34.2288 35.4473 0.6423 0.2812 0.7002 0.2998 0.2983 778.0722
17 34.2292 35.4475 0.6421 0.2811 0.7011 0.2989 0.3033 779.5336
18 34.2296 35.4477 0.6420 0.2810 0.7019 0.2981 0.3079 780.8662
19 34.2299 35.4479 0.6418 0.2809 0.7027 0.2973 0.3120 782.0849

Table 4. Effect of p: Fix n = 5, N = 4, k = 2,m = 3, θ = 14, η = 5, ϕ = 15.
p ECQ ECS ECB Pidle Pnormal Pvac RN EC

0.1 34.2249 35.4547 0.6529 0.2838 0.6806 0.3194 0.1831 745.1509
0.15 34.2059 35.4341 0.6518 0.2859 0.6782 0.3218 0.1837 743.9812
0.2 34.1866 35.4130 0.6507 0.2881 0.6758 0.3242 0.1843 742.8013
0.25 34.1669 35.3916 0.6496 0.2903 0.6733 0.3267 0.1849 741.6114
0.3 34.1468 35.3697 0.6485 0.2926 0.6709 0.3291 0.1856 740.4118
0.35 34.1263 35.3475 0.6474 0.2948 0.6684 0.3316 0.1863 739.2029
0.4 34.1056 35.3249 0.6462 0.2971 0.6659 0.3341 0.1870 737.9852
0.45 34.0845 35.3020 0.6450 0.2994 0.6633 0.3367 0.1878 736.7592
0.5 34.0631 35.2787 0.6438 0.3018 0.6607 0.3393 0.1886 735.5254
0.55 34.0415 35.2552 0.6426 0.3042 0.6581 0.3419 0.1895 734.2845
0.6 34.0197 35.2315 0.6413 0.3066 0.6555 0.3445 0.1904 733.0370
0.65 33.9977 35.2075 0.6400 0.3090 0.6528 0.3472 0.1913 731.7833
0.7 33.9755 35.1834 0.6387 0.3115 0.6501 0.3499 0.1923 730.5237

The value of theEC decreases to reach the minimum value at θ = 18, and after that, the val-
ues increase. The minimum value of the cost function, in this case, is 800.7470. Pvac, Pidle,
and RN increase when the θ values increase. But Pnor decreases when θ increases.

Table 2 indicates the effect of ϕ on various performance measures and the cost function.
When the values of ϕ(service rate of the second part of the service) increase, the values
of ECS, ECQ, and ECB decrease. It is because the expected service time in the main
service decreases. The value of the EC decreases to reach the minimum value at ϕ = 20,
and then the value increases. The minimum cost, in this case, is 795.7771. Pvac, Pidle, and
RN increase when the ϕ value increases since the expected service rate in main services
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increases. But Pnor decreases when ϕ increases.
Table 3 indicates the effect of η on various performance measures and the cost function.

As η increases, the server turns to normal mode quickly. So the values of Pvac decrease.
When the values of η increase, there are only very small changes in the values of ECS,
ECQ, ECB, and Pidle. The value of theEC increases when the value η increases. Pnor and
RN also increase, since the vacation realizes speedily when η increases.

Table 4 indicates the effect of p on various performance measures and the cost function.
When the p value increases, the number of customers who leave the system after availing of
the first part of the service increases. So the values ofECB, EC and, Pnormal decrease. But
the values of Pidle, Pvac, and RN decrease when p increases.

