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Abstract: We show how a simple modification of the time-dependent Little’s law can be
used to study various types of joint age and residual life distributions associated with any
customer waiting in line in equilibrium in a work-conserving M/G/1 queue operating under
the first-come-first-served service discipline, not necessarily the customer receiving service.
This addresses an open question posed at the end of (Adan and Haviv, Stochastic Models,
2009). We also analyze the joint distribution of the number of customers in the system at time
t, the remaining amount of work possessed by the customer currently in service at time t, the
amount of work that has already been processed by the customer currently in service at time
t, and the amount of time the current customer in service at time t spent waiting in the queue.
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1. Introduction
Suppose a customer arrives to a stable M/G/1 queueing system while that system is

in equilibrium, and she observes n customers already present in the system upon arrival.
Given this information, what is the distribution of the remaining amount of time the customer
currently in service will spend in service? This is a useful distribution to understand, because
the arrival can use that information to determine her waiting time distribution (and likewise,
her sojourn time distribution) in the system. Early studies on properties of this distribution,
as well as analogous distributions for related models include Wishart [25], Mandelbaum and
Yechiali [21], Asmussen [5], Fakinos [13], Boxma [10], with both Sigman and Yechiali [24]
and Adan andHaviv [4] being examples of more recent studies on aspects of this distribution.

Interest in such questions/distributions grew around 2008, starting with the work of
Kerner [17], where properties of the conditional distribution of the remaining service time
of the customer in service, given an arrival observed n customers in the system upon arrival
were established for the case where customers are instead assumed to arrive in accordance
to a state-dependent Poisson process, meaning the arrival rate is a function of the number
of customers present in the system. This generalization is important for many reasons, one
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major reason being that the state-dependent arrival model can represent situations where
customers may behave more strategically, by choosing not to join the system with some
probability depending on the number of customers encountered upon arrival. This question
of obtaining good joining strategies was investigated further in Kerner [18]. Other work that
address joint distributions of queue-length and residual services, as well as other types of
joint distributions, for both the Mn/G/1 queue and various generalizations include Abouee-
Mehrizi and Baron [1], Oz et al. [22, 23], and Economou and Manou [12].

Our research in this area was inspired by a question posed at the end of Adan and Haviv
[4]: if, within the context of the M/G/1 queue, a customer arrives to the system and observes
n customers in equilibrium, what is the distribution of the amount of time the kth customer in
line has spent waiting in the queue, for k ∈ {2, 3, . . . , n}? Wewill show that this distribution
can be obtained by modifying an idea that has been used to derive a time-dependent form
of the distributional Little’s law, which dates back to the work of Bertsimas and Mourtzinou
[8] and was reexamined through the use of Palm distributions in [16]. Before we study this
conditional joint distribution, we will first explain how the distributional Little’s law can be
used to derive a joint double transform of the number of customers present in the system at
time t, and three other random variables, namely the amount of time the customer currently
receiving service at time t (i) waited in the queue; (ii) spent in service before time t; and
(iii) how much longer past time t that customer will spend receiving service. This double
transform, while reasonably tractable, admits a complicated form, so later we will derive a
few more detailed results for the case where the queueing system has reached equilibrium,
where the last result we derive will address the question from [4] mentioned above.

2. Preliminaries
We begin by briefly describing the M/G/1 queue, as well as the notation we will use to

model various aspects of this queueing system. Suppose customers arrive to a single-server
queueing system in accordance to a homogeneous Poisson process {N(t); t ≥ 0} having
rate λ and points {Tn}n≥1, so that for each integer n ≥ 1, Tn represents the arrival time of
the nth arrival to the system. The connection between the counting process {N(t); t ≥ 0}
and its points {Tn}n≥1 is clear from the following observations: for each real number t ≥ 0,

N(t) :=
∞∑
n=1

1{Tn≤t}

and likewise, for each integer n ≥ 1,

Tn := inf{t ≥ 0 : N(t) ≥ n}.

Furthermore, we define, for each Borel set B,

N(B) :=
∞∑
n=1

1{Tn∈B} =

∫
B

N(ds)
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so that N(B) denotes the number of arrivals that occur within B, and N(ds) represents
Lebesgue-Stieltjes integration, which is well-defined on a path-by-path basis due to the non-
decreasing paths of {N(t); t ≥ 0}. We also slightly abuse notation by defining N(s, t] :=
N((s, t]) in an attempt to make many of the mathematical expressions we will encounter in
our analysis more readable.

