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Abstract: We consider a V -structured queueing system with two classes of customers: class
1 customers cannot abandon but have a waiting-time deadline while class 2 customers may
abandon. The objective is to minimize the number of abandonments of class 2 customers
while meeting the deadline for class 1 customers. We consider the problem in an asymptotic
framework, and prove that under the heavy traffic regime, the threshold policy that gives
priority to class 1 customers if the age of the head-of-the-line class 1 customer exceeds a
threshold is asymptotically optimal.
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1. Introduction
The Internet has brought consumers increased access to information to make purchase

decisions online. The rapid growth of online transactions in service industries raises new
service mode. Many traditional service providers across different categories have offered
their customers the “buy-online, pick-up-in-store” (BOPS) option [see 10, 11, and the refer-
ences therein]. According to Retail Systems Research, as of June 2013, 64% of retailers have
implemented BOPS [18]. To make the BOPS option attractive to customers, most service
providers announce a deadline commitment after which the product is ready for pick-up.

For example, a customer can place an order online (named online customers) and pick
up the food in a restaurant later. The restaurant promises that the food will be ready for pick-
up 30 minutes later. Online customers are not sensitive to the virtual waiting time, but the
deadline commitment. They expect the food to be prepared and packed before the deadline
when they arrive at the restaurant and can take it away immediately. Traditional customers
(named offline customers) may still prefer walking into the restaurant and having food inside.
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Figure 1. A V -queueing model

They are delay sensitive because they have to wait in queue. Customer with limited patience
will abandon the queue if his patience ran out.

The goal of the service provider is to minimize the number of abandoned offline cus-
tomers and guarantee the deadline commitment for online orders. The control decision faced
by the system manager is the routing of the jobs: should the agent fulfill an online order or
serve an offline customer after each service completion.

To tackle this problem, we model the system as a queueing model with two classes of
customers. See Figure 1 for illustration. Since the waiting time is stochastic, the problem
is not feasible for exact analysis. Therefore, we resort to heavy traffic approximation which
has been extensively used in call centers. We propose a threshold policy and prove that the
policy is asymptotically optimal in heavy traffic.

Our motivation is related to service systems with both online and offline demands, espe-
cially on “buy online and pick up offline”. [1] provide a comprehensive review on retailers
with multiple channels. They address supply chain management issues and corresponding
quantitative models specific to internet fulfillment in a multi-channel environment. [13] in-
vestigate airline ticket sales in both online and offline channels. Service systems can improve
their performance substantially by offering multiple channels of service and hence manag-
ing the service for multiple channels becomes a critical operation. [9] analyze empirically
the impact of implementing a BOPS project and discuss the integration of online and offline
channels in retail. Different from their works, we consider a service provider rather than
retailers. Retailers sell products and the inventory issue is relevant, while we focus on the
service process.
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Our model is related to queues with waiting deadlines and customer abandonments.
There are several queueing models considering either service deadline or customer aban-
donments. For example, [14] study a multiclass queue with service deadline, and apply
the queueing model to patient flow control in emergency departments. [12] study an N -
queueing model with two classes of customers with possible abandonments. However, few
works consider the trade-off between deadline and abandonment as we did in our paper.

Our queueing model is also related to queueing models with two types of customers
where one type customers form a physical queue, while the other type customers form a
virtual queue. For example in [15], a service provider offers customers the choice of ei-
ther waiting in a line or going around and returning at a determined future time. But some
customers with the later choice may not return for service at their appointed time. The au-
thors discuss how to allocate service capacity between the two lines. Different from [15],
we consider customers’ abandonment in the physical queue ranter than the virtual queue. In
our setting, the online customers have paid first and will pick up offline, they are unlikely
to abandon. Moreover, [15] considers a static service allocation rule while our model con-
siders dynamic service rule. Another related model is call center with call-back option [see
2, 3]. They consider a call center with two channels, one for real-time telephone service, and
another for a postponed call-back service offered with a guarantee on the maximum delay
until a reply is received. Different from their works, our model explicitly takes customer
abandonments into consideration.

Our contributions are twofold: practically, we propose a queueing model to analyze
service processes with both online and offline demand and try to balance between deadline
commitment and customer abandonment; theoretically, we derive the asymptotic pathwise
optimality of a threshold policy for the above queueing system. Note that this pathwise
optimality is generally not true for systems with customer abandonment. As a result, we
believe the pathwise optimality is itself interesting.

The remainder of this paper is organized as follows. Section 2 describes the queueing
model and its heavy traffic framework. Section 3 proposes a threshold policy, and proves its
asymptotical optimality. In Section 4, we test the proposed policy by numerical examples.
Section 5 concludes the paper.

2. Model Formulation
2.1. Basic model

Consider a V -queueing model with a single server and two classes of customers. For
k = 1, 2, class k customers arrive according to a renewal process Ak = {Ak(t), t ≥ 0}, and
are served based on the FCFS principle. The renewal process Sk = {Sk(t), t ≥ 0} represents
the number of class k customers that can be served if the server works continuously and
exclusively on class k customers in [0, t]. To be specific, for k = 1, 2,
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Ak(t) = max

{
n ∈ N :

n∑
i=1

uk(i) ≤ λkt

}
,

Sk(t) = max

{
n ∈ N :

n∑
i=1

vk(i) ≤ µkt

}
,

where {uk(i), i∈N} are strictly positive i.i.d. random variables with mean 1 and variance
α2
k ∈ [0,∞), and {vk(i), i ∈ N} are strictly positive i.i.d. random variables with mean 1 and

variance β2
k ∈ [0,∞), λk and µk are the arrival rate and service rate of class k customers,

respectively.
We assume that class 1 customers cannot abandon the system, while each class 2 cus-

tomer will independently abandon the system if her/his waiting time exceeds her/his patience
time, which is exponentially distributed with mean θ−1.

A control policy is defined as π = {Tk, k = 1, 2}, where Tk(t) is the cumulative amount
of service time devoted to serving class k customers till time t. Then, I(t) = t−T1(t)−T2(t)
is the cumulative idle time of the server till time t. The number of class k customers at time
t, denoted by Qk(t), satisfies the following equations:

Q1(t) = Q1(0) + A1(t)− S1(T1(t)) ≥ 0, (1)
Q2(t) = Q2(0) + A2(t)− S2(T2(t))−R(t) ≥ 0, (2)

where
R(t) = N

(
θ

∫ t

0

Q2(s)ds

)
(3)

is the cumulative number of class 2 customers who have abandoned till time t,N is a unit-rate
Poisson process.
Remark 1. Here we take the same formulation of the abandonment processR as that in [19],
which allows the customers in service to abandon, for convenience of notation. However,
our results still hold when the customer in service is not allowed to abandon, i.e.,

R(t) = N

(
θ

∫ t

0

(Q2(s)− 1{Ṫ2(s) > 0})ds
)
.

See, e.g., [12]. Here, 1 is the indicator function, Ṫ2(t) is the right derivative of T2 at time
t ≥ 0, and thus Ṫ2(t) > 0 denotes that a class 2 customer is being served at time t.

We define the workload of the system at time t to be

W (t) =
Q1(t)

µ1

+
Q2(t)

µ2

.

An admissible control policy π must satisfy (1)–(3) for all t ≥ 0, and additionally, for
k = 1, 2,

π is nonanticipating with respect to the queue length process Q = (Q1, Q2),
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Tk is continuous and nondecreasing with Tk(0) = 0,

I is continuous and nondecreasing with I(0) = 0.

We assume that each class 1 customer has a waiting time deadline d, that is, if we denote
by τ1(t) the “age” in the system of the head-of-the-line class 1 customer at time t, then we
require τ1(t) ≤ d for all t ≥ 0.

Let Π be the set of all admissible policies. The system manager’s objective is to find an
admissible control policy π ∈ Π to minimize the expected cumulative abandonment number
of class 2 customers meanwhile each class 1 customer receives service within d time, i.e.,
for any T ≥ 0,

min
π∈Π

ER(T )

s.t. τ1(t) ≤ d, 0 ≤ t ≤ T.
(4)

Remark 2. Note that the total expected arrival of class 2 customers is fixed. Hence, the
above problem is equivalent to minimizing the probability of abandonment.

However, the above problem is infeasible as the age process τ1 = {τ1(t), t ≥ 0} is
stochastic. Thus, we will solve the above problem in an asymptotic framework, and will
show the asymptotic optimality of a threshold hold policy which has a simple structure to
use.