7.2. MAP with negative correlation (MNC)

Table 5. Effect of θ: Fix n = 5, N = 4, k = 2,m = 3, ϕ = 12, η = 5, p = 0.1.
θ ECQ ECS ECB Pidle Pnormal Pvac RN EC

10 10.1840 11.9983 0.9283 0.0559 0.9299 0.0701 0.0742 592.1588
11 5.6622 7.3499 0.8772 0.0953 0.8814 0.1186 0.1222 583.5764
12 4.0358 5.6198 0.8338 0.1282 0.8417 0.1583 0.1592 587.5558
13 3.2048 4.7022 0.7964 0.1562 0.8086 0.1914 0.1879 595.5141
14 2.7029 4.1268 0.7637 0.1803 0.7807 0.2193 0.2103 605.4496
15 2.3682 3.7286 0.7349 0.2013 0.7569 0.2431 0.2279 616.6098
16 2.1295 3.4347 0.7092 0.2196 0.7363 0.2637 0.2418 628.6294
17 1.9511 3.2076 0.6862 0.2359 0.7185 0.2815 0.2527 641.2997
18 1.8128 3.0260 0.6654 0.2504 0.7029 0.2971 0.2613 654.4880
19 1.7025 2.8771 0.6465 0.2635 0.6891 0.3109 0.2680 668.1027
20 1.6126 2.7524 0.6293 0.2752 0.6769 0.3231 0.2732 682.0770
21 1.5380 2.6462 0.6135 0.2859 0.6660 0.3340 0.2771 696.3600
22 1.4750 2.5546 0.5989 0.2902 0.6562 0.3438 0.2801 710.9118
23 1.4212 2.4746 0.5855 0.3044 0.6474 0.3526 0.2822 725.7001
24 1.3747 2.4040 0.5731 0.3126 0.6395 0.3605 0.2837 740.6984

Tables 5 to 8 contain the effect of different parameters on various performance measures
and the cost function when the arrival process of the customers is MNC. Table 5 indicates
the effect of θ on various performance measures and the cost function. When the values of
θ(service rate of the first part of the service) increase, the values of ECS, ECQ, and ECB
decrease. It is because the expected service time in the first stage of the service decreases.
The value of the EC decreases to reach the minimum value at θ = 11, and after that, the
values increase. In this case, the cost function’s minimum value is 583.5764. Pvac, Pidle, and
RN increase when the θ values increase. But Pnor decreases when θ increases.

Table 6 indicates the effect of ϕ on various performance measures and the cost function.
When the values of ϕ(service rate of the second part of the service) increase, the values of
ECS,ECQ, andECB decrease. It is because the expected service time in the second part of
the service decreases. The value of theEC decreases to reach the minimum value at ϕ = 13,
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Table 6. Effect of ϕ: Fix n = 5, N = 4, k = 2,m = 3,θ = 10, η = 5, p = 0.1.
ϕ ECQ ECS ECB Pidle Pnormal Pvac RN EC

12 10.1840 11.9983 0.9283 0.0559 0.9299 0.0701 0.0742 592.1588
13 5.5247 7.2121 0.8790 0.0971 0.8783 0.1217 0.1280 589.7377
14 3.8671 5.4526 0.8393 0.1323 0.8343 0.1657 0.1732 598.0930
15 3.0242 4.5264 0.8068 0.1628 0.7965 0.2035 0.2116 608.7482
16 2.5167 3.9497 0.7796 0.1893 0.7636 0.2364 0.2447 619.9843
17 2.1788 3.5537 0.7567 0.2127 0.7347 0.2653 0.2735 631.2870
18 1.9384 3.2636 0.7371 0.2334 0.7091 0.2909 0.2987 642.4799
19 1.7588 3.0413 0.7202 0.2519 0.6864 0.3136 0.3210 653.5043
20 1.6198 2.8652 0.7055 0.2685 0.6659 0.3341 0.3408 664.3472
21 1.5090 2.7219 0.6926 0.2835 0.6475 0.3525 0.3585 675.0140
22 1.4187 2.6029 0.6812 0.2971 0.6308 0.3692 0.3744 685.5173
23 1.3437 2.5024 0.6710 0.3096 0.6156 0.3844 0.3888 695.8718
24 1.2805 2.4164 0.6619 0.3210 0.6017 0.3983 0.4019 706.0924
25 1.2264 2.3419 0.6537 0.3314 0.5889 0.4111 0.4138 716.1929
26 1.1797 2.2766 0.6463 0.3411 0.5772 0.4228 0.4247 726.1859

