
1. Introduction

The bike sharing systems are fast developing wide-spread adoption in major cities around the
world, and are becoming a public mode of transportation devoted to short trips. Up to now, there
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are more than 1890 bike sharing systems cities in the world. See the location and distribution in
the website (https://BikesharingWorldMap.com). It is worth noting that the bike sharing systems
are being regarded as a promising solution to jointly reducing, such as, traffic congestion, parking
difficulty, transportation noise, air pollution and global warming. For a history overview of the bike
sharing systems, readers may refer to, for instance, Eren and Uz [19] and Teixeira et al. [67] for
more details. For the status of bike sharing systems in some countries or cities, important examples
include the United States by Campbell and Brakewood [11], France by Huré et al. [33], London by
Chibwe et al. [13], Toronto and Montreal by Bista et al. [4], Beijing by Wang and Sun [71], Vienna
by Laa and Emberger [36], Netherlands by Ma et al. [48].

The literature of bike sharing systems can be classified into two classes: (1) For design, i.e., the
number of stations, the station location, the number of bikes, and the types of bikes; (2) For operation,
including the demand prediction, the path scheduling, the inventory management, the repositioning
(or rebalancing) by trucks, the price incentive, and applications of the intelligent information tech-
nologies. For analysis of the design issues, readers may refer to, for example, Frade and Ribeiro [21],
He et al. [32], Jin et al. [34] and Nikiforiadis et al.[52]. While the operation issues were discussed
by slightly more literature. Readers may refer to recent publications or technical reports for more
details, among which are the repositioning by Dell’Amico et al. [16], Haideret al. [30], Ren et
al. [56], Bruck et al. [8], Wu [76], Shui C, Szeto [61], Lv et al. [47], Li and Liu [45], and Wang
and Szeto [73]; the inventory management by Brinkmann et al. [7], Swaszek and Cassandras [64],
and Datner et al. [14]; the price incentives by Fricker and Gast [23], Zhang et al. [78], and Wang
and Wang [73]; the fleet management by George and Xia [29], Reiss and Bogenberger [55], and
Chen et al. [12] ; the simulation models by Caggiani and Ottomanelli [9], Soriguera et al. [62] and
Negahban [51]; the data analysis by Zhang and Mi [79], Kou and Cai[35], Yang et al. [77], and
Toman et al [68]. .

Based on the above literature, it is necessary to further observe a basic solution to operations of
the bike sharing systems. In a bike sharing system, a customer arrives at a station, takes a bike, and
uses it for a while; then he returns the bike to a destination station. In general, the bikes are frequently
distributed in an imbalanced manner among the stations, thus an arriving customer may always be
confronted with two problematic cases: (1) A station is empty when a customer arrives at the station
to rent a bike, and (2) a station is full when a bike-riding customer arrives at the station to return his
bike. For the two problematic cases, the empty or full station is called a problematic station. Since a
crucial question for the operational efficiency of the bike sharing system is its ability not only to meet
the fluctuating demand for renting bikes at each station but also to provide enough vacant lockers to
allow the renters to return bikes at their destinations, the two types of problematic stations reflect
a common challenge facing operations management of the bike sharing systems in practice due to
the stochastic and time-inhomogeneous nature of customer arrivals and bike returns. Therefore, it
is a key to measure the steady-state probability of problematic stations in the study of bike sharing
systems. Also, analysis of the steady-state probability of the problematic stations is useful and helpful
in design, operations and optimization of the bike sharing systems in terms of numerical computation
and comparison. Up to now, it is still difficult to provide an explicit expression for the steady-state
probability of the problematic stations because the bike sharing system is a more complicated closed
queueing network with various geographical interactions, which come both from some bikes parked
in multiple stations and from the other bikes ridden on multiple roads. For this, Section 2 explains
that the bike sharing system is a Markov process of dimension N2 through analysis of a complicated
virtual closed queueing network, also see Li et al. [44] for more details.
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To compute the steady-state probability of the problematic stations, it is better to develop a
stochastic and dynamic method through applications of the queueing theory as well as Markov pro-
cesses to the study of bike sharing systems. However, the available works on such a research direction
are still few up to now. To survey the recent literature, some significant methods and results are listed
as follows. The simple queues: Schuijbroek et al. [59] first computed the transient distribution
of the M/M/1/C queue, which is used to measure the service level in order to establish a mixed
integer programming for the bike sharing system. Then they dealt with the inventory rebalancing and
the vehicle routing by means of the optimal solution to the mixed integer programming. Raviv et al.
[54] provided an effective method for computing the transient distribution of a time-inhomogeneous
M (t) /M (t) /1/C queue, which is used to evaluate the expected number of bike shortages at any
station. Ekwedike et al. [18] established a M/M/1/k queue model for studying the dynamics of bike
sharing systems. They obtained the transient behavior of the M/M/1/k queue by applying new com-
plex analytic and group symmetry methods directly to the underlying Markov process. The queueing
networks: George and Xia [29] provided an effective method of closed queueing networks in the
study of vehicle rental systems, and determined the optimal number of parking spaces for each rental
location. Li et al. [44] proposed a unified framework for analyzing the closed queueing networks
in the study of bike sharing systems. Calafiore et al. [10] analyzed the data from the ”ToBike”
bike sharing system in Turin, built a closed queueing network, and used numerical simulations of
the closed queueing network to offer viable predictions. Samet et al. [58] modeled a closed queu-
ing network with a Repetitive-Service-Random-Destination blocking mechanism and reproduced the
system dynamics considering the limited capacity of stations. Shang et al. [60] utilized big data to
analyze the impacts of COVID-19 on the user behaviors and environmental benefits of bike sharing
system. The mean-field theory: Recently, the mean-field method as well as the queueing theory
are applied to analyzing the bike sharing systems. Fricker and Gast [23] provided a detailed analysis
for a space-homogeneous bike sharing system in terms of the M/M/1/K queue and some simple
mean-field models, and crucially, they gave the closed-form solution to the minimal proportion of
problematic stations. Fricker and Gast [23] used a mean-field approximation to get the asymptotic
behavior of the stochastic model as the system size became large. Tao and Pender [66] proved that
the mean-field limit and the central limit theorem for an empirical process of the number of stations
with k bikes by an appropriate scaling of their stochastic model. They gave insights on the mean,
variance, and sample path dynamics of large-scale bike sharing systems. Fricker and Tibi [24] first
studied the central limit and local limit theorems for the independent (non identically distributed) ran-
dom variables, which support analysis of a generalized Jackson network with product-form solution;
then they used the limit theorems to give a better outline of the stationary asymptotic analysis of the
locally space-homogeneous bike sharing systems. Li and Fan [43] developed numerical computation
of the bike sharing systems under Markovian environment by means of the mean-field theory and the
nonlinear QBD processes. The Markov decision processes: A simple closed queuing network is
used to establish the Markov decision model in the study of bike sharing systems, and to provide a
fluid approximation in order to compute the static optimal policy. Examples include Waserhole and
Jost [74], Brinkmann et al. [7], Legros [37], and Pan et al. [53].

For convenience of readers, it is necessary to recall some basic references in which the mean-
field theory is applied to the analysis of large-scale stochastic systems. Readers may refer to Spitzer
[63], Dawson [15], Sznitman [65], Vvedenskaya et al. [70], Mitzenmacher [50], Turner [69], Graham
[27, 28], Benaim and Le Boudec [2], Gast and Gaujal [25, 26], Bordenave et al. [5], Li [39, 40], Li
and Lui [46], Li et al. [41, 42], Fricker et al. [23] and Fricker and Tibi [24]. On the other hand, the
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metastability of Markov processes may be useful in the study of more general bike sharing systems
when the nonlinear Markov processes are applied. Readers may refer to, such as, Bovier [6], Den
Hollander [17], Antunes et al. [1], Li [40] and more references therein.

The main contributions of this paper are twofold. The first contribution is to describe a mean-
field queueing model to analyze the large-scale bike sharing systems, where the arrival, walk, bike-
riding (or return) processes among the stations are given some simplified assumptions whose purpose
is to guarantee applicability of the mean-field theory. For this, we develop a mean-field queueing
method combining the mean-field theory with the time-inhomogeneous queue, the martingale limits
and the nonlinear birth-death processes. To this end, we provide a complete picture of applying the
mean-field theory to the study of bike sharing systems through four basic steps: (1) The system of
mean-field equations is set up by means of a virtual time-inhomogeneous M(t)/M(t)/1/K queue
whose arrival and service rates are determined by means of some mean-field computation; (2) the
asymptotic independence (or propagation of chaos) is proved in terms of the martingale limit
and the uniqueness of the fixed point; (3) numerical computation of the fixed point is given by
using a system of nonlinear equations corresponding to the nonlinear birth-death processes; and (4)
performance analysis of the bike sharing system is given through some numerical computation.

The second contribution of this paper is to provide a detailed analysis for computing the steady-
state probability of the problematic stations, which is one of the most key measures in the study of
bike sharing systems. It is worth noting that the service level, optimal design and control mechanism
of bike sharing systems can be computed by means of the steady-state probability of the problematic
stations. Therefore, this paper develops effective algorithms for computing the steady-state proba-
bility of the problematic stations, and gives a numerically computational framework in the study of
bike sharing systems. Furthermore, we use some numerical examples to give valuable observation
and understanding on how the performance measures depend on some crucial parameters of the bike
sharing system. On the other hand, in view that Fricker and Gast [23], Fricker and Tibi [24] and
Li and Fan [43] are the only important references that are closely related to this paper by using the
mean-field theory, but differently, this paper provides more work focusing on some key theoretical
points such as the virtual time-inhomogeneous M(t)/M(t)/1/K queue, the mean-field equations,
the martingale limits, the nonlinear birth-death processes, numerical computation of the fixed point,
and numerical analysis for the steady-state probability of the problematic stations. With success-
ful exposition of the key theoretical points, such a numerical computation can greatly enable a broad
study of bike sharing systems. Therefore, the methodology and results of this paper gain new insights
on how to establish the mean-field queueing models for discussing more general bike sharing sys-
tems by means of the mean-field theory, the time-inhomogeneous queues and the nonlinear Markov
processes.