2.2. Heavy-traffic assumption

We consider a sequence of systems indexed by n. These systems all have the same struc-
ture as that described in the last section; however, relevant parameters and processes (except
Poisson processN ) may vary with n. We indicate the dependence of relevant parameters and
processes on n by appending a superscript to them. Then, in the nth system, the arrival rate
of class k customers is λnk , the age deadline for class 1 customers is dn, and the abandonment
rate of class 2 customers is θn. We assume that the service rates are invariant with respect to
n; hence there will be no superscript for terms relating to service rates.

Let Qn(t) = (Qn
1 (t), Q

n
2 (t)). We introduce the following diffusion scaled processes

Q̂n(t) =
Qn(nt)√

n
, R̂n(t)=

Rn(nt)√
n

,

τ̂n1 (t) =
τn1 (nt)√

n
, Ŵ n(t) =

W n(nt)√
n

.

We assume that the following heavy traffic condition holds.

Assumption 1. There exist strictly positive constants λ1, λ2 and constant β such that

λnk → λk, k = 1, 2,
√
n

(
λn1
µ1

+
λn2
µ2

− 1

)
→ β, as n→ ∞.

We put the following assumption on the abandonment rate.
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Assumption 2. There exists a strictly positive constant θ such that nθn → θ as n→ ∞.
Moreover, since under Assumption 1, the age of the head-of-the-line class 1 customer

also should be of order
√
n. Hence, we take the following assumption on the age deadline

of class 1 customers.

Assumption 3. There exists a strictly positive constant d such that dn/
√
n→ d, as n→ ∞.

Finally, we assume that the following initial condition holds.

Assumption 4. There exists a positive finite random variable Ŵ0 such that Ŵ n(0) ⇒ Ŵ0

as n→ ∞, where⇒ denotes convergence in distribution.

2.3. Asymptotic compliance and optimality

We will consider policies that are asymptotically compliant, which is a generalization of
“feasibility”. See e.g., [16].
Definition 1 (Asymptotic compliance). A family of policies {πn, n ∈ N} is called asymp-
totic compliant if, for any fixed T ≥ 0,

sup
0≤t≤T

[
τ̂n1 (t)−

dn√
n

]+
⇒ 0, as n→ ∞. (5)

Definition 2 (Asymptotic optimality). A family of control policies {πn
∗ , n ∈ N} is asymp-

totically optimal if
1. It is asymptotically compliant and
2. For every t > 0 and every x > 0,

lim sup
n→∞

P
{
R̂n

∗ (t) > x
}
≤ lim inf

n→∞
P
{
R̂n(t) > x

}
,

where R̂n
∗ (t) and R̂n(t) are the diffusion-scaled cumulative number of abandonments

till time t under the family of control policies {πn
∗ , n ∈ N} and any other asymptoti-

cally compliant family of policies {πn, n ∈ N}, respectively.
Remark 3. Note that a stochastic larger random variable has a larger expectation. Hence,
here we consider a stronger criterion than that in (4) in fact.

3. The Proposed Policy
We propose the following family of work-conserving scheduling policy, which is de-

noted by {πn
th, n ∈ N}: Fix a sequence of {ϵn, n ∈ N} such that ϵn/

√
n → 0 as n → ∞.

When becoming idle, the server uses a threshold rule to determine which class to serve next
as follows:

1. If τn1 (t) ≥ dn − ϵn, give priority to class 1 customers.
2. Otherwise, give priority to class 2 customers.
Our main result is the following theorem.
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Theorem 1. Under Assumptions 1–4, the family of proposed policies {πn
th, n ∈ N} is asymp-

totically optimal.

Based on the above theorem, we suggest the following scheduling policy, denoted by πth,
for the original system: when becoming idle, the server uses a threshold rule to determine
which class to serve next:

1. If τ1(t) ≥ d− ϵ, give priority to class 1 customers, where ϵ is small relative to d.
2. Otherwise, give priority to class 2 customers.
The proof of Theorem 1 takes two steps. First in Theorem 2 of Section 3.1, we prove that

under any asymptotically “feasible” policy, diffusion-scaled cumulative abandonment num-
bers can be stochastically bounded from below by constructing an alternative system. Then,
in Section 3.2 we show that, under the proposed policy, the lower bound can be achieved by
establishing a state space collapse (SSC) result.

3.1. Lower bound of any asymptotic compliant policy

Theorem 2 (Lower bound). Fix any asymptotically compliant family of policies {πn, n ∈
N}. For any T, x > 0,

lim inf
n→∞

P{R̂n(T ) > x}

≥ P

{
θµ2

∫ T

0

(
Ŵ (t)− λ1d

µ1

)+

dt > x

}
, (6)

where Ŵ is the unique solution to

Ŵ (t) = Ŵ0 + X̂(t)− θ

∫ t

0

(
Ŵ (s)− λ1d

µ1

)+

ds+ Î(t) ≥ 0,

Î(t) is nondecreasing in t, Î(0) = 0,∫ ∞

0

1{Ŵ (t) > 0}dÎ(t) = 0.

(7)

Here X̂ is a one-dimensional Brownian motion starting from the origin with drift rate β and
variance

σ2 :=
λ1α

2
1

µ2
1

+
λ2α

2
2

µ2
2

+
λ21β

2
1

µ3
1

+
λ22β

2
2

µ3
2

.

The proof of Theorem 2 takes three steps. First, we claim that we only need to consider
the work-conserving asymptotically compliant family of policies. Second, we construct an
alternative system and a new policy so that the cumulative abandonment number in the alter-
native system is pathwise not less than that in the original system. Finally, we characterize
the diffusion limit result of the alternative system, which provides a lower bound of the
original system.
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3.2. Asymptotic optimality of the proposed policy

For any w ≥ 0, define

Q∗(w) = (µ1min(w, λ1d/µ1), µ2(w − λ1d/µ1)
+). (8)

First, we have the following SSC result.

Proposition 1. Assume that

Q̂n(0) ⇒ Q∗(Ŵ (0)), as n→ ∞. (9)

and Assumptions 1–4 hold. Then, under the family of proposed control policies {πn
th, n ∈ N},

for any T > 0,
sup

0≤t≤T

|Q̂n(t)−Q∗(Ŵ n(t))| ⇒ 0, as n→ ∞.

Thus, we have the following convergence result of the diffusion scaled processes.

Theorem 3. Under the family of proposed policies {πn
th, n ∈ N},

(Ŵ n, Q̂n
1 , Q̂

n
2 ) ⇒ (Ŵ , Q̂1, Q̂2), as n→ ∞,

where Ŵ (t) is defined in (7), and

Q̂1(t) = µ1min
(
Ŵ (t),

λ1d

µ1

)
, Q̂2(t) = µ2

(
Ŵ (t)− λ1d

µ1

)+

.

Combining the results in Theorems 2 and 3, we can prove that the family of proposed
policies {πn

th, n ∈ N} is asymptotically optimal by verifying that it is asymptotically com-
pliant and attains the lower bound stated in Theorem 2.

4. Numerical Study
The proposed policy is proved to be asymptotically optimal with a single server under

heavy traffic regime. But we are not sure how well it will be comparing to other classical
policies under more general settings. This numerical study is designed for this purpose.

Our base case is case 1 as shown in Table 2. The total arrival rate λ = λ1 + λ2 = 60,
which means the average number of online and offline orders is 60 per hour. The average
processing times of online and offline orders are equal, i.e., 6 minutes per order. The number
of service agents in the system is 6. The deadline commitment for online orders is 30minutes,
and the average patience time for customers waiting in the physical queue is one hour.

Case 1 serves as the benchmark of the numerical study. We design other numerical
examples and compare them with the base case to see the impact of different parameters on
system performance under the optimal policy. Our optimal policy suggest the threshold to
be d − ϵ, where ϵ is of a smaller order than d, e.g., ϵ = d/10. So, in this numerical study,
ϵ is 3 minutes if d is 30 minutes. Please refer to Section 7.2 of [14] for more discussion on
choosing ϵ.