Next, assume that for each integer n ≥ 1, the nth arrival brings a generally distributed
amount of work Bn for processing. The sequence of random variables {Bn}n≥1 is assumed
to be both i.i.d. and independent of the arrival process, and for each n ≥ 1, Bn has a CDF F
satisfying F (0) = 0. We also let β : C+ → C denote the Laplace-Stieltjes Transform (LST)
of F , which is defined as

β(α) := E[e−αB1 ] =

∫
[0,∞)

e−αxF (dx)

where F (dx) again represents Lebesgue-Stieltjes integration with respect to the probability
distribution associated with F , and C+ := {α ∈ C : Re(α) > 0} represents the open
halfspace of complex real numbers having positive real part.

Finally, we assume throughout that the server processes work in a First-Come-First-
Served (FCFS) manner. It will help to think of the customers present in the system (either
waiting or currently being served) as occupying various ‘slots’ in the system, where the
customer in slot 1 is the customer being served, the customer in slot 2 is the next to be
served, and so on. Whenever the customer in slot 1 completes his/her service, the customer
formerly in slot k moves to slot k − 1, for each integer k ≥ 2, and if a new arrival to the
system encounters k customers in the system upon arrival, he/she will occupy slot k+1 upon
joining the queue.

For each real number t ≥ 0, letQ(t) denote the number of customers currently present in
the system (waiting or in service) at time t, and letW (t) denote the total amount of unfinished
work present in the system at time t. Next, let R1,s(t) denote the remaining amount of
work possessed by the customer receiving service at time t, let A1,s(t) denote the amount of
work of the customer receiving service at time t that has been processed by the server, and
let A1,q(t) denote the amount of time the customer currently experiencing service at time
t waited in the queue before he/she began receiving service. When there is no customer
present in the system at time t, we set A1,s(t) = A1,q(t) = R1,s(t) = 0. More generally, for
each integer k ≥ 2, we let Ak,q(t) denote the amount of time the customer present in slot k
at time t has spent in the queue, and we let Rk,q(t) denote the remaining amount of time the
customer present in slot k will spend waiting (not including the time spent in service!) in the
queue. Again, Ak,q(t) = Rk,q(t) = 0 when there is no customer present in slot k at time t.

It may be the case that there are customers present at time zero: if there are Q(0) = n0

such customers, we will assume that the customer present in slot k at time zero possesses an
amount of work B(0)

k . The random variables {B(0)
k } are assumed to also be i.i.d. with CDF

F , and independent of all other random elements. Recall also that the traffic intensity of the
system is ρ := λE[B1]: it is well-known that the M/G/1 queue is stable if and only if ρ < 1.
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The workload process {W (t); t ≥ 0} of theM/G/1 queue plays a major role in the devel-
opment of our main results, which is convenient because the workload process of the M/G/1
is by now well-understood, see e.g. Abate and Whitt [3]. Indeed, computable expressions
can be derived for both the Laplace transform ϕn0;0 : C+ → C of the emptyness probability,
as well as the double transform φn0 : C+ × C+ → C of the workload. These quantities are
formally defined as

φn0;0(α) :=

∫ ∞

0

e−αtPn0(Q(t) = 0)dt, ϕn0;W (α, γ) :=

∫ ∞

0

e−αtEn0 [e
−γW (t)]dt, α ∈ C+

and computable expressions for these quantities are given in Theorem 2.1 given below. Both
of these transforms can be expressed in terms of both the LST β as well as the LST π : C+ →
C of the busy period τ0 := inf{t ≥ 0 : Q(t) = 0} when Q(0) = 1 and that single customer
present at time zero possesses a random amount of work having CDF F . In other words,

π(α) := E1[e
−ατ0 ], α ∈ C+.

Readers should recall that π satisfies the fixed-point equation

π(α) = β(α + λ(1− π(α))) (1)

which can be used to develop an iterative procedure for evaluating π(α), for each α ∈ C+,
see Abate and Whitt [2], as well as [15] which establishes the procedure with a coupling
argument.