The remainder of this paper is organized as follows. In Section 2, we first describe a large-
scale bike sharing system with N identical stations, give a N -dimensional Markov process for ex-
pressing the states of the bike sharing system, and establish an empirical measure process of the
N -dimensional Markov process in order to partly overcome the difficulty of state space explosion.
In Section 3, we set up a system of mean-field equations satisfied by the expected fraction vector
through a virtual time-inhomogeneous M(t)/M(t)/1/K queue whose arrival and service rates are
determined by means of some mean-field computation. In Section 4, we establish a Lipschitz con-
dition, and prove the existence and uniqueness of solution to the system of mean-field equations. In
Section 5, we provide a martingale limit of the sequences of empirical measure Markov processes
in the bike sharing system. In Section 6, we analyze the fixed point of the system of mean-field
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equations, and prove that the fixed point is unique. Based on this, we simply analyze the asymptotic
independence of the bike sharing system, and also discuss the limiting interchangeability with respect
to N → ∞ and t → +∞. In Section 7, we provide some effective computation of the fixed point,
and use some numerical examples to investigate how the steady-state probability of the problematic
stations depends on some crucial parameters of the bike sharing system. Some concluding remarks
are given in Section 8.

2. Model Description

In this section, we first describe a large-scale bike sharing system with N identical stations, and
establish an N -dimensional Markov process for expressing the states of the bike sharing system. To
overcome the difficulty of state space explosion, we provide an empirical measure process of the
N -dimensional Markov process.

We first show that a bike sharing system can be modeled as a complex stochastic system whose
analysis is always difficult and challenging. Then we explain the reasons why it is necessary to
develop some simplified models in the study of bike sharing systems. In particular, we indicate that
the mean-field theory plays a key role in establishing and analyzing such a simplified model whose
purpose is to be able to set up some basic and useful relations among several key parameters of
system.

A Complex Stochastic System
In the bike sharing system, a customer arrives at a station, takes a bike, and uses it for a while;

then he returns the bike to any station and immediately leaves this system. Based on this, if the bike
sharing system has N stations for N ≥ 2, then it can contain at most N (N − 1) roads because there
may be a road between any two stations. When the stations and roads are different and heterogeneous,
Li et al. [44] showed that the bike sharing system can be modeled as a complicated closed queueing
network due to the fact that the total number of bikes is fixed in this system. In this case, the bikes are
regarded as the virtual customers, while the stations and the roads are viewed as the virtual servers.
Based on this, the closed queueing network is described as a Markov process

{−→n (t) : t ≥ 0
}

of
dimension N2, where

−→n (t) = (n1 (t) ,n2 (t) , . . . ,nN (t)) ,

nk (t) = (nk (t) ;nk,1 (t) , . . . , nk,k−1 (t) , nk,k+1 (t) , . . . , nk,N (t)) ,

N∑
k=1

nk (t) +

N∑
i=1

N∑
j �=i

ni,j (t) = NC,

nk (t) is the number of bikes parked at Station k, nk,j (t) is the number of bikes ridden on Road
k → j for j �= k and 1 ≤ j, k ≤ N , and NC is the total number of bikes in the bike sharing system.

In general, analysis of the Markov process
{−→n (t) : t ≥ 0

}
of dimension N2 is usually difficult

due to at least three reasons: (1) The state space explosion for a large integer N , (2) the complex
routes among the virtual servers which are either the N stations or the N (N − 1) roads, and (3) a
complicated expression for the steady-state probability distribution of joint queue lengths. See Li
and Fan [44] for more details. For this, it is necessary in practice to provide a simplified model
that contains only several key parameters of system, while the simplified model is used to set up
some basic and useful relations among the key parameters. Crucially, not only do the basic relations
support numerical computation of the steady-state probability of the problematic stations, but they
are also helpful for performance analysis of the bike sharing system. To provide such a simplified
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model, the remainder of this paper will provide a mean-field queueing model described from the bike
sharing system.

A Basic Condition to Apply the Mean-Field Theory
To apply the mean-field theory, we only need to consider the bike information (n1 (t) , n2 (t),

. . . , nN (t)) on the N stations, while the bike information of the N (N − 1) roads will be combined
into the ‘probabilistic behavior’ of the random vector (n1 (t) , n2 (t) , . . . , nN (t)) by means of some
mean-field computation. See Theorem 1 and its proof in the next section. At the same time, a ba-
sic condition is also needed to guarantee the exchangeability of the N -dimensional Markov process
{(n1 (t) , n2 (t) , . . . , nN (t)) : t ≥ 0}, that is, for any permutation (i1, i2, i3, . . . , iN ) of (1, 2, 3, . . . , N),

P {n1 (t) = k1, n2 (t) = k2, . . . , nN (t) = kN} = P {ni1 (t) = ki1 , ni2 (t) = ki2 , . . . , niN (t) = kiN } .

See Li [40] for the mean-field analysis of big networks. In fact, the following assumption (1) that the
bike sharing system consists of N identical stations guarantee the exchangeability of the Markov pro-
cess {(n1 (t) , n2 (t) , . . . , nN (t)) : t ≥ 0} so that the mean-field theory can be applied to discussing
the bike sharing system.

Although the model assumptions to apply mean-field theory are simplified greatly, we can still
set up some useful and basic relations among several key parameters of system, and also provide
some simple and effective algorithms both for computing the steady-state probability of the prob-
lematic stations and for analyzing performance measures of the bike sharing system.

Simplified Model Assumptions
Based on the above analysis, we make some necessarily simplified assumptions for applying the

mean-field theory to studying the bike sharing system as follows:
(1) The N identical stations: The bike sharing system consists of N identical stations, each

of which has a finite bike capacity. At the initial time t = 0, each station contains C bikes and K
positions to park the bikes, where 1 ≤ C < K < ∞.

(2) The arrive processes: The arrivals of outside customers at the bike sharing system are a
Poisson process with arrival rate Nλ for λ > 0.

(3) The walk processes: If an outside or walking customer arrives at an empty station in which
no bike may be rented, then he has to walk to another station again in the hope of renting a bike.
We assume that the customer may rent a bike from a station within at most ω consequent walks,
otherwise he will directly leave this system (that is, if he has not rented a bike after ω consequent
walks yet). Note that one walk is viewed as a process that the customer walks from an empty station
to another station. Since the limit of time or energy of customers, we assume ω as a maximal number
of the times of consequent walks.

We assume that the walk times between any two stations are all exponential with walk rate
γ > 0. Obviously, the expected walk time is 1/γ.

(4) The bike-riding (or return) processes: If a bike-riding customer arrives at a full station
in which no parking position is available, then he has to ride the bike to another station again. We
assume that the returning-bike process is persistent in the sense that the customer must find a station
with an empty position to return his bike (that is, he can not leave this system before his bike is
returned), because the bike is the public property so that no one can make it his own.

We assume that the bike-riding times between any two stations are all exponential with bike-
riding rate µ for γ ≤ µ < +∞. Clearly, the expected bike-riding time is 1/µ.

(5) The departure discipline: The customer departure has two different cases: (a) The customer
directly leaves the bike sharing system if he has not rented a bike yet after ω consequent walks; or
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(b) once one customer takes, uses and returns the bike to a station, he completes this trip, thus he can
immediately leave the bike sharing system.

We assume that the arrival, walk and bike-riding processes are independent, and all the above
random variables are independent of each other. Note that the randomly bike-riding and walk times
show that the road length between any two stations is considered in this paper. For such a bike
sharing system, Figure 1 provides some physical interpretation.

Figure 1. The physical interpretation of a bike sharing system

Remark 1. (1) The assumption of the N identical stations is used to guarantee applicability of the
mean-field theory, that is, the N -dimensional Markov process {(n1 (t) , n2 (t) , . . ., nN (t)) : t ≥
0} is exchangeable. Although the model assumptions to apply the mean-field theory are simplified
greatly (note that several key parameters of system will be observed and analyzed in such a simple
form), we can still set up some useful and basic relations among the key parameters of system, and
also find some valuable law and pattern both from computing the steady-state probability of the
problematic stations and from analyzing performance measures of the bike sharing system.

(2) It is necessary to explain the maximal number ω of consequent walks of the customer. If
ω = 0, then the arriving customer immediately leaves this system once he arrives at a full station.
If ω is smaller, then the customer would like to find an available bike at a lucky station through at
most ω consequent walks, because a bike can help him to promptly deal with a number of important
things so that he would like to accept the time delay due to the hope of renting a bike within at most
ω consequent walks.

(3) The road lengths among the N stations are considered here, while the bike-riding time on
any road is exponential with bike-riding rate µ. Based on this, the road length is measured by means
of the randomly bike-riding time. In addition, the assumption with 0 < γ < µ < +∞ makes sense in
practice because the riding bike is faster than the walk on any road. On the other hand, the assump-
tions on the i.i.d. bike-riding times and on the i.i.d. walk times are to guarantee applicability of the
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mean-field theory, that is, the N -dimensional Markov process {(n1 (t) , n2 (t) , . . . , nN (t)) : t ≥ 0}
is exchangeable. Therefore, the N identical stations also contain their identically physical factors
under a random setting.

In the remainder of this section, we first establish an N -dimensional Markov process for ex-
pressing the states of the bike sharing system. Then we give an empirical measure process of the
N -dimensional Markov process in order to overcome the difficulty of state space explosion.

Let X(N)
i (t) be the number of bikes parked in Station i at time t ≥ 0. Then X

(N)
i (t) = ni (t),

and henceforth we only use the notation X
(N)
i (t). It is easy to see from the above model descriptions

that X =
{(

X
(N)
1 (t) , X

(N)
2 (t) , . . . , X

(N)
N (t)

)
: t ≥ 0

}
is an N -dimensional Markov process. In

general, it is always more difficult to directly study the N -dimensional Markov process X due to the
state space explosion. Thus we need to introduce an empirical measure process of the N -dimensional
Markov process X as follows. We write

Y
(N)
k (t) =

1

N

N∑
i=1

1{
X

(N)
i (t)=k

},

where 1{·} is an indicator function. Obviously, Y (N)
k (t) is the proportion of the stations with k bikes

at time t, and 0 ≤
∑N

i=1 1
{
X

(N)
i (t)=k

} ≤ N . Let

Y(N) (t) =
(
Y

(N)
0 (t) , Y

(N)
1 (t) , ..., Y

(N)
K−1 (t) , Y

(N)
K (t)

)
.