Table 7. Effect of η: Fix n = 5, N = 4, k = 2,m = 3, θ = 14, ϕ = 15, p = 0.1.
η ECQ ECS ECB Pidle Pnormal Pvac RN EC

5 1.4859 2.6407 0.6513 0.2868 0.6525 0.3475 0.3270 628.7896
6 1.4838 2.6343 0.6441 0.2858 0.6599 0.3401 0.3396 634.9674
7 1.4830 2.6315 0.6393 0.2851 0.6659 0.3341 0.3514 640.3678
8 1.4829 2.6308 0.6361 0.2844 0.6710 0.3290 0.3617 644.9881
9 1.4831 2.6311 0.0.6339 0.2839 0.6753 0.3247 0.3705 648.9134
10 1.4835 2.6320 0.6323 0.2834 0.6790 0.3210 0.3779 652.2472
11 1.4840 2.6333 0.6312 0.2831 0.6821 0.3179 0.3842 655.0871
12 1.4845 2.6347 0.6304 0.2827 0.6849 0.3151 0.3894 657.5175
13 1.4850 2.6361 0.6297 0.2825 0.6873 0.3127 0.3937 659.6086
14 1.4855 2.6376 0.6293 0.2822 0.6894 0.3106 0.3974 661.4182
15 1.4859 2.6389 0.6289 0.2820 0.6913 0.3087 0.4005 662.9931
16 1.4864 2.6403 0.6286 0.2818 0.6930 0.3070 0.4031 664.3715
17 1.4868 2.6415 0.6284 0.2816 0.6945 0.3055 0.4053 665.5846
18 1.4871 2.6427 0.6283 0.2815 0.6959 0.3041 0.4072 666.6576
19 1.4875 2.6438 0.6282 0.2814 0.6971 0.3029 0.4089 667.6117

and then the value increases. The minimum cost, in this case, is 589.7377. Pvac, Pidle, and
RN increase when the ϕ value increases since the expected service rate in main services
increases. But Pnor decreases when ϕ increases.

Table 7 indicates the effect of η on various performance measures and the cost function.
As η increases, the server turns to normal mode quickly. So the values of Pvac decrease.
When the values of the η increase, there are only very small changes in the values of ECS,
ECQ, ECB, and Pidle. The value of theEC increases when the value η increases. Pnor and
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Table 8. Effect of p: Fix n = 5, N = 4, k = 2,m = 3, θ = 14, η = 5, ϕ = 15.
p ECQ ECS ECB Pidle Pnormal Pvac RN EC

0.1 1.4859 2.6407 0.6513 0.2868 0.6525 0.3475 0.3270 628.7896
0.15 1.4747 2.6218 0.6463 0.2905 0.6481 0.3519 0.3265 626.3916
0.2 1.4633 2.6026 0.6413 0.2943 0.6436 0.3564 0.3265 624.0468
0.25 1.4518 2.5832 0.6361 0.2982 0.6391 0.3609 0.3270 621.7476
0.3 1.4402 2.5636 0.6309 0.3022 0.6344 0.3656 0.3279 619.4874
0.35 1.4285 2.5437 0.6255 0.3062 0.6296 0.3704 0.3293 617.2598
0.4 1.4167 2.5236 0.6201 0.3104 0.6247 0.3753 0.3310 615.0586
0.45 1.4048 2.5034 0.6146 0.3147 0.6197 0.3803 0.3331 612.8778
0.5 1.3927 2.4829 0.6091 0.3190 0.6146 0.3854 0.3356 610.7114
0.55 1.3806 2.4623 0.6035 0.3235 0.6094 0.3906 0.3384 608.532
0.6 1.3684 2.4415 0.5978 0.3280 0.6040 0.3960 0.3415 606.3968
0.65 1.3562 2.4205 0.5921 0.3327 0.5986 0.4014 0.3449 604.2355
0.7 1.3438 2.3995 0.5863 0.3374 0.5930 0.4070 0.3485 602.0623

RN also increase, since the vacation realizes speedily when η increases.
Table 8 indicates the effect of p on various performance measures and the cost function.