Theorem 2.1. The transforms φn0;0 and ϕn0;W are as follows: for each α, γ ∈ C+,

φn0;0(α) =
π(α)n0

κ(α)
(2)

and

ϕn0;W (α, γ) =
π(α)n0

κ(α)

[
κ(α)− γ

α− ψ(γ)

]
+
β(γ)n0 − π(α)n0

α− ψ(γ)
(3)

where the functions ψ : C+ → C, κ : C+ → C are defined as

κ(α) := α + λ(1− π(α)), ψ(γ) := γ − λ(1− β(γ))

for each α, γ ∈ C+.

These expressions for ϕn0;W (α) and φn0;0(α, γ) can be derived quickly using recent
results from [15], but they are equivalent to previously derived expressions for these trans-
forms, see e.g. Lucantoni et al. [20], where the results derived there hold in a more general
context.

It is also well-known that when ρ < 1, the distribution ofW (t) converges in distribution,
as t → ∞, to the law of a random variableW (∞) we refer to as the steady-state workload.
The following corollary shows that the LST ofW (∞) can be expressed in terms of the arrival
rate λ and the LST β of the service time distribution.
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Corollary 2.1. (Pollaczek-Khintchine Formula) The steady-state workloadW (∞) has LST

ϕW (∞)(γ) := E[e−γW (∞)] =
(1− ρ)γ

γ − λ(1− β(γ))
. (4)

Corollary 2.1 is even more well-known than Theorem 2.1, but it can be derived from The-
orem 2.1 by multiplying ϕn0;W (α, γ) by α, then letting α approach zero from above. An
interesting probabilistic interpretation of the distribution ofW (∞) can be found in Cooper
and Niu [11], where the authors study the workload process under the assumption where
the server processes work under the Last-Come-First-Served Preemptive-Resume discipline:
placing this extra assumption on the system does not affect the behavior of the workload pro-
cess, as it behaves the same for all work-conserving service disciplines.

We conclude this section by recalling the following well-known result for the M/G/1
queue.

Proposition 2.1. LetQq(∞) denote the steady-state distribution of the number of customers
waiting in the system (i.e. not including the customer in service). Then for each z satisfying
Re(z) < 1,

E[zQq(∞)] = E[e−λ(1−z)W (∞)]. (5)

Proposition 2.1 follows from theDistributional Little’s law discussed in Bertsimas andNakazato
[9]. We will make use of the generating function of Qq(∞) later in our analysis.

We close this section by noting the following well-known fact, which will be used in
many places throughout our study. Letting π := [πn]n≥0 denote the PMF of Q(∞), i.e.
πn := P(Q(∞) = n) for each integer n ≥ 0, it follows that

P(Qq(∞) = n) = π01{n=0} + πn+1

for each integer n ≥ 0. Moreover, we can further deduce from (5) that for each integer
n ≥ 0,

P(Qq(∞) = n) =
ϕ
(n)
Qq

(0)

n!
= E

[
(λW (∞))n

n!
e−λW (∞)

]
meaning that for each integer n ≥ 0,

E
[
(λW (∞))n

n!
e−λW (∞)

]
= π01{n=0} + πn+1.

3. Time-Dependent Results
Our first objective is to derive a double transform associated with the random variables

Q(t), A1,q(t), A1,s(t), and R1,s(t), given Q(0) = n0, for each real number t > 0. More
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particularly, we will derive the function ϕQ,A1,q ,A1,s,R1,s : C+ × D × C+ × C+ × C+ → C
defined as

ϕQ,A1,q ,A1,s,R1,s(α, z, γ1, γ2, γ3) :=

∫ ∞

0

e−αtEn0 [z
Q(t)e−(γ1A1,q(t)+γ2A1,s(t)+γ3R1,s(t))]dt

for each z ∈ D, and each α, γ1, γ2, γ3 ∈ C+. Theorem 3.1 given below provides an expres-
sion for ϕQ,A1,q ,A1,s,R1,s(α, z, γ1, γ2, γ3).

We will refrain from considering the random variables Ak,q(t) and Rk,q(t) for integers
k ≥ 2 for the moment, as introducing these random variables will make the resulting formu-
las (but not necessarily the analysis itself) muchmore complicated, as the reader will discover
in the next section when we study the system in equilibrium. These random variables will
be considered (in equilibrium) in the next section.