36



Queueing Models and Service Management

Table 1. Notation Explanation
Notation Explanation
λ1 Average number of online orders per hour
λ2 Average number of offline orders per hour
µ1 Average process capacity for online orders per hour
µ2 Average process capacity for offline orders per hour
N Number of service agents
d Deadline commitment for online orders (hr)
θ Average patience time for waiting customers (hr)
P1 Work-conserving policy that gives priority to class 1
P2 Work-conserving policy that gives priority to class 2
Opt Our proposed policy

Table 2. Parameter Setting
Notation Case 1 Case 2 Case 3 Case 4 Case 5
λ1 15 30 45 15 30
λ2 45 30 15 45 90
µ1 10 10 10 10 20
µ2 10 10 10 10 20
N 6 6 6 6 6
d .5 .5 .5 .5 .5
θ 1 1 1 3 1

4.1. λ1/λ2: proportion of online orders

Service providers may have different proportions of online orders. To study this impact,
we set λ1/λ2 as 3, 1 and 1/3. When λ1 = 3λ2, it means that the service provider has a large
proportion of online orders. When λ1 = λ2, it means that the service provider has an equal
proportion of online and offline orders. When λ1 = λ2/3, it means that the service provider
has a large proportion of offline orders.

From the numerical results, we can see that when the proportion of the online orders
becomes large, the reduction on abandonment (comparing policy P1 and the optimal policy)
becomes significant (from 2%,7% to 13%), but the percentage of orders meeting the deadline
drops (from 96%, 93% to 83%). Though P2 minimizes the abandonment rate, the percentage
of orders meeting the deadline is less than half, which may not be acceptable by online
customers.

4.2. θ: patient and impatient customers

Let us change the average patience time for waiting customers θ from 1 hour to 20
minutes, which means the customers waiting in the physical queue is relatively impatient.
Comparing case 1 and 4, the abandonment rate under each policy increases. The optimal
policy guarantees 98% deadline commitment with 11% abandonment, saving 4% abandon-
ment comparing to P1 policy. From the comparison of the numerical results, we can see that
the optimal policy saves a lot when the customers are very impatient.
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Table 3. Numerical examples
Case λ1/λ Policy E(W1) E(W2) P(W1 < D) PAb Utilization
1 0.25 P1 0.02 0.10 100% 10% 92%

0.25 P2 1.02 0.05 41% 5% 97%
0.25 Opt 0.27 0.08 96% 8% 95%

2 0.5 P1 0.03 0.15 100% 15% 93%
0.5 P2 1.11 0.03 34% 3% 98%
0.5 Opt 0.28 0.08 93% 8% 96%

3 0.75 P1 0.05 0.26 100% 26% 93%
0.75 P2 1.07 0.02 41% 2% 98%
0.75 Opt 0.31 0.13 83% 13% 97%

4 0.25 P1 0.02 0.05 100% 15% 89%
0.25 P2 0.36 0.03 75% 9% 93%
0.25 Opt 0.19 0.04 98% 11% 91%

5 0.25 P1 0.01 0.08 100% 8% 94%
0.25 P2 0.92 0.03 47% 3% 97%
0.25 Opt 0.28 0.05 100% 5% 97%

4.3. µ: process-and-pack v.s. pick-and-pack service

For products which require processing before packing, the service time is longer. There
are some other products which the service agents can simply pick before packing, the service
time is relatively shorter. In case 5, we assume the average service time is 3 minutes, and
the arrival rate is 120 orders per hour. Let µ1 = µ2 = 20, and λ = 120. We see from
the numerical results that the optimal policy can guarantee the deadline commitment while
minimizing the abandonment rate (from 8% to 5% comparing to P1 policy).

5. Conclusion
We study a V model with two classes of customers in which class 1 customers cannot

abandon but have waiting time deadlines while class 2 customers may abandon, with the
objective of minimizing the cumulative number of class 2 customers who have abandoned
while ensuring each class 1 customer receives the service within the waiting time deadline.
We prove that under heavy traffic regime, the threshold policy that gives priority to class 1
customers if the age of the head-of-the-line class 1 customer exceeds a threshold is asymp-
totically optimal.

There are several directions worthy of further researching. Firstly, breaching a deadline
commitment can be quantified by a cost, with the goal being to minimize cost or maximize
profit. Furthermore, the deadline commitment may be random or dependent on the ser-
vice requirement. Second, as mentioned in the introduction, our problem admits a pathwise
optimal solution for the diffusion approximation. However, with other performance crite-
rion, there might not exist a pathwise optimal solution. Hence, two questions arise: under
what criterion a pathwise optimal solution is admitted? And if there is no pathwise optimal
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solution, is a threshold policy still asymptotically optimal? Third, we can generalize the V -
queueing model to other queueing model with more general structure. Finally, in this paper,
the waiting time deadline is given. We might consider the problem of how to choose the
proper waiting time deadline to maximize the profit.
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Appendix
A. Preliminary Analysis

We introduce the following diffusion scaled processes

Ân
k(t) =

An
k(nt)− λnknt√

n
, Ŝn

k (t) =
Sn
k (nt)− µknt√

n
, k = 1, 2,

N̂n(t)=
N(nt)− nt√

n
, În(t)=

In(nt)√
n

,

and fluid scaled processes

Q̄n(t) =
Qn(nt)

n
, Ān

k(t) =
An

k(nt)

n
,

T̄ n
k (t) =

T n
k (nt)

n
, k = 1, 2,

R̄n(t) =
Rn(nt)

n
, Īn(t) =

In(nt)

n
, W̄ n(t) =

W n(nt)

n
.

It follows from the renewal process Functional Central Limit theorem [see e.g., Corollary
7.3.1 in 20] that

(Ân
k , Ŝ

n
k , N̂

n, k = 1, 2) ⇒ (Âk, Ŝk, N̂ , k = 1, 2), as n→ ∞, (10)

where Âk, Ŝk, N̂ , k = 1, 2 are mutually independent; Âk is a one-dimensional Brownian
motion that starts from the origin and has variance λkα2

k; Ŝk is a one-dimensional Brownian
motion that starts from the origin and has variance µkβ

2
k; N̂ is a standard one-dimensional

Brownian motion.
The following result relates the age process of the head-of-line class 1 customers to the

queue length process of class 1 customers on the diffusion scale.

Lemma 1. Under any asymptotically compliant family of control policies, and for any T >
0,

sup
0≤t≤T

∣∣∣Q̂n
1 (t)− λn1 τ̂

n
1 (t)

∣∣∣⇒ 0, as n→ ∞.

Corollary 1. Under any asymptotically compliant family of control policies,

sup
0≤t≤T

[
Q̂n

1 (t)− λ1d
]+

⇒ 0, as n→ ∞.

The proofs of the above lemma and corollary are exactly the same to those of Lemma
EC.1.1 and Corollary 2 in [14], which are omitted for brevity.

The following result demonstrates that the result of Lemma 1 is also valid under any
work-conserving policy.
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Proposition 2. Under any family of work-conserving policies, and for any T > 0,

sup
0≤t≤T

∣∣∣Q̂n
1 (t)− λn1 τ̂

n
1 (t)

∣∣∣⇒ 0, as n→ ∞. (11)

The proof of Proposition 2 consists of three steps. First, in Lemma 2, we show that under
any work-conserving policy, the family {Q̄n

k , T̄
n
k , Ā

n
k , R̄

n, W̄ n, Īn, k = 1, 2} is precompact,
which has weak convergence limit. Second, in Lemma 3 we characterize the fluid limit
of (Q̄n

k , T̄
n
k ) under Assumption 4, by showing that the weak convergence limit is unique.

Finally, we show (11) by using an inequality relating Q1(t) to τ1(t) (see (22) below).

Lemma 2. Suppose there exists a constantM such that W̄ n(0) ≤ M for all n ∈ N. Under
any work-conserving policy, the family {Q̄n

k , T̄
n
k , Ā

n
k , R̄

n, W̄ n, Īn, k = 1, 2} is C-tight, i.e.,
for any subsequence of {n}, there exists a further subsequence, denoted by N , such that
along N ,

(Q̄n
k , T̄

n
k , Ā

n
k , R̄

n, W̄ n, Īn, k = 1, 2)

converge uniformly on compact time sets (u.o.c.) to limit process

(Q̄k, T̄k, Āk, R̄, W̄ , Ī, k = 1, 2),

which has continuous paths almost surely and satisfies the following equations:

Āk(t) = λkt, k = 1, 2, (12)
Q̄1(t) = Q̄1(0) + Ā1(t)− µ1T̄1(t), (13)
Q̄2(t) = Q̄2(0) + Ā2(t)− µ2T̄2(t)− R̄(t), (14)

R̄(t) = θ

∫ t

0

Q̄2(s)ds, (15)

W̄ (t) =
Q̄1(t)

µ1

+
Q̄2(t)

µ2

, (16)

Ī(t) = t− T̄1(t)− T̄2(t), (17)∫ ∞

0

1{W̄ (t) > 0}dĪ(t) = 0. (18)

Proof. Proof.The functional strong law of large numbers (FSLLN) implies

Ān
k(t) =

An
k(nt)

n
→ Āk(t) := λkt,

Sk(nt)

n
→ µkt,

N(nt)

n
→ t,

(19)

u.o.c., as n→ ∞.
Define Y n(t) =

∫ t

0
Q̄n

2 (s)ds. Then, we have

R̄n(t) =
Rn(nt)

n
=
N
(
θn
∫ nt

0
Qn

2 (s)ds
)

n
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=
N
(
nθn

∫ t

0
Qn

2 (ns)ds
)

n
=
N
(
n2θn

∫ t

0
Q̄n

2 (s)ds
)

n
=
N (n2θnY n(t))

n
.