When the p value increases, the number of customers who leave the system after availing of
the first part of the service increases. So the values ofECB, EC, and Pnormal decrease. But
the values of Pidle, Pvac, and RN decrease.

7.3. MAP with zero correlation (MZC)

Table 9. Effect of θ: Fix n = 5, N = 4, k = 2,m = 3, ϕ = 12, η = 5, p = 0.1.
θ ECQ ECS ECB Pidle Pnormal Pvac RN EC

10 12.6023 14.4141 0.9271 0.0554 0.9325 0.0675 0.0620 600.4481
11 6.8200 8.5020 0.8750 0.0947 0.8854 0.1146 0.1029 585.9489
12 4.7560 6.3319 0.8309 0.1275 0.8467 0.1533 0.1344 587.5102
13 3.7096 5.1971 0.7931 0.1554 0.8143 0.1857 0.1588 594.0701
14 3.0826 4.4955 0.7603 0.1793 0.7870 0.2130 0.1777 603.0575
15 2.6676 4.0166 0.7316 0.2002 0.7636 0.2364 0.1923 613.5131
16 2.3740 3.6679 0.7062 0.2185 0.7435 0.2565 0.2036 624.9775
17 2.1561 3.4018 0.6835 0.2346 0.7259 0.2741 0.2122 637.1930
18 1.9884 3.1917 0.6632 0.2490 0.7106 0.2894 0.2188 649.9982
19 1.8556 3.0213 0.6449 0.2620 0.6970 0.3030 0.2236 663.2840
20 1.7480 2.8801 0.6284 0.2736 0.6850 0.3150 0.2272 676.9720
21 1.6591 2.7611 0.6132 0.2842 0.6743 0.3257 0.2296 691.0033
22 1.5846 2.6594 0.5994 0.2938 0.6646 0.3354 0.2312 705.3321
23 1.5212 2.5714 0.5868 0.3026 0.6560 0.3440 0.2321 719.9220
24 1.4667 2.4945 0.5751 0.3106 0.6481 0.3519 0.2324 734.7429
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Table 10. Effect of ϕ: Fix n = 5, N = 4, k = 2,m = 3, θ = 10, η = 5, p = 0.1.
ϕ ECQ ECS ECB Pidle Pnormal Pvac RN EC

12 12.6023 14.4141 0.9271 0.0554 0.9325 0.0675 0.0620 600.4481
13 6.6390 8.3177 0.8759 0.0966 0.8820 0.1180 0.1097 592.1543
14 4.5339 6.1039 0.8341 0.1318 0.8387 0.1613 0.1515 598.4154
15 3.4721 4.9518 0.7995 0.1623 0.8011 0.1989 0.1884 608.1076
16 2.8382 4.2422 0.7705 0.1888 0.7682 0.2318 0.2212 618.8830
17 2.4200 3.7596 0.7459 0.2122 0.7391 0.2609 0.2504 629.9858
18 2.1250 3.4094 0.7249 0.2330 0.7132 0.2868 0.2767 641.1229
19 1.9066 3.1432 0.7067 0.2515 0.6901 0.3099 0.3003 652.1720
20 1.7389 2.9338 0.6908 0.2682 0.6692 0.3308 0.3218 663.0823
21 1.6064 2.7647 0.6769 0.2832 0.6504 0.3496 0.3413 673.8361
22 1.4993 2.6252 0.6646 0.2969 0.6333 0.3667 0.3591 684.4311
23 1.4110 2.5081 0.6537 0.3093 0.6176 0.3824 0.3755 694.8728
24 1.3370 2.4083 0.6439 0.3207 0.6033 0.3967 0.3905 705.1699
25 1.2742 2.3223 0.6351 0.3312 0.5901 0.4099 0.4044 715.3324
26 1.2202 2.2474 0.6272 0.3409 0.5779 0.4221 0.4173 725.3706