Then it is easy to see that the empirical measure process
{
Y(N) (t) : t ≥ 0

}
is a Markov process on

the state space Ω = [0, 1]K+1.
To study the empirical measure Markov process, we write

y
(N)
k (t) = E

[
Y

(N)
k (t)

]

and
y(N) (t) =

(
y
(N)
0 (t) , y

(N)
1 (t) , ..., y

(N)
K−1 (t) , y

(N)
K (t)

)
.

3. The Mean-Field Equations

In this section, we first describe the bike sharing system as a virtual time-inhomogeneous M(t)/M(t)/1/K
queue whose arrival and service rates are determined by means of the mean-field theory. Then we
set up a system of mean-field equations, which is satisfied by the expected fraction vector y(N) (t),
in terms of the virtual time-inhomogeneous M(t)/M(t)/1/K queue.

Note that the N stations are identical according to the above model description on both system
parameters and operations discipline, thus we can use the mean-field theory to study the bike sharing
system. In this case, we only need to observe a tagged station (for example, Station 1) whose number
of bikes is regarded as a virtual time-inhomogeneous M(t)/M(t)/1/K queue (see Figure 2); while
the other N − 1 stations have some impact on the tagged station, and the impact can be analyzed by
means of the empirical measure process through a mean-field computation for the new arrival and
service rates in this virtual queue. Specifically, we also explain the reason why the new arrival and
service processes in this virtual queue are time-inhomogeneous. See Figure 2 for more details.
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Figure 2. The state transitions in the M(t)/M(t)/1/K queue

It is necessary to explain the difference of the arrival and service processes between the bike
sharing system and the virtual time-inhomogeneous M(t)/M(t)/1/K queue. For example, if a real
customer arrives and rents a bike at a tagged station, then the number of bikes parked in the tagged
station decreases by one, thus the real customer arrivals at the tagged station should be a part of the
service process of the M(t)/M(t)/1/K queue; while if a real customer returns a bike to a tagged
station and leaves this system (i.e., his trip is completed), then the number of bikes parked in the
tagged station increases by one, thus the real customers’ returning their bikes to the tagged station
should be a part of the arrival process of the M(t)/M(t)/1/K queue. Furthermore, the following
Theorem 1 provides a more detailed analysis for various parts of the arrival and service processes in
the virtual time-inhomogeneous M(t)/M(t)/1/K queue.

For the time-inhomogeneous M(t)/M(t)/1/K queue, now we use the mean-field theory to
discuss its Poisson input with arrival rate ξ

(N)
l (t) for 0 ≤ l ≤ K − 1 and its exponential service

times with service rate η
(N)
k (t) for 1 ≤ k ≤ K.

The following theorem provides expressions for the arrival and service rates: ξ
(N)
l (t) for 0 ≤

l ≤ K − 1 and η
(N)
k (t) for 1 ≤ k ≤ K, respectively. Note that the time-inhomogeneous arrival and

service rates will play a key role in our mean-field study later.

Theorem 1. For 1 ≤ k ≤ K and ω = 0, 1, 2, . . ., we have

η
(N)
k (t) = η(N) (t) = λ+ γy

(N)
0 (t)

1−
[
y
(N)
0 (t)

]ω

1− y
(N)
0 (t)

. (1)

At the same time, for 0 ≤ l ≤ K − 1 we have

ξ
(N)
l (t) =





µ
N

1

1−y
(N)
K (t)

{
(C − l) + (N − 1)

[
C −

∑K
k=1 ky

(N)
k (t)

]}
, 0 ≤ l ≤ C − 1,

µ
N

1

1−y
(N)
K (t)

{
(N − 1)

[
C −

∑K
k=1 ky

(N)
k (t)

]}
, C ≤ l ≤ K − 1.

(2)

Proof. We first prove Equation (1). In this case, we need to specifically deal with State 0. If one
customer arrives at an empty station, then the customer has to walk from the empty station to another
station. It is easy to see that the bikes parked at the tagged station will have two different cases: (a)
There is at least one bike with probability

∑K
i=1 y

(N)
i (t); and (b) there is no bike with probability

y
(N)
0 (t). For Case (a), the customer can rent a bike for his trip; while for Case (b), the customer will

have to walk to another station again until he hopes to be able to rent a bike from a next station within
the ω consequent walks. Notice that the role played by State 0 is depicted in Figure 3, thus we can
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easily observe that the state transitions from State 0 are jointly caused by the arrival, walk and return
(or bike-riding) processes.

Figure 3. The state transitions for computing η
(N)
k (t)

To compute the service rate η(N)
k (t) for 1 ≤ k ≤ K, it is seen from Figure 3 that State 0 (that is,

the tagged station is empty) is a key, and it leads to the rate γ
[
y
(N)
0 (t)

]n
with respect to n consequent

walks, where the n consequent walks correspond to n empty stations with probability
[
y
(N)
0 (t)

]n
for

1 ≤ n ≤ ω. In the final walk with n = ω, either the customer rents a bike at a nonempty station,
or he directly leaves the bike sharing system if no bike is rented after ω consequent walks. Thus the
number of the consequent walks to find an available station may be 1 with probability y

(N)
0 (t), 2

with
[
y
(N)
0 (t)

]2
, and generally, n with

[
y
(N)
0 (t)

]n
for 1 ≤ n ≤ ω. Based on this, for the virtual

time-inhomogeneous M(t)/M(t)/1/K queue, we obtain its service rates in States k for 1 ≤ k ≤ K
as follows:

η
(N)
k (t) = λ+ γy

(N)
0 (t) + γ

[
y
(N)
0 (t)

]2
+ γ

[
y
(N)
0 (t)

]3
+ · · ·+ γ

[
y
(N)
0 (t)

]ω

= λ+ γy
(N)
0 (t)

1−
[
y
(N)
0 (t)

]ω

1− y
(N)
0 (t)

= η(N) (t) ,

which is independent of the number k = 1, 2, . . . ,K.
Now, we prove Equation (2) in terms of the mean-field theory. Note that we can compute the

arrival rates ξ(N)
l (t) for 0 ≤ l ≤ K − 1 according to a detailed probability analysis on States l for

0 ≤ l ≤ K − 1.
For l = 0 (i.e., States 0), all the original C bikes in the tagged station are rented to travel on the

roads. For the other N − 1 stations, our computation for the number of bikes rented to travel on the
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roads is based on the mean-field theory (i.e., under an average setting), thus the expected number of
bikes rented to travel on the roads is given by

(N − 1) ·

[
C −

K∑
k=1

ky
(N)
k (t)

]
,

where
∑K

k=1 ky
(N)
k (t) is the expected number of bikes parked in the tagged station, while C −∑K

k=1 ky
(N)
k (t) is the expected number of bikes rented to travel on the roads from the tagged station.

Therefore, for the N stations, the total expected number of bikes rented to travel on the roads is given
by

C + (N − 1) ·

[
C −

K∑
k=1

ky
(N)
k (t)

]
.

Note that the returning-bike process of each bike is persistent in the sense that the customer keeps
finding an empty position in the next station, it is easy to check that the return rate of each riding
bike arriving at the tagged station is given by

µ+ µy
(N)
K (t) + µ

[
y
(N)
K (t)

]2
+ µ

[
y
(N)
K (t)

]3
+ · · · = µ

1

1− y
(N)
K (t)

,

where
[
y
(N)
K (t)

]n
is the probability that a customer n times continuously returns his bike to n full

stations. Thus we use the mean-field computation to obtain that for State 0 (for l = 0),

ξ
(N)
0 (t) =

1

N

{
C + (N − 1)

[
C −

K∑
k=1

ky
(N)
k (t)

]}
· µ 1

1− y
(N)
K (t)

=
µ

N

1

1− y
(N)
K (t)

{
C + (N − 1)

[
C −

K∑
k=1

ky
(N)
k (t)

]}
.

Similarly, for States l with 1 ≤ l ≤ C − 1, we have

ξ
(N)
l (t) =

µ

N

1

1− y
(N)
K (t)

{
(C − l) + (N − 1)

[
C −

K∑
k=1

ky
(N)
k (t)

]}
.

Finally, for States l with C ≤ l ≤ K, since all the original C bikes are parked in the tagged station,
we obtain

ξ
(N)
l (t) =

µ

N

1

1− y
(N)
K (t)

{
(N − 1)

[
C −

K∑
k=1

ky
(N)
k (t)

]}
,

which is independent of the number l = C,C + 1, . . . ,K. This completes this proof.

Remark 2. (1) In Equation (1), for the number of consequent walks, it may be useful to observe two
special cases: (a) If ω = 0, η(N)

k (t) = λ. (b) If ω → ∞, then η
(N)
k (t) = λ+γy

(N)
0 (t) /

[
1− y

(N)
0 (t)

]
.

(2) The time-inhomogeneous M(t)/M(t)/1/K queue is a fictitious queueing system corre-
sponding to the number of bikes parked in the tagged station, while its virtual arrival and virtual
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service rates are determined by means of the empirical measure process through some mean-field
computation.

(3) It is seen from the proof of Theorem 1 that the different ages of “finding-bike attempts” and
“returning-bike attempts” has not any influence on the mean-field computation due to the memo-
ryless property of the exponential distributions and of the Poisson processes. Thus, the mean-field
method can be successfully applied to our current analysis of the bike sharing system. However,
it will be very difficult (or an open problem) to apply the mean-field method if there exist general
distributions or general renewal processes in the bike sharing system.

In the remainder of this section, we set up a system of mean-field equations by means of the
time-inhomogeneous M(t)/M(t)/1/K queue whose state transition relation is depicted in Figure
2 with the arrival rate ξ

(N)
l (t) for 0 ≤ l ≤ K − 1, and with service rate η

(N)
k (t) = η(N) (t) for

1 ≤ k ≤ K. To establish such mean-field equations, readers nay refer to, such as, Li and Lui [46],
Li et al. [41, 42] and Fricker and Gast [23] for more details.