For any 0 ≤ t1 < t2, 0 ≤ T̄ n
k (t2) − T̄ n

k (t1) ≤ t2 − t1, which implies that 0 ≤ T̄k(t2) −
T̄k(t1) ≤ t2−t1. Hence, it follows from Theorem 15.1 in [4] that {T̄ n

k } isC-tight. Moreover,
for any 0 ≤ t1 < t2 ≤ 1, we have

0 ≤ Y n(t2)− Y n(t1) =

∫ t2

t1

Q̌n
2 (s)ds ≤ (t2 − t1)(Q̌

n
2 (0) + Ǎn

2 (1)).

Again, it follows from Theorem 15.1 in [4] with a similar argument as that in the proof of
Lemma 4.3 in [19] that {Y n} is C-tight.

LetN1 be any subsequence of {n}. Since W̄ n(0) ≤M and {T̄ n
k , Y

n} is C-tight, we can
find a subsequence N of N1, such that along N ,

Q̄n
k(0) → Q̄k(0), T̄ n

k (t) → T̄k(t), Y n(t) → Y (t), u.o.c. (20)

Hence, it follows from (19) and Assumption 2 that

R̄n(t) =
N (n2θnY n(t))

n
→ θ

∫ t

0

Q̄2(s)ds,

u.o.c., along N .
It follows from

Q̄n
1 (t) = Q̄n

1 (0) + Ān
1 (t)−

S1(nT̄
n
1 (t))

n
,

Q̄n
2 (t) = Q̄n

2 (0) + Ān
2 (t)−

S2(nT̄
n
2 (t))

n
− R̄n(t),

(19), and (20) that that

Q̄n
1 (t) → Q̄1(t) := Q̄1(0) + Ā1(t)− µ1T̄1(t),

Q̄n
2 (t) → Q̄2(t) := Q̄2(0) + Ā2(t)− µ2T̄2(t)− R̄(t),

u.o.c., along N .
It follows from the definition ofW (t) and I(t) that

W̄ n(t) → W̄ (t) :=
Q̄1(t)

µ1

+
Q̄2(t)

µ2

, Īn(t) → Ī(t) := t− Ī1(t)− Ī2(t)

u.o.c., along N .
To prove (18), it suffices to show that given any interval [t1, t2], if W̄ (t) > 0 for all

t ∈ [t1, t2], then Ī(t2) − Ī(t1) = 0. Note that W̄ n(t) > 0 also holds for t ∈ [t1, t2] (or
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W n(t) > 0 for all t ∈ [nt1, nt2]) when n is sufficiently large, because W̄ n(t) → W̄ (t) u.o.c.
Since under any family of work-conserving policies, it holds that∫ ∞

0

1{W n(t) > 0}dIn(t) = 0,

we have In(nt2) − In(nt1) = 0, or Īn(t2) − Īn(t1) = 0. Letting n → ∞ yields that
Ī(t2)− Ī(t1) = 0.

Lemma 3. Suppose that Assumption 4 holds. Then, we have

(Q̄n, T̄ n) → (0, T̄ ∗), as n→ ∞, (21)

where
T̄ ∗(t) =

(
λ1
µ1

t,
λ2
µ2

t

)
.

Proof. Assumption 4 implies W̄ n(0) is stochastically bounded and thus the result in Lemma 2
holds for each sample path almost surely. Now fix any sample path such that the result in
Lemma 2 holds. Then, W̄ (0) = 0 in view of Assumption 4. Moreover, (12)-(14) and As-
sumption 1 imply that

W̄ (t) = W̄ (0) + t− (T̄1(t) + T̄2(t))−
θ

µ2

∫ t

0

Q̄2(s)ds = Ī(t)− θ

µ2

∫ t

0

Q̄2(s)ds.

Next, we show that W̄ (t) = 0 for all t ≥ 0. Otherwise, by the Lipschitz continuity of
W̄ (t), there exist time points t1 < t2 such that W̄ (t1) = 0 and W̄ (t) > 0 for all t ∈ (t1, t2].
Hence, it follows from (18) that Ī(t) = Ī(t1) for all t ∈ (t1, t2]. Therefore, we have

0 = W̄ (t1) = Ī(t1)−
θ

µ2

∫ t1

0

Q̄2(s)ds

≥ Ī(t2)−
θ

µ2

∫ t2

0

Q̄2(s)ds = W̄ (t2) > 0,

which reaches a contradiction. Hence, for all t ≥ 0 , W̄ (t) = 0 and thus Q̄k(t) = 0.
T̄k(t) = (λk/µk)t, k = 1, 2 follows from (12)–(14).

Therefore, due to the uniqueness of the weak convergence limit, we can conclude that
(21) holds.

Finally, we give a proof of Proposition 2.

Proof. Proof of Proposition 2. Since the class 1 customers in queue at time t are those class
1 customers arriving between [t− τn1 (t), t], we have

|Qn
1 (t)− (An

1 (t)− An
1 ((t− τn1 (t))−)| ≤ 1. (22)
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Hence, we have

|Q̄n
1 (t)− λ1τ̄

n
1 (t)|

≤ |Ān
1 (t)− Ān

1 ((t− τ̄n1 (t))−)− λ1τ̄
n
1 (t)|+

1

n
, (23)

|Q̂n
1 (t)− λn1 τ̂

n
1 (t)|

≤ |Ân
1 (t)− Ân

1 ((t− τ̄n1 (t))−)|+ 1√
n
. (24)

It follows from the Functional Law of Large Numbers that

sup
0≤s≤t≤T

|Ān
1 (t)− Ān

1 (s)− λ1(t− s)| ⇒ 0

and thus
sup

0≤t≤T

|Ān
1 (t)− Ān

1 ((t− τ̄n1 (t))−)− λ1τ̄
n
1 (t)| ⇒ 0 (25)

as n→ ∞.
Combining (21), (23) and (25), we have τ̄n1 ⇒ 0 as n → ∞. Hence, it follows from

(10), (24), and the Random-Time-Change theorem that (11) holds.

Lemma 4. Under any family of work-conserving policies, Ŵ n is stochastically bounded.

Proof. It follows from (1)–(3) that

Q̂n
1 (t) = Q̂n

1 (0) + Ân
1 (t)− Ŝn

1 (T̄
n
1 (t))

+
√
n(λn1 t− µ1T̄

n
1 (t)), (26)

Q̂n
2 (t) = Q̂n

2 (0) + Ân
2 (t)− Ŝn

2 (T̄
n
2 (t))− R̂n(t)

+
√
n(λn2 t− µ2T̄

n
2 (t)), (27)

R̂n(t) = N̂n

(
(nθn)

∫ t

0

(
Q̄n

2 (s)
)
ds

)
+(nθn)

∫ t

0

Q̂n
2 (s)ds. (28)

Thus, we have

Ŵ n(t) = Ŵ n(0) + X̂n(t)− R̂n(t)

µ2

+ În(t), (29)∫ ∞

0

1{Ŵ n(t) > 0}dÎn(t) = 0, (30)

where

X̂n(t) =
Ân

1 (t)

µ1

+
Ân

2 (t)

µ2

− Ŝn
1 (T̄

n
1 (t))

µ1

− Ŝn
1 (T̄

n
2 (t))

µ2
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+
√
n

(
λn1
µ1

+
λn2
µ2

− 1

)
t. (31)

Therefore, it follows from (10), (21), (31), the Random-Time-Change theorem and As-
sumption 1 that

X̂n ⇒ X̂, as n→ ∞, (32)

where X̂ is defined in Theorem 2.
Thus, X̂n is stochastically bounded. It follows from (29), (30) and R̂n(t) ≥ 0, Ŵ n(t) ≥

0 for all t ≥ 0 that Ŵ n(t) ≤ sup0≤s≤t |Ŵ n(0) + X̂n(s)| and thus sup0≤t≤T Ŵ
n(t) ≤

sup0≤t≤T |Ŵ n(0) + X̂n(t)| ≤ Ŵ n(0) + sup0≤t≤T |X̂n(t)|. Therefore, Ŵ n is also stochasti-
cally bounded in virtue of Assumption 4.