Table 11. Effect of η: Fix n = 5, N = 4, k = 2,m = 3, θ = 14, ϕ = 15, p = 0.1.
η ECQ ECS ECB Pidle Pnormal Pvac RN EC

5 1.5893 2.7084 0.6406 0.2860 0.6586 0.3414 0.2922 625.2544
6 1.5841 2.6937 0.6313 0.2852 0.6644 0.3356 0.3105 631.8012
7 1.5808 2.6840 0.6248 0.2846 0.6693 0.3307 0.3279 637.6762
8 1.5786 2.6674 0.6202 0.2841 0.6743 0.3266 0.3437 642.8655
9 1.5772 2.6727 0.6167 0.2836 0.6768 0.3232 0.3578 647.4312
10 1.5761 2.6693 0.6141 0.2832 0.6798 0.3202 0.3704 651.4529
11 1.5754 2.6667 0.6121 0.2829 0.6825 0.3175 0.3815 655.0075
12 1.5749 2.6648 0.6105 0.2826 0.6848 0.3152 0.3915 658.1629
13 1.5746 2.6634 0.6092 0.2824 0.6869 0.3131 0.4004 660.9767
14 1.5743 2.6622 0.6082 0.2821 0.6887 0.3113 0.4084 663.4974
15 1.5741 2.6614 0.6073 0.2819 0.6904 0.3096 0.4155 665.7654
16 1.5740 2.6607 0.6066 0.2818 0.6919 0.3081 0.4220 667.8145
17 1.5739 2.6601 0.6060 0.2816 0.6932 0.3068 0.4279 669.6731
18 1.5738 2.6597 0.6055 0.2815 0.6945 0.3055 0.4332 671.3649
19 1.5738 2.6593 0.6050 0.2813 0.6956 0.3044 0.4381 672.9103

Tables 9 to 12 contain the effect of different parameters on various performance mea-
sures and the cost function when the arrival process of the customers is MZC. Table 9 in-
dicates the effect of θ on various performance measures and the cost function. When the
values of θ(service rate of the first part of the service) increase, the values of ECS, ECQ,
and ECB decrease. It is because the expected service time in the first stage of the service
decreases. The value of the EC decreases to reach the minimum value at θ = 11, and after
that, the values increase. The minimum value of the cost function, in this case, is 585.9489.
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Table 12. Effect of p: Fix n = 5, N = 4, k = 2,m = 3, θ = 14, η = 5, ϕ = 15.
p ECQ ECS ECB Pidle Pnormal Pvac RN EC

0.1 1.5893 2.7084 0.6406 0.2860 0.6586 0.3414 0.2922 625.2544
0.15 1.5785 2.6901 0.6363 0.2894 0.6544 0.3456 0.2938 623.3943
0.2 1.5675 2.6715 0.6319 0.2929 0.6501 0.3499 0.2958 621.5304
0.25 1.5563 2.6526 0.6274 0.2966 0.6457 0.3543 0.2980 619.6617
0.3 1.5449 2.6333 0.6228 0.3003 0.6411 0.3589 0.3005 617.7870
0.35 1.5333 2.6137 0.6181 0.3041 0.6364 0.3636 0.3033 615.9045
0.4 1.5215 2.5937 0.6133 0.3081 0.6316 0.3684 0.3064 614.0122
0.45 1.5095 2.5734 0.6085 0.3122 0.6266 0.3734 0.3099 612.1075
0.5 1.4973 2.5527 0.6035 0.3164 0.6215 0.3785 0.3136 610.1871
0.55 1.4849 2.5316 0.5985 0.3207 0.6162 0.3838 0.3177 608.2472
0.6 1.4723 2.5102 0.5934 0.3251 0.6107 0.3893 0.3220 606.2834
0.65 1.4594 2.4884 0.5882 0.3297 0.6051 0.3949 0.3267 604.2906
0.7 1.4463 2.4661 0.5829 0.3345 0.5993 0.4007 0.3317 602.2627

Pvac, Pidle, and RN increase when the θ values increase. But Pnor decreases when the θ
increases.