Theorem 3.1. For each (α, z, γ1, γ2, γ3) ∈ C+ × D× C+ × C+ × C+, we have

ϕQ,A1,q ,A1,s,R1,s(α, z, γ1, γ2, γ3) (6)

=
π(α)n0

α + λ(1− π(α))
+ z

[
β(γ3)− β(α + γ2 + λ(1− z))

α + γ2 + λ(1− z)− γ3

] [
β(α + γ1 + λ(1− z))n0 − zn0

β(α + γ1 + λ(1− z))− z

]
+

λzπ(α)

α + λ(1− π(α))

[
β(γ3)− β(α + γ2 + λ(1− z))

α + γ2 + λ(1− z)− γ3

] [
λ(z − π(α))− γ1

λ(z − β(α + γ1 + λ(1− z)))− γ1

]
+ λz

[
β(γ3)− β(α + γ2 + λ(1− z))

α + γ2 + λ(1− z)− γ3

] [
β(α + γ1 + λ(1− z))n0 − π(α)n0

λ(z − β(α + γ1 + λ(1− z)))− γ1

]
. (7)

This result can be established by using an argument very similar to that used to establish
versions of the time-dependent distributional Little’s law (i.e. the transient distributional
Little’s law), which was first introduced in Bertsimas and Mourtzinou [8], although here
we will modify the statement of the law slightly in order to ‘zero in’ on precisely when the
customer currently in service at time t arrived to the system. We recommend readers also
consult [16] where the time-dependent distributional Little’s law is stated within the context
of Palm distributions, in order to avoid having to assume the existence of certain limits.
Readers should also consult Bertsimas and Gamarnik [7], a recently-published textbook on
queueing theory that also discusses the time-dependent Little’s law.

Proof. For each integer k ∈ {0, 1, 2, . . . , n0}, define

B
(0)
1:k :=

k∑
ℓ=1

B
(0)
ℓ

where B(0)
1:0 := 0 (following the usual convention where empty sums are treated at being

equal to zero). Our first objective is to verify that for each real t ≥ 0,

zQ(t)e−(γ1A1,q(t)+γ2A1,s(t)+γ3R1,s(t))
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= 1{Q(t)=0}

+

n0∑
k=1

1{B(0)
1:(k−1)

≤t,B
(0)
1:(k−1)

+B
(0)
k >t}z

n0−k+1zN(t)e−(γ1B
(0)
1:(k−1)

+γ2(t−B
(0)
1:(k−1)

)+γ3(B
(0)
1:(k−1)

+B
(0)
k −t))

+

∫
(0,t]

1{W (s−)≤t−s,W (s−)+BN(s)>t−s}z
1+N(s,t]e−(γ1W (s−)+γ2(t−s−W (s−))+γ3(W (s−)+BN(s)−(t−s)))N(ds)

(8)

where for each real number s > 0,W (s−) is the left-hand-limit ofW at time s, i.e.

W (s−) := lim
u↑s

W (u).

Equality (8) follows as a consequence of the overtake-free property of this queueing system,
in that people depart from the system in the same order at which they arrive. Hence, at time
t, if there is a customer currently receiving service, all of the customers waiting in the queue
at time t arrived after that customer.

Having this observation in mind, we can prove Equation (8) by showing that it holds
when (i) the system is empty at time t; (ii) when the customer in service at time twas initially
present in the system at time 0, and (iii) when the customer in service at time t arrived at
some time s ∈ (0, t].

First (i) assume the system is empty at time t. Then

Q(t) = A1,q(t) = A1,s(t) = R1,s(t) = 0

which in turn means

zQ(t)e−(γ1A1,q(t)+γ2A1,s(t)+γ3R1,s(t)) = 1 = 1{Q(t)=0}.