B. A Generalized Reflection Map
In this part we give a generalized reflection map and its property of continuity in param-

eters, which is used in the proof of diffusion limit convergence result, i.e., Theorem 3 and
Lemma 6. Below, we use D([0,∞),R) to denote the set of all functions x : [0,∞) → R
which are right continuous in [0,∞) and have finite left limits on (0,∞).
Definition 3. Given θ > 0, d ≥ 0 and x ∈ D([0,∞),R) with x(0) ≥ 0, we define

(ϕθ,d, ψθ,d) : D([0,∞),R) → D([0,∞), [0,∞)× [0,∞))

by (ϕθ,d, ψθ,d)(x) = (z, l), where
1) z(t) = x(t)− θ

∫ t

0
(z(s)− d)+ds+ l(t) ≥ 0 for all t ≥ 0;

2) l is nondecreasing, l(0) = 0, and
∫∞
0
1{z(t) > 0}dl(t) = 0.

Define (ϕ, ψ) be the conventional one-sided refection map with lower barrier at 0. That
is, for x ∈ D([0,∞),R) with x(0) ≥ 0, we have z = ϕ(x), l = ψ(x), where z(t) = x(t) +
l(t) ≥ 0 for all t ≥ 0; l is nondecreasing, l(0) = 0, and

∫∞
0
1{z(t) > 0}dl(t) = 0. This map

has an explicit representation: ϕ(x)(t) = x(t) + ψ(x)(t) and ψ(x)(t) = sup0≤s≤t(−x(s))+.
Define themap νθ,d : D([0,∞),R) → D([0,∞),R) as νθ,d(x) = v, where (ϕθ,d, ψθ,d)(x) =

(z, l) satisfying

v(t) = x(t)− θ

∫ t

0

(ϕ(v)(s)− d)+ds (33)

with v(0) = x(0). Then, we have

ϕθ,d(x) = ϕ(νθ,d(x)), ψθ,d(x) = ψ(νθ,d(x)) (34)

Lemma 5. (i) For each x ∈ D([0,∞),R), there exists a unique function νθ,d(x) = v
satisfying (33).

(ii) νθ,d(x) is continuous in (x, θ, d)with respect to the product topology, withD([0,∞),R)
equippedwith the topology of uniform convergence over bounded intervals, and [0,∞)
equipped with the order topology.
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Proof. (i). It follows immediately from Lemma 1 in [17] and the Lipschitz continuity of ϕ.
(ii). We use the same argument as that in the proof of Lemma 2 in [8]. Suppose that

(xn, θn, dn) → (x, θ, d) as n → ∞. Fix ϵ > 0 and t > 0, and denote vn = νθ
n,dn(xn) and

v = νθ,d(x). There exists a strictly positive constant θ̄ and a number N such that for all
n ≥ N ,

θn ≤ θ̄,

∥xn − x∥t + |θn − θ|
∫ t

0

(ϕ(v)(s)− d)+ds

+θn|dn − d|t < δ

for some δ > 0 which is yet to be determined, where we denote ∥x∥t = sup0≤s≤t |x(s)|. We
have

∥vn − v∥t

≤ ∥xn − x∥t + |θn − θ|
∫ t

0

(ϕ(v)(s)− d)+ds

+θn
∫ t

0

(|(ϕ(vn)(s)− dn)+ − (ϕ(vn)(s)− d)+|

+|(ϕ(vn)(s)− d)+ − (ϕ(v)(s)− d)+|)ds

≤ ∥xn − x∥t + |θn − θ|
∫ t

0

(ϕ(v)(s)− d)+ds

+θn|dn − d|t+ 2θ̄

∫ t

0

∥vn − v∥sds

≤ δ + 2θ̄

∫ t

0

∥vn − v∥sds,

where the last inequality is due to |a+−b+| ≤ |a−b| for any a, b ∈ R and ∥ϕ(x)−ϕ(x′)∥t ≤
2∥x− x′∥t for any x, x′ ∈ D([0,∞),R), and θn ≤ θ̄. It follows from Gronwall’s inequality
that ∥vn − v∥t ≤ δe2θ̄t. The desired continuity is obtained by setting δ = ϵe−2θ̄t.

Now we state several properties of the maps ϕθ,d and ψθ,d.

Proposition 3. (i) For each x ∈ D([0,∞),R) with x(0) ≥ 0, there exists a unique pair
of functions (ϕθ,d, ψθ,d)(x) = (z, l) satisfying Definition 3.

(ii) ϕθ,d(x) is continuous in (x, θ, d)with respect to the product topology, withD([0,∞),R)
equippedwith the topology of uniform convergence over bounded intervals, and [0,∞)
equipped with the order topology.

Proof. (i). The existence and uniqueness follows from (34), Lemma 5 (i) and the existence
and uniqueness of the conventional one-sided refection map (ϕ, ψ).

(ii). It follows from (34), Lemma 5 (ii) and the Lipschitz continuity of ϕ.
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C. Proof of Theorem 2
Under the proposed policy, the following equations hold additionally:∫ ∞

0

1{W n(t) > 0}dIn(t) = 0, (35)∫ ∞

0

1 {τn1 (t) ≤ dn − ϵn, Qn
2 (t) > 0} dT n

1 (t) = 0, (36)∫ ∞

0

1 {τn1 (t) > dn − ϵn} dT n
2 (t) = 0. (37)

Fix any asymptotically compliant family of policies {πn, n ∈ N}. If πn is not work-
conserving, we construct a work-conserving policy πn,w such that the server serves the same
class of customers as that under policy πn, unless there is no customer of that class. Besides,
if the server under policy πn is idle, give priority to serve class 2 customers under policy πn,w.
By the standard coupling argument, we can couple the two systems such that on each sample
path,Qn

k(t) ≥ Qn,w
k (t) for all t ≥ 0, whereQn,w

k (t) is the number of class k customers under
policy πn,w, k = 1, 2. Hence, {πn,w, n ∈ N} is also an asymptotically compliant family of
policies. Moreover, Rn(t) = R(

∫ t

0
Qn

2 (s)ds) ≥st R
n,w(t) = R(

∫ t

0
Qn,w

2 (s)ds), where ≥st is
the standard stochastic order and Rn,w(t) is the cumulative abandonment number of class 2
customers till time t under policy πn,w. Therefore, P{R̂n(T ) > x} ≥ P{R̂n,w(T ) > x} for
all x > 0 and thus we can consider work-conserving policy only.

Now fix any asymptotically compliant family of work-conserving policies {πn, n ∈ N}.
We will construct an alternative system and a new policy, and prove that the cumulative
abandonment number in the alternative system under the new policy is pathwise not less
than that in the original system with a probability nearly 1.

First, it follows from Corollary 1 and Assumption 3 that there exists a sequence of num-
bers ϵn satisfying ϵn/

√
n→ 0 as n→ ∞ and

P

(
sup

0≤t≤T

[
Q̂n

1 (t)−
λn1d

n

√
n

]+
>

ϵn√
n

)
≤ ϵn√

n
, for all n ∈ N.

That is,

P
(

sup
0≤t≤nT

[Qn
1 (t)− λn1d

n]+ > ϵn
)

≤ ϵn√
n
, for all n ∈ N.

Define

Γn(T ) =

{
sup

0≤t≤nT

[Qn
1 (t)− λn1d

n]+ ≤ ϵn
}
. (38)

Then, we have limn→∞ P{Γn(T )} = 1.
We construct a new (alternative) system which is the same as the original one, except

that the abandonment rate of class 2 customers is now state dependent, rather than a constant
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θn. To be specific, the abandonment rate of class 2 customers at time t is now

θnµ2

(
W n,a(t)− λn

1 d
n+ϵn

µ1

)+
Qn,a

2 (t)
,

where superscript “a” stands for alternative and

W n,a(t) =
Qn,a

1 (t)

µ1

+
Qn,a

2 (t)

µ2

is the workload in the alternative system at time t,Qn,a
k (t) is the number of class k customers

in the alternative system at time t, k = 1, 2.
Now we will construct a new policy πn,a for the new system, based on a pathwise mod-

ification of the original system under policy πn, such that

Qn,a
1 (t) = Qn

1 (t), Q
n,a
2 (t) ≥ Qn

2 (t), for all t ∈ [0, nT ]

on the event Γn(T ). (39)

We construct policy πn,a so that when there is a new service starting in the original system,
there is a customer with the same class starting service in the new system (maybe preemptive;
it follows from (39) that there must be a customer with the same class in the new system).
Furthermore, we impose that πn,a is work-conserving.