Table 10 indicates the effect of ϕ on various performance measures and the cost function.
When the values of ϕ(service rate of the second part of the service) increase, the values of
ECS, ECQ, andECB decrease. It is because the expected service time in the main service
decreases. The value of theEC decreases to reach the minimum value at ϕ = 13 and then the
value increases. The minimum cost, in this case, is 592.1543. Pvac, Pidle, and RN increase
when the ϕ value increases since the expected service rate in main services increases. But
Pnor decreases when ϕ increases.

Table 11 indicates the effect of η on various performance measures and the cost function.
As η increases, the server turns to normal mode quickly. So the values of Pvac decrease.
When the values of the η increase, there are only very small changes in the values of ECS,
ECQ, ECB, and Pidle. The value of theEC increases when the value η increases. Pnor and
RN also increase, since the vacation realizes speedily when η increases.

Table 12 indicates the effect of p on various performance measures and the cost function.
When the p value increases, the number of customers who leave the system after availing of
the first part of the service increases. So the values ofECB, EC, and Pnormal decrease. But
the values of Pidle, Pvac, and RN decrease.

8. Optimal N
To find optimal N, we consider the following cost function.

EC = kθ × CV × Pvac + [kθ + (n− k)ϕ]× CN × Pnormal

+ECQ×HCQ+ CSN ×RN +HCB × ECB.
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8.1. MAP with positive correlation (MPC)

Table 13. Fix n = 5, k = 2,m = 3, θ = 14, ϕ = 15, η = 5, p = 0.1

N ECQ ECB Pnor Pvac RN EC
2 34.2296 0.6477 0.6811 0.3189 0.2495 758.6822
3 34.2276 0.6510 0.6807 0.3193 0.1906 746.7418
4 34.2249 0.6529 0.6806 0.3194 0.1831 745.1509
5 34.2231 0.6541 0.6805 0.3195 0.1811 744.6837
6 34.2222 0.6549 0.6804 0.3196 0.1801 744.4759
7 34.2216 0.6553 0.6804 0.3196 0.1797 744.3742
8 34.2213 0.6556 0.6804 0.3196 0.1795 744.3236
9 34.2211 0.6557 0.6804 0.3196 0.1794 744.2984
10 34.2211 0.6558 0.6804 0.3196 0.1793 744.2858
11 34.2210 0.6558 0.6804 0.3196 0.1793 744.2795
12 34.2210 0.6558 0.6804 0.3196 0.1793 744.2764
13 34.2210 0.6558 0.6804 0.3196 0.1793 744.2748
14 34.2210 0.6558 0.6804 0.3196 0.1793 744.2741
15 34.2210 0.6558 0.6804 0.3196 0.1793 744.2737
16 34.2210 0.6558 0.6804 0.3196 0.1793 744.2735
17 34.2210 0.6558 0.6804 0.3196 0.1793 744.2734
18 34.2210 0.6558 0.6804 0.3196 0.1793 744.2734
19 34.2210 0.6558 0.6804 0.3196 0.1793 744.2734
20 34.2210 0.6558 0.6804 0.3196 0.1793 744.2734

From Table 13, we get the expected cost corresponding to different values of N when
the arrival process is MPC. We fix n = 5, k = 2,m = 3, θ = 14, ϕ = 15, η = 5 . In this
case, the minimum cost is 744.2734, obtained at N = 17. Therefore the optimal value of N
is 17. After that cost remains constant because the vacation realization will happen.

8.2. MAP with negative correlation (MNC)

From Table 14, we get the expected cost corresponding to different values of N when
the arrival process is MNC. We fix n = 5, k = 2,m = 3, θ = 14, ϕ = 15, η = 5 . In this
case, the minimum cost is 601.9418, obtained at N = 8. Therefore the optimal value of N
is eight; after that cost remains constant because the vacation realization will happen.