To apply the mean-field theory, the number of bikes parked in the tagged station is described
as the virtual time-inhomogeneous M(t)/M(t)/1/K queue. Thus we can set up a system of mean-
field equations in terms of the (nonlinear) birth-death process corresponding to the M(t)/M(t)/1/K
queue. To this end, we denote by Q (t) the queue length of the M(t)/M(t)/1/K queue at time
t ≥ 0. Then it is seen from Figure 2 that {Q (t) : t ≥ 0} is a time-inhomogeneous continuous-time
birth-death process whose infinite generator is given by

Vy(N)(t) =




B1 (t) B0 (t)

B2 (t) −Θ
(N)
C (t) ξ

(N)
C (t)

η(N) (t) −Θ
(N)
C (t) ξ

(N)
C (t)

. . . . . . . . .

η(N) (t) −Θ
(N)
C (t) ξ

(N)
C (t)

η(N) (t) −η(N) (t)




, (3)

where

η(N) (t) = λ+ γy
(N)
0 (t)

1−
[
y
(N)
0 (t)

]ω

1− y
(N)
0 (t)

,

for 0 ≤ l ≤ C

ξ
(N)
l (t) =

µ

N

1

1− y
(N)
K (t)

{
(C − l) + (N − 1)

[
C −

K∑
k=1

ky
(N)
k (t)

]}

and
Θ

(N)
l (t) = ξ

(N)
l (t) + η(N) (t) ;

B1 (t) =




−ξ
(N)
0 (t) ξ

(N)
0 (t)

η(N) (t) −Θ
(N)
1 (t) ξ

(N)
1 (t)

. . . . . . . . .

η(N) (t) −Θ
(N)
C−2 (t) ξ

(N)
C−2 (t)

η(N) (t) −Θ
(N)
C−1 (t)




C×C

,
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B0 (t) =
(
0, 0, . . . , 0, ξ

(N)
C−1 (t)

)T

and
B2 (t) =

(
0, 0, . . . , 0, η(N) (t)

)
,

AT denotes the transpose of the vector (or matrix) A.
Using the birth-death process described in Figure 2, we obtain a system of mean-field (or ordi-

nary differential) equations as follows:

d
dt
y
(N)
0 (t) = −ξ

(N)
0 (t) y

(N)
0 (t) + η(N) (t) y

(N)
1 (t) ,

for 1 ≤ k ≤ K − 1

d
dt
y
(N)
k (t) = ξ

(N)
k−1 (t) y

(N)
k−1 (t)−

[
ξ
(N)
k (t) + η(N) (t)

]
y
(N)
k (t) + η(N) (t) y

(N)
k+1 (t) ,

d
dt
y
(N)
K (t) = ξ

(N)
K−1 (t) y

(N)
K−1 (t)− η(N) (t) y

(N)
K (t) .

Now, we write the above system of mean-field equations in a vector form as

d
dt
y(N) (t) = y(N) (t)Vy(N)(t), (4)

with the boundary and initial conditions

y(N) (t) e = 1, y(N) (0) = g, (5)

where g = (g0, g1, . . . , gK) with gi ≥ 0 for 0 ≤ i ≤ K and
∑K

i=0 gi = 1, and e is a column vector
of ones with a suitable dimension in the context.

Remark 3. To deal with the time-inhomogeneous continuous-time birth-death process, readers may
refer to Chapter 8 in Li [38] for more details, where the detailed literatures are surveyed both for the
time-inhomogeneous queues and for the time-inhomogeneous Markov processes.

4. A Lipschitz Condition

In this section, we first establish a Lipschitz condition. Then we prove the existence and unique-
ness of solution to the system of ordinary differential equations by means of the Lipschitz condition.

We write
d
dt
y (t) = y (t)Vy(t), (6)

with the boundary and initial conditions

y (t) e = 1, y (0) = g, (7)

where

Vy(t) =




−a (t) a (t)
b (t) −c (t) a (t)

. . . . . . . . .
b (t) −c (t) a (t)

b (t) −b (t)




, (8)
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b (t) = λ+ γy0 (t)
1− [y0 (t)]

ω

1− y0 (t)
,

a (t) = µ
1

1− yK (t)

[
C −

K∑
k=1

kyk (t)

]

and
c (t) = a (t) + b (t) .

Obviously, that Equations (6) and (7) are a system of first-order ordinary differential equations.

Remark 4. Note that the system of ordinary differential equations (6) and (7) is the limiting version
of Equations (4) and (5) as N → ∞, while the existence of the limit limN→∞ y(N) (t) = y (t) will
be proved in the next section according to the martingale limits and the weak convergence in the
Skorohod space.

To discuss the existence and uniqueness of solution to the system of ordinary differential equa-
tions (6) and (7), in what follows we need to establish a Lipschitz condition by means of a computa-
tional method given in Section 4.1 of Li et al. [41].

For simplicity of description, we first suppress time t from the vector y (t) and its entries yk (t)
for 0 ≤ k ≤ K. Then we rewrite Equations (6) and (7) in a simple form as

d
dt
y = F (y) , ye= 1,y (0) = g, (9)

where

F (y) = yVy = (y0, y1, . . . , yK)




−a a
b −c a

. . . . . . . . .
b −c a

b −b




,

b = λ+
γy0 (1− yω0 )

1− y0
, a =

µ

1− yK

(
C −

K∑
k=1

kyk

)
,

c =
µ

1− yK

(
C −

K∑
k=1

kyk

)
+

(
λ+

γy0 (1− yω0 )

1− y0

)
.

Let
F (y) = (F0 (y) , F1 (y) , . . . , FK−1 (y) , FK (y)) .

Then for k = 0

F0 (y) = −y0
µ

1− yK

(
C −

K∑
k=1

kyk

)
+ y1

[
λ+

γy0 (1− yω0 )

1− y0

]
,

for 1 ≤ k ≤ K − 1

Fk (y) = (yk−1 − yk)
µ

1− yK

(
C −

K∑
k=1

kyk

)
+ (yk+1 − yk)

[
λ+

γy0 (1− yω0 )

1− y0

]
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and for k = K

FK (y) = yK−1
µ

1− yK

(
C −

K∑
k=1

kyk

)
− yK

[
λ+

γy0 (1− yω0 )

1− y0

]
.

Now, we define the norms of a vector x =(x0, x1, . . . , xK) and a matrix A = (ai,j)0≤i,j≤K as
follows:

‖x‖ = max
0≤i≤K

{|xi|}

and

‖A‖ = max
0≤j≤K

{
K∑
i=0

|ai,j |

}
.

It is easy to check that
‖xA‖ ≤ ‖x‖ ‖A‖ .

From (41) of Li et al. [41], the matrix of partial derivatives of the vector function F (y) of
dimension K + 1 is given by

DF (y) =




∂F0(y)
∂y0

∂F1(y)
∂y0

· · · ∂FK(y)
∂y0

∂F0(y)
∂y1

∂F1(y)
∂y1

· · · ∂FK(y)
∂y1

...
...

...
∂F0(y)
∂yK

∂F1(y)
∂yK

∂FK(y)
∂yK




. (10)

To establish the Lipschitz condition of the vector function F (y) of dimension K + 1, it is seen
from Lemma 5 of Li et al. [41] that we need to provide an upper bound of the norm ‖DF (y)‖. To
this end, it is necessary to first give an assumption with respect to the two key numbers y0 and yK as
follows:

Assumption of Problematic Stations: Let δ be a sufficiently small positive number. We assume
that 0 ≤ y0, yK ≤ 1− δ.

Now, we provide some interpretation for practical rationality of the Assumption of Problematic
Stations. Firstly, the probability y0 (t) + yK (t) of problematic stations is always smaller by means
of some management mechanism or control methods (for example, repositioning by trucks, price
incentives, and applications of information technologies), thus it is natural and rational to take the
condition: 0 ≤ y0, yK ≤ 1−δ in practice. Secondly, Theorem 5 in Section 6 will further demonstrate
from the steady-state viewpoint that limt→+∞ y0 (t) = p0 ≤ 1/2 and limt→+∞ yK (t) = pK ≤
1− δ. Finally, if y0 (t) = 1, then yk (t) = 0 for 1 ≤ k ≤ K; while if yK (t) = 1, then yk (t) = 0 for
0 ≤ k ≤ K − 1. Therefore, such a case with either y0 (t) = 1 or yK (t) = 1 will directly lead to the
unavailability of the bike sharing system.

Theorem 2. (1) Under the Assumption of Problematic Stations, ‖DF (y)‖ ≤ M, where

M = 2λ+ γ
ω (ω + 5)

2
+

µ

δ

[(
1 +

1

δ

)
C +

K (K + 1)

2

]
.

(2) The the vector function F (y) of dimension K+1 is continuous and also satisfies the Lipschitz
condition for (t,y) ∈ [0,+∞)×

{
[0, 1− δ]× [0, 1]K−1 × [0, 1− δ]

}
.

Queueing Models and Service Management

59



(3) There exists a unique solution to the system of ordinary differential equations d
dty = F (y),

ye = 1 and y (0) = g for (t,y) ∈ [0,+∞)×
{
[0, 1− δ]× [0, 1]K−1 × [0, 1− δ]

}
.

Proof. (1) It follows from (10) that

‖DF (y)‖ = max
0≤j≤K

{
K∑
i=0

∣∣∣∣
∂Fj (y)

∂yi

∣∣∣∣
}
.

It is easy to check that

∂F0 (y)

∂y0
= − µ

1− yK

(
C −

K∑
k=1

kyk

)
+ γy1

ω−1∑
k=1

kyk0 ,

∂F0 (y)

∂y1
= y0

µ

1− yK
+ λ+ γy0

ω−1∑
k=0

yk0 ,

and for 2 ≤ i ≤ K
∂F0 (y)

∂yi
= y0

iµ

1− yK
.

By using

|yk| ≤ 1, 0 ≤ k ≤ K;
1

1− yK
≤ 1

δ
; 0 ≤ C −

K∑
k=1

kyk ≤ C,

we obtain
K∑
i=0

∣∣∣∣
∂F0 (y)

∂yi

∣∣∣∣ ≤ λ+
µ

δ

(
C +

K (K + 1)

2

)
+ γ

ω (ω + 3)

2
.

Similarly, we obtain that for 1 ≤ j ≤ K − 1

K∑
i=0

∣∣∣∣
∂Fj (y)

∂yi

∣∣∣∣ ≤ 2λ+
µ

δ

(
2C +

K (K + 1)

2

)
+ γ

ω (ω + 5)

2

and
K∑
i=0

∣∣∣∣
∂FK (y)

∂yi

∣∣∣∣ ≤ λ+
µ

δ

[(
1 +

1

δ

)
C +

K (K + 1)

2

]
+ γ

ω (ω + 3)

2
.