Next we show (39) holds by induction on time event. Obviously, (39) holds at t = 0
since both systems have the same initial state. Suppose that it holds at time t. There are three
possibilities for the next time event t′:

• Arrival: there is an arrival to the original system. We can couple two systems so that
there is also an arrival of the same class to the new system. (39) holds at time t′.

• Service completion: there is a service completion in the original system. By the con-
struction of policy πn,a we can couple two systems so that there is also a service com-
pletion of the same customer class in the new system. (39) still holds at time t′.

• Customer abandonment: if Qn,a
2 (t) > Qn

2 (t), then Q
n,a
2 (t′) ≥ Qn,a

2 (t)− 1 ≥ Qn
2 (t) ≥

Qn
2 (t

′) and thus (39) holds at time t′. If Qn,a
2 (t) = Qn

2 (t), then we can couple two
systems so that there is a class 2 customer abandoning the original system, while there
is a class 2 customer abandoning the new system with probability

µ2

(
W n,a(t′)− λn

1 d
n+ϵn

µ1

)+
Qn,a

2 (t′)

≤
µ2

(
W n,a(t′)− Qn,a

1 (t′)

µ1

)
Qn,a

2 (t′)
= 1,

where the inequality is due to Qn(t′) − λn1d
n ≤ ϵn on the set Γn(T ) and Qn,a

1 (t′) =
Qn

1 (t
′). Hence, (39) still holds at time t′.
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By the construction of policy πn,a and (39), when the server in the original system serves
class 1 customers, the server in the new system also serves class 1 customers, and vice versa;
when the server in the original system serves class 2 customers, the server in the new system
will also serve class 2 customers; however, it is possible that the original system is empty
and there are class 2 customers in the new system. In this case, the server in the new system
continues serving class 2 customers. Therefore, we have

T n,a
1 (t) = T n

1 (t), T
n,a
2 (t) ≥ T n

2 (t), for all t ∈ [0, nT ]

on the event Γn(T ), (40)

where T n,a
k (t) is the cumulative amount of service time devoted to serving class k customers

till time t in the new system.
We have the following equations:

Qn,a
1 (t) = Qn,a

1 (0) + An
1 (t)− Sn

1 (T
n,a
1 (t)), (41)

Qn,a
2 (t) = Qn,a

2 (0) + An
2 (t)− Sn

2 (T
n,a
2 (t))−Rn,a(t).

(42)

where

Rn,a(t) = N

(∫ t

0

θnµ2

(
W n,a(s)− λn1d

n + ϵn

µ1

)+

ds

)
. (43)

Therefore, we have

Rn,a(t)

µ2

= W n,a(0)−W n,a(t) +
An

1 (t)

µ1

+
An

2 (t)

µ2

−S
n
1 (T

n,a
1 (t))

µ1

− Sn
2 (T

n,a
2 (t))

µ2

.

Besides, it follows from (1)–(3) that

Rn(t)

µ2

= W n(0)−W n(t) +
An

1 (t)

µ1

+
An

2 (t)

µ2

−S
n
1 (T

n
1 (t))

µ1

− Sn
2 (T

n
2 (t))

µ2

.

Hence, it follows from (39) and (40) that

Rn,a(t) ≤ Rn(t), for all t ∈ [0, nT ] on Γn(T ). (44)

Similar to the original system, we can also define the fluid scaled processes and the
diffusion scaled processes for the alternative system. The detailed definitions are omitted
for brevity.

Next, we show the following diffusion limit result of the alternative system.
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Lemma 6. Under any family of work-conserving policies,

Ŵ n,a ⇒ Ŵ , R̂n,a ⇒ R̂, as n→ ∞, (45)

where Ŵ is defined in (7) and

R̂(t) = θµ2

∫ t

0

(
Ŵ (s)− λ1d

µ1

)+

ds.

Proof. Since the policy is work-conserving, additionally it holds that∫ ∞

0

1{W n,a(t) > 0}dIn,a(t) = 0.

With the same argument as the proof of Lemma 2, we can show that the family

{Q̄n,a
k , T̄ n,a

k , Ān
k , R̄

n,a, k = 1, 2}

is precompact, and the corresponding weak limit processes (Q̄a
k, T̄

a
k , Āk, R̄

a, k = 1, 2) satisfy
the following equations:

Āk(t) = λkt, k = 1, 2, (46)
Q̄a

1(t) = Q̄a
1(0) + Ā1(t)− µ1T̄

a
1 (t), (47)

Q̄a
2(t) = Q̄a

2(0) + Ā2(t)− µ2T̄
a
2 (t)− R̄a(t), (48)

R̄a(t) = θ

∫ t

0

W̄ a(s)ds, (49)∫ ∞

0

1{W̄ a(t) > 0}dĪa(t) = 0. (50)

With a similar argument as that in the proof of Lemma 3, we can conclude that

(Q̄n,a, T̄ n,a) → (0, T̄ ∗,a), as n→ ∞, (51)

where T̄ ∗,a(t) =
(

λ1

µ1
t, λ2

µ2
t
)
.

It follows from (41)–(43) that

Q̂n,a
1 (t) = Q̂n,a

1 (0) + Ân
1 (t)− Ŝn

1 (T̄
n,a
1 (t))

+
√
n(λn1 t− µ1T̄

n,a
1 (t)), (52)

Q̂n,a
2 (t) = Q̂n,a

2 (0) + Ân
2 (t)− Ŝn

2 (T̄
n,a
2 (t))− R̂n,a(t)

+
√
n(λn2 t− µ2T̄

n,a
2 (t)), (53)

R̂n,a(t)=N̂n

(
(nθn)µ2

∫ t

0

(
W̄ n,a(s)−λn1d

n + ϵn

nµ1

)+

ds

)
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+(nθn)µ2

∫ t

0

(
Ŵ n,a(s)− λn1d

n + ϵn√
nµ1

)+

ds. (54)

Thus, we have

Ŵ n,a(t) = Ŵ n,a(0) + X̂n,a(t)− R̂n,a(t)

µ2

+ În,a(t) ≥ 0,

(55)
În,a is nondecreasing with În,a(0) = 0, (56)∫ ∞

0

1{Ŵ n,a(t) > 0}dÎn,a(t) = 0, (57)

where

X̂n,a(t)=
Ân

1 (t)

µ1

+
Ân

2 (t)

µ2

− Ŝn
1 (T̄

n,a
1 (t))

µ1

− Ŝn
1 (T̄

n,a
2 (t))

µ2

+
√
n

(
λn1
µ1

+
λn2
µ2

− 1

)
t. (58)

Therefore, it follows from (10), (51), (58), the Random-Time-Change theorem and As-
sumption 1 that

X̂n,a ⇒ X̂, as n→ ∞, (59)
where X̂ is defined in Theorem 2.

It follows from (54), (55), (57) and Definition 3 that

Ŵ n,a = ϕ
nθn,

λn1 dn+ϵn
√
nµ1 (Y n,a),

where

Y n,a(t) = Ŵ n,a(0) + X̂n,a(t)

−
N̂n

(
(nθn)µ2

∫ t

0

(
W̄ n,a(s)− λn

1 d
n+ϵn

nµ1

)+
ds

)
µ2

.

It follows from (10), (51), (59), Assumptions 2 and 4, and the Random-Time-Change
theorem that

Y n,a ⇒ Ŵ0 + X̂, as n→ ∞.

Moreover, it follows from Assumptions 1, 2 and 3 that

nθn → θ, and
λn1d

n + ϵn√
nµ1

→ λ1d

µ1

, as n→ ∞.