8.3. MAP with zero correlation (MZC)

From Table 15, we get the expected cost corresponding to different values of N when
the arrival process is MZC. We fix n = 5, k = 2,m = 3, θ = 14, ϕ = 15, η = 5 . In this
case, the minimum cost is 622.2760, obtained at N = 14. Therefore the optimal value of N
is 14. After that cost remains constant because the vacation realization will happen.
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Table 14. Fix n = 5, k = 2,m = 3, θ = 14, ϕ = 15, η = 5, p = 0.1

N ECQ ECB Pnor Pvac RN EC
2 1.3432 0.5836 0.5936 0.4064 0.4195 616.5412
3 1.3440 0.5862 0.5931 0.4069 0.3528 602.9791
4 1.3438 0.5863 0.5930 0.4070 0.3485 602.0623
5 1.3438 0.5863 0.5930 0.4070 0.3479 601.9529
6 1.3438 0.5863 0.5930 0.4070 0.3479 601.9430
7 1.3438 0.5863 0.5930 0.4070 0.3479 601.9419
8 1.3438 0.5863 0.5930 0.4070 0.3479 601.9418
9 1.3438 0.5863 0.5930 0.4070 0.3479 601.9418
10 1.3438 0.5863 0.5930 0.4070 0.3479 601.9418
11 1.3438 0.5863 0.5930 0.4070 0.3479 601.9418
12 1.3438 0.5863 0.5930 0.4070 0.3479 601.9418
15 1.3438 0.5863 0.5930 0.4070 0.3479 601.9418
20 1.3438 0.5863 0.5930 0.4070 0.3479 601.9418

Table 15. Fix n = 5, k = 2,m = 3, θ = 14, ϕ = 15, η = 5, p = 0.1

N ECQ ECB Pnor Pvac RN EC
2 1.5805 0.6246 0.6604 0.3396 0.5186 671.3343
3 1.5872 0.6363 0.6590 0.3410 0.3352 634.0300
4 1.5893 0.6406 0.6586 0.3414 0.2922 625.2544
5 1.5899 0.6421 0.6585 0.3415 0.2814 623.0515
6 1.5901 0.6426 0.6585 0.3415 0.2786 622.4813
7 1.5902 0.6428 0.6585 0.3415 0.2778 622.3310
8 1.5902 0.6428 0.6585 0.3419 0.2776 622.2909
9 1.5902 0.6428 0.6585 0.3419 0.2776 622.2801
10 1.5902 0.6428 0.6585 0.3419 0.2776 622.2771
11 1.5902 0.6428 0.6585 0.3419 0.2776 622.2763
12 1.5902 0.6428 0.6585 0.3419 0.2776 622.2761
13 1.5902 0.6428 0.6585 0.3419 0.2776 622.2761
14 1.5902 0.6428 0.6585 0.3419 0.2776 622.2760
15 1.5902 0.6428 0.6585 0.3419 0.2776 622.2760
16 1.5902 0.6428 0.6585 0.3419 0.2776 622.2760
17 1.5902 0.6428 0.6585 0.3419 0.2776 622.2760
18 1.5902 0.6428 0.6585 0.3419 0.2776 622.2760
19 1.5902 0.6428 0.6585 0.3419 0.2776 622.2760
20 1.5902 0.6428 0.6585 0.3419 0.2776 622.2760
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Figure. 1. Effect of θ, ϕ, η and p on Expected Cost

Figure. 2. Effect of N on Expected Cost

9. Conclusion
In this paper, we considered aMAP/Ek/1 queue with working vacation andN -Policy.

During the working vacation, the server provides only the preliminary service. After availing
of the preliminary service, a customer leaves the system with probability p and those who

25



© Sindhu, Krishnamoorthy

require themain service join a buffer of finite capacityN with complementary probability 1−
p. We analysed this model by using thematrix-analytic method. Several system performance
characteristics were computed. Also, we constructed a cost function to find optimal N .
Finally, we performed some numerical experiments to evaluate some performance measures
and found optimal cost function values. We obtained the optimal values ofN using the cost
function for the Markovian arrival process’s positive, zero and negative correlation values.
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