Let

M = 2λ+ γ
ω (ω + 5)

2
+

µ

δ

[(
1 +

1

δ

)
C +

K (K + 1)

2

]
.

Then

‖DF (y)‖ = max
0≤j≤K

{
K∑
i=0

∣∣∣∣
∂Fj (y)

∂yi

∣∣∣∣
}

≤ M.

(2) By means of Lemma 5 in Li et al. [41], we obtain that for any two vectors x,y ∈[0, 1− δ]×
[0, 1]K−1 × [0, 1− δ],

‖F (x)− F (y)‖ ≤ sup
0≤t̃≤1

∥∥DF
(
x+t̃ (y − x)

)∥∥ ‖y − x‖ ≤ M ‖y − x‖ .
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This shows that F (y) is continuous and also satisfies the Lipschitz condition for (t,y) ∈ [0,+∞)×{
[0, 1− δ]× [0, 1]K−1 × [0, 1− δ]

}
.

(3) Note that F (y) is continuous and also satisfies the Lipschitz condition for (t,y) ∈ [0,+∞)×{
[0, 1− δ]× [0, 1]K−1 × [0, 1− δ]

}
, it follows from Chapter 1 of Hale [31] that there exists a

unique solution to the system of ordinary differential equations d
dty = F (y), ye = 1 and y (0) = g

for (t,y) ∈ [0,+∞)×
{
[0, 1− δ]× [0, 1]K−1 × [0, 1− δ]

}
. This completes the proof.

In the remainder of this section, we set up a simple relation between the two systems of ordinary
differential equations (4) and (5); and (6) and (7) through a limiting assumption limN→∞ y(N) (t) =
y (t), the correctness of which will further be proved in the next section. To this end, from Equation
(4) we set

G
(
y(N) (t)

)
= y(N) (t)Vy(N)(t)

or a simple form by suppressing t

G
(
y(N)

)
= y(N)Vy(N) .

It follows from (4) and (5) that

d
dt
y(N) = G

(
y(N)

)
, y(N)e = 1.

By using limN→∞ y(N) (t) = y (t), we obtain that for 0 ≤ k ≤ K − 1

lim
N→∞

ξ
(N)
k (t) = a (t) ,

and
lim

N→∞
η(N) (t) = b (t) .

Thus comparing the vector G
(
y(N)

)
with the vector F (y), we obtain

lim
N→∞

G
(
y(N)

)
= F (y) .

Since
d
dt

(
lim

N→∞
y(N) (t)

)
=

d
dt
y =F (y)

and

lim
N→∞

(
d
dt
y(N) (t)

)
= lim

N→∞
G
(
y(N)

)
=F (y) ,

we obtain
d
dt

(
lim

N→∞
y(N) (t)

)
= lim

N→∞

(
d
dt
y(N) (t)

)
.
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5. The Martingale Limit

In this section, we provide a martingale limit (i.e., the weak convergence in the Skorohod space)
for the sequence of empirical measure Markov processes in the bike sharing system.

We define a (K + 1)-dimensional simplex

F =

{
f = (f0, f1, . . . , fK−1, fK) : fk ≥ 0 and

K∑
k=0

fk = 1

}
,

and endow F with the metric

d (x, y) = sup
0≤k≤K

|xk − yk|
k + 1

, x, y ∈ F .

Obviously, d (x, y) ≤ 1 for x, y ∈ F . Under the metric, the space F is compact, complete and
separable. Let DF [0,+∞) be the space of right-continuous paths with left limits in F endowed
with the Skorohod metric. For the Skorohod space and the weak convergence, readers may refer to
Billingsley [3] and Chapter 3 of Ethier and Kurtz [20] for more details.

For the the empirical measure Y(N) (t), we write

W
(
Y(N) (t)

)
=




A
(N)
1 (t) A

(N)
0 (t)

A
(N)
2 (t) −Γ

(N)
C (t) α

(N)
C (t)

β(N) (t) −Γ
(N)
C (t) α

(N)
C (t)

. . . . . . . . .

β(N) (t) −Γ
(N)
C (t) α

(N)
C (t)

β(N) (t) −β(N) (t)




,

where

β(N) (t) = λ+ γY
(N)
0 (t)

1−
[
Y

(N)
0 (t)

]ω

1− Y
(N)
0 (t)

,

for 0 ≤ l ≤ C

α
(N)
l (t) =

µ

N

1

1− Y
(N)
K (t)

{
(C − l) + (N − 1)

[
C −

K∑
k=1

kY
(N)
k (t)

]}

and
Γ
(N)
l (t) = α

(N)
l (t) + β(N) (t) ;

A
(N)
1 (t) =




−α
(N)
0 (t) α

(N)
0 (t)

β(N) (t) −Γ
(N)
1 (t) α

(N)
1 (t)

. . . . . . . . .

β(N) (t) −Γ
(N)
C−2 (t) α

(N)
C−2 (t)

β(N) (t) −Γ
(N)
C−1 (t)




C×C

,

A
(N)
0 (t) =

(
0, 0, . . . , 0, α

(N)
C−1 (t)

)T
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and
A

(N)
2 (t) =

(
0, 0, . . . , 0, β(N) (t)

)
.

For the sequence
{
Y(N)(t), t ≥ 0

}
of the empirical measure Markov processes, by means of a

similar computation for setting up the system of mean-field equations (4) and (5), we can obtain a
system of stochastic differential equations as follows:

d
dt
Y(N) (t) = Y(N) (t)W

(
Y(N) (t)

)
, (11)

with the boundary and initial conditions

Y(N) (t) e = 1, Y(N) (0) = g. (12)

For the random vector Y (t) = (Y0 (t) , Y1 (t) , . . . , YK (t)), we write

W (Y (t)) =




−α (t) α (t)
β (t) −τ (t) α (t)

. . . . . . . . .
β (t) −τ (t) α (t)

β (t) −β (t)




, (13)

β (t) = λ+ γY0 (t)
1− [Y0 (t)]

ω

1− Y0 (t)
,

α (t) = µ
1

1− YK (t)

[
C −

K∑
k=1

kYk (t)

]

and
τ (t) = α (t) + β (t) .

Based on this, we write
d
dt
Y (t) = Y (t)W (Y (t)) , (14)

with the boundary condition
Y (t) e = 1 (15)

and the initial condition
Y (0) = g. (16)

Using a similar analysis to that in Theorem 2, we can show that there exists a unique solution to
the system of stochastic differential equations (14) to (16), where the Assumption of Problematic
Stations is also necessary.

The following lemma is useful for discussing the mean-field limit Y (t) = limN→∞Y(N) (t)
for t ≥ 0.

Lemma 1. For the sequence
{
Y(N)(t), t ≥ 0

}
of Markov processes,

M(N) (t) = Y(N) (t)−Y(N) (0)−
∫ t

0

{
Y(N) (x)W

(
Y(N) (x)

)}
dx (17)

is a martingale with respect to N ≥ 1.
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Proof. Note that the generator of the Markov process
{
Y(N)(t), t ≥ 0

}
is given by the matrix

W
(
Y(N) (t)

)
, thus using Dynkin’s formula, e.g., see Equation (III.10.13) in Rogers and Williams

[57] or Page 162 in Ethier and Kurtz [20], and it is easy to check that M(N) (t) is a martingale with
respect to N ≥ 1. This completes the proof.

The following theorem gives the mean-field limit of the sequence
{
Y(N)(t), t ≥ 0

}
of Markov

processes. Note that this mean-field limit is a key to proving the asymptotic independence of the bike
sharing system.

Theorem 3. If Y(N) (0) converges weakly to Y (0) ∈ F as N → ∞, then
{
Y(N) (t) , N ≥ 1

}
converges weakly in DF [0,+∞) endowed with the Skorohod topology to the solution Y (t) to the
system of stochastic differential equations (14) to (16).

Proof. The proof can be completed by the following three steps.
Step One: The relative compactness of Y(N) (t) in DF [0,+∞)
Note that the space F is of dimension K+1, we use Paragraphs 8.6 to 8.9 of Chapter 3 of Ethier

and Kurtz [20] (see Pages 137 to 139) to prove the relative compactness of Y(N) (t) in DF [0,+∞).
To that end, we only need to indicate three conditions given in Chapter 3 of Ethier and Kurtz [20] as
follows:

(a) EK7.7 For every ε > 0 and rational r ≥ 0, there exists a compact set Γε,r ∈ F such that

lim
N→∞

inf
y∈Γε,r

P
{
d
(
Y(N) (t) , y

)
< ε

}
≥ 1− ε.

(b) EK8.37 For all T > 0, there exists χ > 0, D > 0 and τ > 1 such that for all N ≥ 1 and all
0 ≤ h ≤ t ≤ T + 1

E
[
d

χ
2

(
Y(N) (t+ h) ,Y(N) (t)

)
d

χ
2

(
Y(N) (t) ,Y(N) (t− h)

)]
≤ Dhτ .

(c) EK8.30 For the above value χ > 0

lim
δ→0

lim
N→∞

supE
[
dχ

(
Y(N) (δ) ,Y(N) (0)

)]
= 0.

In what follows we prove each of the three conditions.
Firstly, we prove (a) EK7.7. Taking Γε,r = F , and note that the space F is compact, this directly

gives the proof of (a) EK7.7 through a similar analysis to that in Theorem 7.2 of Chapter 3 of Ethier
and Kurtz [20] (see Pages 128 to 129).

Secondly, we prove (b) EK8.37. Let χ = 2. Then by using Remark 8.9 of Chapter 3 of Ethier
and Kurtz [20] (see Page 139), we obtain

E
[
d

χ
2

(
Y(N) (t+ h) ,Y(N) (t)

)
d

χ
2

(
Y(N) (t) ,Y(N) (t− h)

)]

= E
[
d
(
Y(N) (t+ h) ,Y(N) (t)

)]
· E

[
d
(
Y(N) (t) ,Y(N) (t− h)

)]

≤ [(λ+ µ+ γ)h]2 , (18)

this indicates that (b) EK8.37 holds for the parameters: T , t, h, D = (λ+ µ+ γ)2 and τ = 2.
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Finally, we prove (c) EK8.30. It follows from (18) that

E
[
dχ

(
Y(N) (δ) ,Y(N) (0)

)]
≤ [(λ+ µ+ γ) δ]χ ,

this gives
lim
δ→0

lim
N→∞

supE
[
dχ

(
Y(N) (δ) ,Y(N) (0)

)]
= 0.