Therefore, it follows from Proposition 3 and the Continuous Mapping theorem that

Ŵ n,a ⇒ ϕ
θ,

λ1d
µ1 (Ŵ0 + X̂), as n→ ∞.
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Comparing (7) with Definition 3, we have Ŵ n,a ⇒ Ŵ , where Ŵ is defined in (7). It follows
from (54) that R̂n,a ⇒ R̂ as n→ ∞, where

R̂(t) = θµ2

∫ t

0

(
Ŵ (s)− λ1d

µ1

)+

ds.

Therefore, it follows from (44), limn→∞ P{Γn(T )} = 1 and Lemma 6 that

P{R̂n(T ) > x} ≥ P{R̂n(T ) > x,Γn(T )}
≥ P{R̂n,a(T ) > x,Γn(T )}

→ P

{
θµ2

∫ T

0

(
Ŵ (t)− λ1d

µ1

)+

dt > x

}
, as n→ ∞,

which completes the proof of Theorem 2.

D. Proof of Proposition 1
In order to show the SSC result, we use the framework of [5]. We mention that customer

abandonment is not evolved in the framework of [5], and thus the results in [5] cannot be
directly used. To ease the argument, we adopt a sample-path approach based on the Skorohod
representation theorem, which has been used in [21] and [6]. The sample path approach turns
the weak convergence into a probability one convergence of suitable copies of the processes
on a common probability space.

In the rest of this section, we focus on a given sample path for which the above u.o.c.
convergence holds.

As in [21] and [6], we consider a time interval [τ, τ + δ], where τ ≥ 0 and δ > 0. Let
T > 0 be a fixed time to be specified later. Divide the time interval [τ, τ + δ] into a total of
⌈
√
nδ/T ⌉ segments with equal length T/

√
n (except the last one) and define

¯̄W n,j(u) := Ŵ n

(
τ +

jT + u√
n

)
=
W n(nτ +

√
n(jT + u))√
n

(60)

for u ≥ 0 and j = 0, 1, · · · , ⌊
√
nδ/T ⌋. Similarly, we define the hydrodynamically scaled

processes

¯̄Qn,j(u) = Q̂n

(
τ +

jT + u√
n

)
,

¯̄T n,j(u) = T̂ n

(
τ +

jT + u√
n

)
− T̂ n

(
τ +

jT√
n

)
,

¯̄An,j(u) = Ân

(
τ +

jT + u√
n

)
− Ân

(
τ +

jT√
n

)
,

¯̄Rn,j(u) = R̂n

(
τ +

jT + u√
n

)
− R̂n

(
τ +

jT√
n

)
,
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¯̄In,j(u) = În
(
τ +

jT + u√
n

)
− În

(
τ +

jT√
n

)
,

¯̄τn,j1 (u) = τ̂n1

(
τ +

jT + u√
n

)
.

Proposition 4. LetM be a given positive constant and jn be some integer with jn ∈ [0,
√
nδ/T ].

Suppose | ¯̄W n,jn(0)| ≤ M for sufficiently large n. Then, for any subsequence of {n}, there
exists a further subsequence, denoted byN , such that alongN , the processes ( ¯̄Qn,jn , ¯̄T n,jn ,
¯̄An,jn , ¯̄Rn,jn , ¯̄W n,jn , ¯̄In,jn , ¯̄τn,jn1 ) converge u.o.c. to limit processes ( ¯̄Q, ¯̄T, ¯̄A, ¯̄R, ¯̄W, ¯̄I, ¯̄τ1),
which satisfy the following equations:

¯̄Ak(t) = λkt, k = 1, 2, (61)
¯̄Q1(t) =

¯̄Q1(0) +
¯̄A1(t)− µ1

¯̄T1(t), (62)
¯̄Q2(t) =

¯̄Q2(0) +
¯̄A2(t)− µ2

¯̄T2(t)− ¯̄R(t), (63)
¯̄R(t) = 0, (64)
¯̄N(t) = t, (65)
¯̄I(t) = t− ¯̄T1(t)− ¯̄T2(t), (66)

¯̄W (t) =
¯̄Q1(t)

µ1

+
¯̄Q2(t)

µ2

, (67)

¯̄τ1(t) =
¯̄Q1(t)

λ1
, (68)∫ ∞

0

1{ ¯̄W (t) > 0}d ¯̄I(t) = 0, (69)∫ ∞

0

1
{
¯̄τ1(t) < d, ¯̄Q2(t) > 0

}
d ¯̄T1(t) = 0, (70)∫ ∞

0

1 {¯̄τ1(t) > d} d ¯̄T2(t) = 0. (71)

Proof. Most results can be obtained by using the same argument as the proof of Lemma 2.
For example, it follows from

¯̄Rn,jn(u) =
N
(
θn
∫ nτ+

√
n(jnT+u)

nτ+
√
njnT

Qn
2 (u)du

)
√
n

=
N
(
nθn

∫ u

0
¯̄Qn,jn
2 (s)ds

)
√
n

,

the stochastic boundedness of ¯̄Qn,jn
2 (as implied by (2)) and Assumption 2 that ¯̄Rn,jn → 0,

u.o.c. as n→ ∞.
Similar to Proposition 2, we have the following result, which relates the age process of

the head-of-line class 1 customers to the queue length process of class 1 customers on the
hydrodynamic scale. Since the proof is quite similar to that of Proposition 2, we omit it for
brevity.
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Lemma 7. For any T > 0, sup0≤t≤T |λn1 ¯̄τ
n,jn
1 (t)− ¯̄Qn

1 (t)| ⇒ 0 as n→ ∞.
Equation (67) follows immediately by virtue of Lemma 7. Relations (69)–(71) follow

from (35)–(37), using a similar argument as the proof of Proposition 3 (relation (24) therein)
in [6].

Wemention that (61)–(67) hold for any policy, (68) and (69) hold for anywork-conserving
policy, and (70) and (71) hold for our proposed policy.

Any processes ( ¯̄Q, ¯̄T, ¯̄A, ¯̄R, ¯̄W, ¯̄I, ¯̄τ1) satisfying (61)–(71) is called a hydrodynamicmodel
solution, which is obviously Lipschitz continuous. Hence, they are differentiable at almost
all time t ≥ 0. Below, when we write the derivative of such processes with respect to time
t, we assume by default that such a time is regular, i.e., all the related processes are differ-
entiable at this time t.

The following lemma, which is Lemma 5.2 in [7], is needed for proving Proposition 5,
presenting a uniform attraction property of the hydrodynamic limit.

Lemma 8. Let f : [0,∞) → [0,∞) be an absolutely continuous function and δ > 0.
Assume that whenever f(t) > 0 and f is differentiable at t, ḟ(t) ≤ −δ. Then f(t) = 0 for
all t ≥ f(0)/δ.

Recall that Q∗ is defined in (8).

Proposition 5 (Uniform attraction). Assume that ¯̄W (0) < M for some constantM > 0.
Then, there exists a time constant TM such that, for all t ≥ TM , ¯̄Q(t) = Q∗( ¯̄W (t)), and
¯̄W (t) = ¯̄W (TM). Moreover, if ¯̄Q(0) = Q∗( ¯̄W (0)), then TM = 0 and ¯̄Q(t) = Q∗( ¯̄W (0)) for
all t ≥ 0.

Proof. First, we prove that there exists a time T ′
M such that ¯̄Q1(t) ≤ λ1d for all t ≥ T ′

M .
Define f(t) = ( ¯̄Q1(t)−λ1d)+. If f(t) > 0, then it follows from (68) and (71) that ˙̄̄

T2(t) = 0.
Moreover, ¯̄W (t) > 0 and thus it follows from (69) that ˙̄̄

I(t) = 0. Hence, (66) implies
˙̄̄
T1(t) = 1 and thus f ′(t) =

˙̄̄
Q1(t) = λ1 − µ1 < 0 by virtue of (62). Hence, it follows from

Lemma 8 that there exists a time T ′
M such that f(t) = 0 for all t ≥ T ′

M .
Next, we prove that there exists a timeTM ≥ T ′

M such that ¯̄Q1(t) = µ1min
(
¯̄W (t), λ1d/µ1

)
.

For t ≥ T ′
M , it holds that ¯̄Q1(t) ≤ µ1min

(
¯̄W (t), λ1d/µ1

)
. Define

g(t) = min
(
¯̄Q2(t), λ1d− ¯̄Q1(t)

)
.