Step Two: The weakly convergent limit of
{
Y(N) (t)

}
has almost surely continuous sample

paths for t ≥ 0
For Y ∈ DF [0,+∞), we define

J (Y, u) = sup
0≤t≤u

{
d
(
Y (t) ,Y

(
t−

))}

and

J (Y) =

∫ +∞

0
e−uJ (Y, u) du.

Using Theorem 10.2 (a) of Chapter 3 of Ethier and Kurtz [20] (see Page 148), it is easy to check
that for all N ≥ 1 and u ≥ 0, J

(
Y(N), u

)
≤ 1/N almost surely, which leads to J

(
Y(N)

)
≤ 1/N

almost surely. Thus, as N → ∞, if Y(N) (t) ⇒ Y (t), then Y (t) is almost surely continuous if and
only if J

(
Y(N)

)
⇒ 0, where “⇒” denotes the weak convergence.

Step Three: The martingale limit
Given the continuity of any limit point, using the continuous mapping theorem (e.g., see Whitt

[75]), we prove that Equations (14) and (15) are satisfied by any limit point: Y (t) = limN→∞Y(N) (t)
for t ≥ 0 as follows:

Using the martingale central limit theorem (e.g., see Theorem 1.4 of Chapter 7 of Ethier and
Kurtz [20] in Page 339), it follows from Lemma 1 that as N → ∞, 〈M (N)

k (t)〉 P→ 0 for t ≥ 0, where
〈·〉 denotes the quadratic variation. Note that 〈M (N)

k (t)〉 only changes at time t when M
(N)
k (t)

jumps, and it increases by the square of the jump sizes, while the jump sizes are of order 1/N and the
jump rates are of order N . Using a similar analysis to that in Theorem 2 of Section 4, we can prove
that there exists a unique solution to the system of stochastic differential equations (14) and (15)
for any initial value. Noting the relative compactness of Y(N) (t) in DF [0,+∞) and using Chapter
3 of Ethier and Kurtz [20], we prove that the sequence

{
Y(N) (t) , N ≥ 1

}
of Markov processes

converges in the space DF [0,+∞) to the Markov process {Y (t) , N ≥ 1}. This completes the
proof.

Finally, it is necessary to provide some interpretation on Theorem 3. If limN→∞Y(N) (0) =
y (0) = g ∈ Ω in probability, then Theorem 3 shows that Y (t) = limN→∞Y(N) (t) is concentrated
on the trajectory Img = {y(t,g) : t ≥ 0}, where y(t,g) = E [Y (t) | Y (0) = g], and y(0,g) = g.
This indicates the functional strong law of large numbers for the time evolution of the fraction of
each state of this bike sharing system, thus the sequence

{
Y(N) (t) , t ≥ 0

}
of Markov processes

converges weakly to the expected fraction vector y(t,g) as N → ∞, that is, for any T > 0

lim
N→∞

sup
0≤s≤T

∥∥∥Y(N) (s)− y(s,g)
∥∥∥ = 0 in probability. (19)
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Remark 5. To study the weak convergence in the the Skorohod space for the sequence
{
Y(N) (t) , t ≥ 0

}
of Markov processes, there are three frequently used methods: (1) Operator semigroups, e.g., Vve-
denskaya et al. [70], Li and Lui [46], and Li et al. [41, 42]; (2) martingale limits, for example,
Turner [69], and Graham [27, 28]; and (3) density-dependent jump Markov processes, for instance,
Chapter 11 of Ethier and Kurtz [20], and Mitzenmacher [50]. Here, this paper takes the method of
martingale limits to establish an outline of such a proof.

Remark 6. Under the weak convergence in the the Skorohod space for the sequence {Y(N) (t),
t ≥ 0} of Markov processes, Theorem 3 demonstrates the correctness of the system of mean-field
equations (6) and (7), i.e., as N → ∞, Equations (6) and (7) are the limits of Equations (4) and (5),
respectively.

6. The Fixed Point and Nonlinear Analysis

In this section, we analyze the fixed point of the limiting system of mean-field equations. We
first prove that the fixed point is unique in terms of the Birkhoff center. Then we simply analyze the
asymptotic independence of the bike sharing system, and also discuss the limiting interchangeability
with respect to N → ∞ and t → +∞. Note that the uniqueness of the fixed point is a key in
numerical computation of the fixed point in terms of a system of nonlinear equations.

Let the vector p be the fixed point of the limiting expected fraction vector y(t). Then

p = lim
t→+∞

y (t) ,

where p = (p0, p1, . . . , pK−1, pK) and

pk = lim
t→+∞

yk (t) , 0 ≤ k ≤ K.

This gives
p = lim

t→+∞
lim

N→∞
y(N)(t).

We write
b (p) = lim

t→+∞
b (t) = λ+ γp0

1− pω0
1− p0

,

a (p) = lim
t→+∞

a (t) = µ
1

1− pK

(
C −

K∑
k=1

kpk

)

and
c (p) = a (p) + b (p) .

Thus it follows from (8) that

Vp = lim
t→+∞

Vy(t) =




−a (p) a (p)
b (p) −c (p) a (p)

. . . . . . . . .
b (p) −c (p) a (p)

b (p) −b (p)




, (20)
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which is the infinitesimal generator of an irreducible, aperiodic and positive-recurrent birth-death
process due to the fact that a (p) > 0, b (p) > 0, and the size of the matrix Vp is finite.

On the other hand, it is easy to see that the matrix Vy(t) given in (13) is also the infinitesimal
generator of a continuous-time birth-death process with state space {0, 1, . . . ,K}. Since a (t) > 0,
b (t) > 0 and Vy(t)e = 0, the birth-death process Vy(t) is irreducible, aperiodic and positive-
recurrent. In this case, it is seen from Vvedenskaya et al. [70] or Mitzenmacher [50] that

lim
t→+∞

d
dt
y (t) = 0

or
lim

t→+∞
y (t)Vy(t) = 0.

Thus it follows from (6) and (7) that {
pVp = 0,

pe = 1.
(21)

6.1. Expressions for the fixed point

Note that the matrix Vp may be viewed as the infinitesimal generator of an irreducible, aperiodic
and positive-recurrent birth-death process who corresponds to the M/M/1/K queue with arrival rate
a (p) and service rate b (p). Let ρ (p) = a (p) /b (p). It is easy to check that (a) if ρ (p) = 1, then

pk =
1

K + 1
, 0 ≤ k ≤ K; (22)

and (b) if ρ (p) �= 1, then

pk = ρk (p)
1− ρ (p)

1− ρK+1 (p)
, 0 ≤ k ≤ K. (23)

This demonstrates that if ρ (p) �= 1, then the probability vector p is the fixed point of the following
nonlinear vector equation

p =

(
1− ρ (p)

1− ρK+1 (p)
, ρ (p)

1− ρ (p)

1− ρK+1 (p)
, . . . , ρK (p)

1− ρ (p)

1− ρK+1 (p)

)
. (24)

Note that Li [40] gave some iterative algorithms for computing the fixed point p by means by the
system of nonlinear equations (21) or (24).

In the following, we set up another nonlinear vector equation satisfied by the fixed point p.
Different from Equation (24), the new nonlinear vector equation can be employed to study a more
general block-structure bike sharing system with either a Markovian arrival process (MAP) or a
phase-type (PH) service time, e.g., see Li [38] and Li and Lui [46] for more details.

To solve the system of equations (21) from a more general setting, let rmin (p) and gmin (p) be
the minimal nonnegative solutions to the following two nonlinear equations

a (p)− [a (p) + b (p)] r (p) + b (p) r2 (p) = 0

and
a (p) g2 (p)− [a (p) + b (p)] g (p) + b (p) = 0,
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respectively. Then

rmin (p) =
a (p) + b (p)− |a (p)− b (p)|

2b (p)

and

gmin (p) =
a (p) + b (p)− |a (p)− b (p)|

2a (p)
.

Clearly, we have

rmin (p) b (p) = gmin (p) a (p) =
a (p) + b (p)− |a (p)− b (p)|

2
.

Let

Ωp =

{(
rmin (p) ,

1

rmin (p)

)
: a (p) > b (p)

}

⋃{(
1

gmin (p)
, gmin (p)

)
: a (p) < b (p)

}

⋃
{(1, 1) : a (p) = b (p)} .

Then for a pair (r (p) , g (p)) ∈ Ωp, we have

r (p) g (p) = 1.

The following theorem illustrates that each element of the fixed point p is a combinational sum
of two geometric solutions if a (p) �= b (p).

Theorem 4. If a (p) �= b (p) and (r (p) , g (p)) ∈ Ωp, then for 0 ≤ k ≤ K,

pk = c1r
k (p) + c2g

K−k (p) , (25)

where the two constants c1 and c2 are determined by



c1 =
gK−1(p)[b(p)−g(p)a(p)]

a(p)−r(p)b(p)

gK−1(p)[b(p)−g(p)a(p)]
a(p)−r(p)b(p)

1−rK+1(p)
1−r(p)

− 1−gK+1(p)
1−g(p)

,

c2 =
1

gK−1(p)[b(p)−g(p)a(p)]
a(p)−r(p)b(p)

1−rK+1(p)
1−r(p)

− 1−gK+1(p)
1−g(p)

.
(26)

Proof. If a (p) �= b (p), then the proof contains three steps. Firstly, it is easy to check that for
1 ≤ k ≤ K − 1, pk = c1r

k (p) + c2g
K−k (p) with (r (p) , g (p)) ∈ Ωp can satisfy the equation

pk−1a (p)− pk [a (p) + b (p)] + pk+1b (p) = 0.