If g(t) > 0, then ¯̄Q2(t) > 0 and ¯̄Q1(t) < λ1d. Hence, it follows from (68) and (70)
that ˙̄̄

T1(t) = 0. Moreover, ¯̄W (t) > 0 and thus it follows from (69) that ˙̄̄
I(t) = 0. Hence,

(66) implies that ˙̄̄
T2(t) = 1. Thus, ˙̄̄

Q2(t) = λ2 − µ2 and ˙̄̄
Q1(t) = λ1. Hence, g′(t) ≤

max(λ2 − µ2,−λ1) < 0. It follows from Lemma 8 that there exists a time TM such that
g(t) = 0 for all t ≥ TM . Thus, for t ≥ TM , we have min( ¯̄Q2(t), λ1d − ¯̄Q1(t)) = 0
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and ¯̄Q1(t) ≤ λ1d. It follows from (67) that ¯̄Q1(t) = µ1min
(
¯̄W (t), λ1d/µ1

)
and then

¯̄Q2(t) = µ2

(
¯̄W (t)− λ1d/µ1

)+
for all t ≥ TM .

It follows from (62), (63), (64), (66) and (67) that ˙̄̄
W (t) =

˙̄̄
I(t) for all t ≥ TM . If

¯̄W (t) > 0, then it follows from (69) that ˙̄̄
I(t) = 0. Hence, ˙̄̄

W (t) = 0 and thus ¯̄W is a
constant hereafter. If ¯̄W (t) = 0, then it follows from (69) that ¯̄W is 0 hereafter. In either
case, ¯̄W (t) = ¯̄W (TM) for all t ≥ TM .

The second part of Proposition 5 is obtained immediately by observing that TM = 0.

Proposition 6. Consider the time interval [τ, τ+δ], with τ ≥ 0 and δ > 0; choose a constant
C > 0 such that

sup
τ≤t1<t2≤τ+δ

|X̂(t1)− X̂(t2)| ≤ C,

and suppose that
lim
n→∞

Ŵ n(τ) = χ and lim
n→∞

Q̂n(τ) = Q∗(χ) (72)

for some χ ≥ 0. Let ϵ > 0 be any given number. Then, there exists a sufficiently large T
such that, for sufficiently large n, the following results hold for all integers j ∈ [0,

√
nδ/T ]:

(a) | ¯̄Qn,j(u)−Q∗( ¯̄W n,j(u))| ≤ ϵ for all u ∈ [0, T ];
(b) ¯̄W n,j(u) ≤ χ+ C + 1 for all u ∈ [0, T ].

Proof. Let T = Tχ+C+1. This time length T is sufficiently long so that in any hydrodynamic
limit, ¯̄Q(t) will approach the fixed-point state from an initial state ¯̄Q(0) with ¯̄W (0) ≤ χ +
C + 1.

We prove that properties (a) and (b) for j = 0 first. By the definition of ¯̄W n,j(u), we
have ( ¯̄W n,0(0), ¯̄Qn,0(0)) = (Ŵ n(τ), Q̂n(τ)) and thus ( ¯̄W n,0(0), ¯̄Qn,0(0)) → (χ,Q∗(χ)) as
n→ ∞, in view of (72). Hence, it follows from Propositions 4 and 5 that as n→ ∞,

( ¯̄W n,0(u), ¯̄Qn,0(u)) → ( ¯̄W (u), ¯̄Q(u)) = (χ,Q∗(χ)), u.o.c. in u ∈ [0, T ]. (73)

Here the convergence is along the whole sequence of n because the limit is unique. Let n be
sufficiently large such that | ¯̄W n,0(u) − χ| ≤ ϵ/max(µ1, µ2) and | ¯̄Qn,0(u) − Q∗(χ)| ≤ ϵ/2
for all u ∈ [0, T ]. Then, we have

| ¯̄Qn,0(u)−Q∗( ¯̄W n,0(u))| ≤ | ¯̄Qn,0(u)−Q∗(χ)|+ |Q∗( ¯̄W n,0(u))−Q∗(χ)|
≤ ϵ

2
+max(µ1, µ2) · | ¯̄W n,0(u)− χ| ≤ ϵ,

for all u ∈ [0, T ]. Hence, property (a) holds for j = 0 when n is sufficiently large.
It follows from (73) that ¯̄W n,0(u) is close to χ for all u ∈ [0, T ] when n is sufficiently

large, which leads to property (b) for j = 0.
Next, we proceed to verify properties (a) and (b) for j = 1, . . . , ⌊

√
nδ/T ⌋. Suppose, to

the contrary, there exists a subsequence N1 of {n} such that for any n ∈ N1, at least one of
the properties (a, b) fails to hold for some integers j ∈ [1,

√
nδ/T ]. Then, for any n ∈ N1,
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there exists a smallest integer, denoted by jn, in the interval [1,
√
nδ/T ], such that at least

one of the properties (a, b) fails to hold. To reach a contradiction, it suffices to construct an
infinite subsequenceN2 ⊂ N1, such that the properties (a, b) hold for j = jn for sufficiently
large n ∈ N2.

From the contradictory assumption, we know that properties (a) and (b) hold for j =
0, 1, . . . , jn − 1, n ∈ N1. Specifically, for j = jn − 1, we have ¯̄W n,jn−1(0) ≤ χ + C + 1,
for all n ∈ N1. Hence, it follows from Proposition 4, there exits a further subsequence
N2 ⊂ N1, such that ( ¯̄W n,jn−1(u), ¯̄Qn,jn−1(u)) → ( ¯̄W (u), ¯̄Q(u)), u.o.c., as n → ∞ along
N2 with ¯̄W ≤ χ + C + 1. It follows from Proposition 5 that ¯̄Q(u) = Q∗( ¯̄W (u)) for all
u ≥ T . Hence, for sufficiently large n ∈ N2, | ¯̄Qn,jn(u) − Q∗( ¯̄W n,jn(u))| = | ¯̄Qn,jn−1(u +
T ) − Q∗( ¯̄W n,jn−1(u + T ))| < ϵ for all u ∈ [0, T ]. Hence, property (a) holds with j = jn
for sufficiently large n ∈ N2.

Property (b) holds in view of (29), (30) and the relation between the hydrodynamic scale
and diffusion scale. (See also the proof of Lemma 4). Hence, we have shown that properties
(a) and (b) holds for j = jn when n ∈ N2 is sufficiently large , which contradicts the
definition of the subsequence N2.

Note that Assumption 4 and (9) imply that (72) holds for τ = 0. Hence, it follows from
property (a) in Proposition 6 and the relation between the hydrodynamic scale and diffusion
scale that |Q̂n(t)−Q∗(Ŵ n(t))| ≤ ϵ for all t ∈ [0, δ]when n is sufficiently large, which leads
to Proposition 1 by letting δ = T .

E. Other Omitted Proofs

Proof. Proof of Theorem 3. We only need to prove that Ŵ n ⇒ Ŵ as n → ∞, since then
the result that (Q̂n

1 , Q̂
n
2 ) ⇒ (Q̂1, Q̂2) as n→ ∞ follows immediately from Proposition 1.

It follows from (28)–(30) that

Ŵ n = ϕ
nθn,

λ1d
µ1 (Y n),

where

Y n(t) = Ŵ n(0) + X̂n(t)−
N̂n
(
(nθn)

∫ t

0

(
Q̄n

2 (s)
)
ds
)

µ2

−
(nθn)

∫ t

0

(
Q̂2(s)− µ2

(
Ŵ n(s)− λ1d1

µ1

)+)
ds

µ2

.

It follows from (10), (21), (32), Assumptions 2 and 4, Proposition 1 and the Random-
Time-Change theorem that

Y n ⇒ Ŵ0 + X̂, as n→ ∞.
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Therefore, it follows from Proposition 3 and the Continuous Mapping theorem that

Ŵ n ⇒ ϕ
θ,

λ1d
µ1 (Ŵ0 + X̂), as n→ ∞,

which completes the proof.

Proof. Proof of Theorem 1. It follows from Proposition 1 that

sup
0≤t≤T

[
Q̂n

1 (t)− λ1d
]+

⇒ 0, as n→ ∞.

Thus, it follows from Proposition 2 and Assumptions 1 and 3 that (5) holds, which implies
that the family of proposed policies {πn

th, n ∈ N} is asymptotically compliant.
It follows from (28) and Theorem 3 that

R̂n(t) ⇒ θ

∫ t

0

Q̂2(s)ds = θµ2

∫ t

0

(
Ŵ (s)− λ1d

µ1

)+

ds

as n→ ∞.
Hence, the lower bound in Theorem 2 is attained under {πn

th, n ∈ N}. Therefore, the
family of the proposed policies is asymptotically optimal.
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