Secondly, for k = 0,K we obtain

−
[
c1 + c2g

K (p)
]
a (p) +

[
c1r (p) + c2g

K−1 (p)
]
b (p) = 0 (27)

and [
c1r

K−1 (p) + c2g (p)
]
a (p)−

[
c1r

K (p) + c2
]
b (p) = 0. (28)
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It follows from (27) and (28) that

c1 =
gK−1 (p) b (p)− gK (p) a (p)

a (p)− r (p) b (p)
c2 (29)

and

c1 =
b (p)− g (p) a (p)

rK−1 (p) a (p)− rK (p) b (p)
c2 (30)

respectively. Note that r (p) g (p) = 1 for (r (p) , g (p)) ∈ Ωp, we have

b (p)− g (p) a (p)

rK−1 (p) a (p)− rK (p) b (p)
=

1
rK−1(p)

[b (p)− g (p) a (p)]

a (p)− r (p) b (p)

=
gK−1 (p) b (p)− gK (p) a (p)

a (p)− r (p) b (p)
,

this demonstrates that (29) is the same as (30). Finally, using (25) and
∑K

k=0 pk = 1 we obtain

c1
1− rK+1 (p)

1− r (p)
+ c2

1− gK+1 (p)

1− g (p)
= 1,

which, together with (29), follows (26) in order to express the constants c1 and c2. This completes
the proof.

Using Theorem 4, the probability vector p is the fixed point of the following nonlinear vector
equation

p =
(
c1 + c2g

K (p) , c1r (p) + c2g
K−1 (p) , . . . , c1r

K−1 (p) + c2g (p) , c1r
K (p) + c2

)
. (31)

We write
Sp =

{
p : pVp = 0,pe = 1

}
.

Then it is clear that

Sp =

{
p : pk = ρk (p)

1− ρ (p)

1− ρK+1 (p)
, 0 ≤ k ≤ K

}

=
{
p : pk = c1r

k (p) + c2g
K−k (p) , 0 ≤ k ≤ K

}
.

Since the equation pVp = 0 (or pk = ρk (p) [1− ρ (p)] /
[
1− ρK+1 (p)

]
, or pk = c1r

k (p) +

c2g
K−k (p) , 0 ≤ k ≤ K) is nonlinear, it is possible for a more complicated bike sharing system

that there are multiple elements (solutions) in the set Sp. In fact, an argument by analytic function
indicates that the elements of the set Sp are isolated.

To describe the isolated element structure of the set Sp, we often need to use the Birkhoff center
of the mean-field dynamic system, which leads to check whether the fixed point is unique or not.
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6.2. The Birkhoff center and uniqueness

For the Birkhoff center, our discussion includes the following two cases:
Case one: N → ∞. In this case, we denote a solution to the system of differential equations (6)

and (7) by Φ (t). Thus, the Birkhoff center of the solution Φ (t) is defined as

Θ =

{
P ∈ F : P = lim

k→∞
Φ (tk) for any scale sequence

{tk} with tl ≥ 0 for l ≥ 1 and lim
k→∞

tk = +∞
}
.

Note that perhaps Θ contains the limit cycles or the stationary points (i.e., the local extremum points
or the saddle points), it is clear that Sp ⊂ Θ. Obviously, the limiting empirical measure Markov
process {Y (t) : t ≥ 0} spends most of its time in the Birkhoff center Θ.

Case two: t → +∞. In this case, we write

π(N) = lim
t→+∞

y(N) (t) ,

since for each N = 1, 2, 3, . . ., the bike sharing system with N identical stations is stable.
Let

Ξ =

{
π ∈ F : π = lim

k→∞
π(Nk) for any positive integer sequence

{Nk} with 1 ≤ N1 ≤ N2 ≤ N3 ≤ · · · and lim
k→∞

Nk = ∞
}
.

It is easy to see that
Sp ⊂ Ξ ⊂ Θ.

Therefore, the set Θ− Sp contains the limit cycles or the saddle points.
Note that {

pVp = 0,

pe = 1,

this gives that for k = 0

−µp0 (1− p0)

(
C −

K∑
k=1

kpk

)
+ p1 [λ (1− p0) + γp0 (1− pω0 )] (1− pK) = 0, (32)

for 1 ≤ k ≤ K − 1

−µ(1− p0)

(
C −

K∑
k=1

kpk

)
(pk−1 − pk) + [λ (1− p0) + γp0 (1− pω0 )] (1− pK) (pk − pk+1) = 0,

(33)
and for k = K

−µpK−1(1− p0)

(
C −

K∑
k=1

kpk

)
+ pK [λ (1− p0) + γp0 (1− pω0 )] (1− pK) = 0, (34)
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with the boundary condition

p0 + p1 + p2 + · · ·+ pK = 1. (35)

Note that under the Assumption of Problematic Stations (i.e. 0 < p0, pK < 1 − δ), the system of
nonlinear equations (21) is the same as the system of nonlinear equations (32) to (35).

The following theorem gives an important result: The fixed point p ∈ Sp is unique. Notice that
the uniqueness of the fixed point plays a key role in numerical computation for performance measures
of the bike sharing system. On the other hand, this proof uses the system of nonlinear equations (32)
to (35) by means of the fact that the two special solutions (1, 0, . . . , 0, 0) and (0, 0, . . . , 0, 1) are not
in the set Sp.

Theorem 5. Let |Sp| denote the number of elements of the set Sp. Then |Sp| = 1. This shows that
the fixed point is unique.

Proof. This proof has two parts: (1) The existence of the fixed point p, which is easily dealt with by
the fact that p is the stationary probability vector of the ergodic birth-death process Vp; and (2) the
uniqueness of the fixed point p, which can be proved by means of the unique point of intersection
either between the quadratic function f0 (p0) and the polynomial function h0 (p0), or between the
quadratic function fn (pn) and the linear function hn (pn) for 1 ≤ n ≤ K − 1 as follows.

Based on the system of nonlinear equations (32) to (35), the uniqueness of the fixed point p is
proved through the following three steps:

Step one: Analyzing p0. In this case, we write

f0 (p0) = µp0 (1− p0)

(
C −

K∑
k=1

kpk

)

and
h0 (p0) = p1 [λ (1− p0) + γp0 (1− pω0 )] (1− pK) .

It is easy to check that

f0 (0) = 0, f0 (1) = 0, f0

(
1

2

)
=

1

4
µ

(
C −

K∑
k=1

kpk

)
> 0,

and for p0 ∈ (0, 1)

d
dp0

f0 (p0) = (1− 2p0)µ

(
C −

K∑
k=1

kpk

)

=




> 0, 0 < p0 <
1
2 ,

= 0, p0 =
1
2 ,

< 0, 1
2 < p0 < 1,

and
d2

d (p0)
2 f0 (p0) = −2µ

(
C −

K∑
k=1

kpk

)
< 0,
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this demonstrates that f0 (p0) is a concave function with the maximal value f0
(
1
2

)
> 0 at p0 = 1/2.

Now, we analyze the polynomial function h0 (p0) for p0 ∈ (0, 1). It is easy to see that

h0 (0) = λp1 (1− pK) > 0, h0 (1) = 0.

For p0 ∈ (0, 1)

d
dp0

h0 (p0) = [γ − λ− γ (1 + ω) pω0 ] p1 (1− pK)

=




> 0, p0 > ω

√
γ−λ

γ(1+ω) ,

= 0, p0 = ω

√
γ−λ

γ(1+ω) ,

< 0, p0 < ω

√
γ−λ

γ(1+ω) .

(36)

Since h0 (0) > 0 and h0 (1) = 0, it is seen from (36) that only one case: p0 < ω

√
γ−λ

γ(1+ω) can hold;

while the other two cases are incorrect because the derivative d
dp0

h0 (p0) ≥ 0 for p0 ∈ (0, 1) can not
result in such two values: h0 (0) > 0 and h0 (1) = 0. Thus we obtain

p0 <
ω

√
γ − λ

γ (1 + ω)
< ω

√
1

(1 + ω)
≤ 1.

Note that for p0 ∈ (0, 1)

d2

d (p0)
2h0 (p0) = −γω (1 + ω) pω−1

0 p1 (1− pK) < 0,

thus h0 (p0) is a decreasing and concave function from Point (0, h0 (0)) to (1, 0) without any extreme
value.

Based on the above analysis, it is seen from Figure 4 (a) that there exists a unique solution to the
nonlinear equation f0 (p0) = h0 (p0) for p0 ∈ (0, 1− δ).

Figure 4. The uniqueness of the fixed point
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Step two: Analyzing pk for 1 ≤ k ≤ K − 1. In this case, we write

fk (pk) = µ(1− p0)

(
C −

K∑
k=1

kpk

)
(pk−1 − pk)

and
hk (pk) = [λ (1− p0) + γp0 (1− pω0 )] (1− pK) (pk − pk+1).

Note that

fk (0) = µ(1− p0)


C −

K∑
i �=k

ipi


 pk−1 > 0,

fk (pk−1) = 0;

and for 0 < pk < pk−1

d
dpk

fk (pk) = µ(1− p0)

[
−k(pk−1 − pk)−

(
C −

K∑
k=1

kpk

)]
< 0,

d2

dp2k
fk (pk) = 2kµ(1− p0) > 0,

thus the quadratic function fk (pk) is a strictly decreasing convex function for 0 < pk < pk−1.
Now, we consider the linear function hk (pk). We obtain

hk (0) = − [λ (1− p0) + γp0 (1− pω0 )] (1− pK) pk+1 < 0,

and if pk = 1, then pi = 0 for i �= k with 1 ≤ i ≤ K, and it is clear that

hk (1) = λ > 0.

Since
d

dpk
hk (pk) = [λ (1− p0) + γp0 (1− pω0 )] (1− pK) > 0,

the linear function hk (pk) is strictly increasing for pk ∈ (0, 1). Therefore, it is seen from Figure 4
(b) that there exists a unique solution pk to the equation fk (pk) = hk (pk).

Step three: Analyzing pK . Since pk is the unique solution to the equation fk (pk) = hk (pk)
for 0 ≤ k ≤ K − 1, it is clear that pK can uniquely determined by means of the relation that
pK = 1−

∑K−1
k=0 pk. This completes the proof.

Now, we provide a simple discussion for the limiting interchangeability of the vector y(N)(t)
as N → ∞ and t → +∞. Note that the limiting interchangeability is always necessary and use-
ful in many practical applications when using the stationary probabilities of the limiting process
{Y(t) : t ≥ 0} to give an effective approximation for performance analysis of the bike sharing sys-
tem.

From |Sp| = 1 by Theorem 5, it is easy to see that

lim
t→+∞

lim
N→∞

y(N) (t) = lim
t→+∞

y (t) = P
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and
lim

N→∞
lim

t→+∞
y(N) (t) = lim

N→∞
P(N) = P.

This gives
lim

t→+∞
lim

N→∞
y(N)(t) = lim

N→∞
lim

t→+∞
y(N)(t) = p.

Therefore, we have
lim

N→∞
t→+∞

y(N)(t) = p.

Finally, we provide a simple discussion on the asymptotic independence of this bike sharing
system. To this end, the uniqueness of the fixed point given by |Sp| = 1 of Theorem 5 plays a key
role. Using Corollaries 3 and 4 of Benaim and Le Boudec [2], we obtain the asymptotic independence
of the queueing processes of the bike sharing system as follows:

lim
t→+∞

lim
N→∞

P
{
X

(N)
1 (t) = i1, X

(N)
2 (t) = i2, . . . , X

(N)
k (t) = ik

}

= lim
N→∞

lim
t→+∞

P
{
X

(N)
1 (t) = i1, X

(N)
2 (t) = i2, . . . , X

(N)
k (t) = ik

}

= pi1pi2 · · · pik

and

lim
N→∞

lim
t→+∞

1

t

∫ t

0
1{

X
(N)
1 (t)=i1,X

(N)
2 (t)=i2,...,X

(N)
k (t)=ik

}dt

= lim
t→+∞

lim
N→∞

1

t

∫ t

0
1{

X
(N)
1 (t)=i1,X

(N)
2 (t)=i2,...,X

(N)
k (t)=ik

}dt

= pi1pi2 · · · pik a.s.

Remark 7. For a more complicated bike sharing system, it is possible to have |Sp| ≥ 2. For this case
with |Sp| ≥ 2, the metastability of the bike sharing system is a key, and it can be roughly described
as an interesting phenomenon which occurs when the bike sharing system stays a very long time in
some abnormal state before reaching its normal state. To study the metastability, a useful method is
to determine a Lyapunov function g (y) for the system of differential equations (such as, (6) and (7)).
Therefore, we need to find a continuously differentiable, bounded from below, function g (y) defined
on [0, 1]K+1 such that

yVy∇g (y) ≤ 0.

Note that yVy∇g (y) = 0 if yVy = 0, which is satisfied by y = p. On the other hand, some
properties of the function g (y) allow one to discriminate the stable points (the local minima of g (y))
from the unstable points (the local maxima or saddle points of g (y)) in the study of metastability.

In general, it is not easy to give an analytic solution to the system of nonlinear equations (21),
but its numerical solution may always be simple and available. In the rest of this paper, we shall
develop such a numerical solution, and give numerical computation for performance measures of
this bike sharing system including the steady-state probability of the problematic stations, and the
stationary expected number of bikes at the tagged station.
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7. Numerical Analysis

In this section, we use some numerical examples to investigate the steady-state probability of
the problematic stations. Based on this, performance analysis of the bike sharing system will focus
on five points: (1) p0; (2) pK ; (3) p0 + pK ; (4) E [Q] =

∑K
k=1 kpk; and (5) the profit R.

Note that {
pVp = 0,

pe = 1,

this gives the system of nonlinear equations (32) to (35) whose solution is unique by means of
|Sp| = 1 by Theorem 5. Also, we can numerically compute the unique solution, i.e., the fixed point
p. Furthermore, the fixed point p is employed in numerical computation for performance measures of
the bike sharing system. Based on this, we use some numerical examples to give valuable observation
and understanding with respect to design and operations of the bike sharing systems. Therefore,
such a numerical analysis will become more and more useful in the study of bike sharing systems in
practice.

7.1. Analysis of p0

Note that p0 is a probability that there is no bike in a tagged station, thus it is also the probability
that the arriving customer can not rent a bike in the tagged station. To design a better bike sharing
system, we hope that the value of p0 is as small as possible, and this can be realized through taking a
suitable parameters: C,K, λ, µ, γ and ω, where C,K and µ are controlled by the station; while λ, γ
and ω are given by the customers.

In this bike sharing system, we take that C = 30, K = 50, ω = 1 and γ = 0.25. The left one of
Figure 5 shows how the probability p0 depends on λ ∈ (10, 30) when µ = 0.3, 1 and 8, respectively.
It is seen that p0 increases either as λ increases or as µ decreases. Note that the numerical results
are intuitively reasonable because what λ increases quickens up the rental rate of bikes at the tagged
station, while what µ decreases reduces the return rate of bikes at the tagged station. Hence the
probability p0 increases as the number of bikes parked at the tagged station decreases for the two
cases.

Figure 5. p0 vs. λ, µ and γ

For the bike sharing system, we take that C = 30, K = 50, ω = 1 and µ = 4. The right
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one of Figure 5 indicates how the probability p0 depends on λ ∈ (5, 15) when γ = 0.05, 0.5 and 1,
respectively. It is seen that p0 increases as λ increases or as γ decreases.

7.2. Analysis of pK

Different from p0 given in Subsection 7.1, pK is a probability that the bikes are full in a tagged
station, thus pK is also the probability that the bike-riding customer can not return his bike at the
tagged station. To design a better bike sharing system, we hope that the value of pK is as small as
possible through taking a suitable parameters: C,K, λ, µ, γ and ω.

In this bike sharing system, we take that C = 30, K = 50, ω = 1 and γ = 0.25. The left one of
Figure 6 shows how the probability pK depends on λ ∈ (10, 30) when µ = 4, 8 and 12, respectively.
It is seen that pK decreases either as λ increases or as µ decreases. Note that what λ increases speeds
up the rental rate of bikes at the tagged station, while what µ decreases reduces the return rate of
bikes at the tagged station.

Figure 6. pK vs. λ, µ and γ

For the bike sharing system, we take that C = 30, K = 50, ω = 1 and µ = 7. The right one
of Figure 6 indicates how the probability pK depends on λ ∈ (10, 30) when γ = 0.05, 0.5 and 3,
respectively. It is seen that pK decreases as λ increases or as γ increases.

7.3. Analysis of p0 + pK

Based on the above two analysis for p0 and pK , we further hope that the value of p0 + pK can
be as small as possible through taking a suitable parameters: C,K, λ, µ, γ and ω.

In this bike sharing system, we take that C = 30, K = 50, ω = 1 and γ = 0.25. The left one
of Figure 7 shows how the probability p0 + pK depends on λ ∈ (10, 30) when µ = 6, 8 and 10,
respectively. It is seen that p0 + pK decreases either as λ increases or as µ decreases. Comparing
Figure 7 with Figures 5 and 6, it is seen that pK has a bigger influence on the probability p0 + pK
than p0.

For the bike sharing system, we take that C = 30, K = 50, ω = 1 and µ = 12. The right one of
Figure 7 indicates how the probability p0 + pK depends on λ ∈ (15, 30) when γ = 0.05, 0.5 and 1,
respectively. It is seen that p0 + pK decreases as λ increases or as γ increases.
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Figure 7. p0 + pK vs. λ, µ and γ

7.4. Analysis of E [Q]

From E [Q] =
∑K

k=1 kpk, it is seen that E [Q] is the stationary expected number of bikes
parked at the tagged station. Obviously, a customer who is renting a bike likes a bigger E [Q], while
a customer who is returning a bike likes a smaller E [Q]. In addition, E [Q] can also be used to
express the profit of the tagged station as follows:

R = −cE [Q] + ψ {C − E [Q]} ,

where c is the cost price per bike and per time unit when a bike is parked in the tagged station, and ψ
is the benefit price per bike and per time unit when a bike is rented from the tagged station.

In this bike sharing system, we take that C = 30, K = 50, ω = 1 and γ = 0.25. The left
of Figure 8 shows how the stationary mean E [Q] depends on λ ∈ (10, 30) when µ = 2, 5 and 8,
respectively. It is seen that E [Q] decreases either as λ increases or as µ decreases.

Figure 8. E [Q] vs. λ, µ and γ

For the bike sharing system, we take that C = 20, K = 50, ω = 1 and µ = 7. The right of
Figure 8 indicates how the stationary mean E [Q] depends on λ ∈ (10, 30) when γ = 0.05, 0.1 and
6, respectively. It is seen that E [Q] decreases as λ increases or as γ increases.
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8. Concluding Remarks

In this paper, we apply the mean-field theory to studying a large-scale bike sharing system,
where the mean-field computation can partly overcome the difficulty of state space explosion in
more complicated bike sharing systems. We first use an N -dimensional Markov process to express
the states of the bike sharing system, and construct an empirical measure Markov process of the
N -dimensional Markov process. Then we set up the system of mean-field equations by means of a
virtual time-inhomogeneous M(t)/M(t)/1/K queue whose arrival and service rates are determined
through some mean-field computation. Furthermore, we employ the martingale limit to investigate
the limiting behavior of the empirical measure process, and prove that the fixed point is unique. This
illustrates the asymptotic independence of the bike sharing system. Based on this, we can compute
the fixed point through a nonlinear birth-death process, and provide some effective algorithms for
computing the steady-state probability of the problematic stations. Finally, we use some numerical
examples to give valuable observation on how the steady-state probability of the problematic stations
depends on some crucial parameters of the bike sharing system.

This paper provides a complete picture on how to use the mean-field theory, the time-inhomogeneous
queues, the martingale limits and the nonlinear Markov processes to analyze performance measures
of the large-scale bike sharing systems. This picture is described as the following four key steps:
(1) Setting up system of mean-field equations, (2) proofs of the mean-field limit, (3) uniqueness and
computation of the fixed point, and (4) performance analysis of the bike sharing system. Therefore,
the methodology and results of this paper give new highlight on understanding influence of system
key parameters on performance measures of the bike sharing systems. Along such a line, there are a
number of interesting directions for potential future research, for example:

• Analyzing impact of the intelligent information technologies on operations management of the
bike sharing systems;

• discussing the bike sharing systems with non-exponential distributions and non-Poisson point
processes, and develop some more general mean-field models;

• studying the periodical or time-inhomogeneous bike sharing systems; and

• modeling a bike sharing system with multiple clusters, where the unbalanced bikes can be
redistributed among the stations or clusters by means of optimal scheduling of trucks.
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