Second (ii) suppose there is a customer receiving service at time t, and that customer
was present in the system at time zero. Assuming that customer was originally in slot k at
time 0, it must be true that B(0)

1:(k−1) ≤ t, B(0)
1:(k−1) +B

(0)
k > t, and

A1,q(t) = B
(0)
1:(k−1), A1,s(t) = t− B

(0)
1:(k−1), R1,s(t) = B

(0)
1:(k−1) +B

(0)
k − t

withQ(t) = n0−k+1+N(0, t], because if the customer originally present in slot k at time
0 is receiving service at time t, the n− k customers originally in slots k + 1, . . . , n are still
present, as well as anyone else arriving in (0, t]. In other words,

e−(γ1A1,q(t)+γ2A1,s(t)+γ3R1,s(t))

= 1{B(0)
1:(k−1)

≤t,B
(0)
1:(k−1)

+B
(0)
k >t}e

−(γ1B
(0)
1:(k−1)

+γ2(t−B
(0)
1:(k−1)

)+γ3(B
(0)
1:(k−1)

+B
(0)
k −t))zn0−k+1zN(0,t].

Finally (iii) suppose there is a customer receiving service at time t, and that customer
arrived to the system at some point s ∈ (0, t]. The amount of time this customer waits in
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the queue before ever receiving any attention from the server is A1,q(t) = W (s−), so in
order for this customer to be receiving attention from the server at time t, it must be the case
thatW (s−) ≤ t − s andW (s−) + BN(s) > t − s. Furthermore, the amount of time it has
spent receiving service at time t is A1,s(t) = (t − s) −W (s−) (the time it has spent in the
system, minus the time it spent waiting) and the remaining amount of work it possesses at
time t is R1,s(t) = W (s−) + BN(s) − (t − s) (the waiting time plus the amount of work it
brought to the system, minus how long it has already spent in the system). Not only that,
Q(t) = 1 + N(s, t], which represents the customer who arrived at time s plus all of the
arrivals that occur in (s, t], and so

zQ(t)e−(γ1A1,q(t)+γ2A1,s(t)+γ3R1(t))

= 1{W (s−)≤t−s,W (s−)+BN(s)>t−s}e
−(γ1W (s−)+γ2(t−s−W (s−))+γ3(W (s−)+BN(s)−(t−s)))z1+N(s,t].

Proceeding with (8), after taking the expected value of both sides, while further applying
both the Campbell-Mecke formula and the Slivnyak-Mecke formula reveals that

En0 [z
Q(t)e−(γ1A1,q(t)+γ2A1,s(t)+γ3R1,s(t))]

= Pn0(Q(t) = 0)

+

n0∑
k=1

En0

[
1{B(0)

1:(k−1)
≤t,B

(0)
1:(k−1)

+B
(0)
k >t}e

−(γ1B
(0)
1:(k−1)

+γ2(t−B
(0)
1:(k−1)

)+γ3(B
(0)
1:(k−1)

+B
(0)
k −t))

]
zn0−k+1e−λ(1−z)t

+ λ

∫ t

0

En0

[
1{W (s−)≤t−s,W (s−)+BN(s)>t−s}e

−(γ1W (s−)+γ2(t−s−W (s−))+γ3(W (s−)+BN(s)−(t−s)))
]

ze−λ(1−z)(t−s)ds (9)

where B denotes a generic random variable having CDF F and independent ofW (s). After
multiplying both sides of (9) by e−αt, then integrating both sides over [0,∞) with respect to
t, we get

ϕQ,A1,q ,A1,s,R1,s(α, z, γ1, γ2, γ3)

= ϕn0;0(α)

+

n0∑
k=1

E

[
e−γ1B

(0)
1:(k−1)

∫ B
(0)
1:(k−1)

+B
(0)
k

B
(0)
1:(k−1)

e−γ2(t−B
(0)
1:(k−1)

)e−γ3(B
(0)
1:(k−1)

+B
(0)
k −t)e−(α+λ(1−z))tdt

]
zn0−k+1

+ λz

∫ ∞

0

E

[
e−γ1W (s)

∫ W (s)+B

W (s)

e−γ2(t−W (s))e−γ3(B−(t−W (s)))e−(α+λ(1−z))tdt

]
e−αsds

= ϕn0;0(α)

+

n0∑
k=1

E

[
e−(α+λ(1−z)+γ1)B

(0)
1:(k−1)

∫ B
(0)
k

0

e−(γ2+α+λ(1−z))ye−γ3(B
(0)
k −y)dy

]
zn0−(k−1)
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+ λz

∫ ∞

0

En0

[
e−(α+λ(1−z)+γ1)W (s)

∫ B

0

e−(γ2+α+λ(1−z))ye−γ3(B−y)dy

]
e−αsds

= ϕn0;0(α) +

[
β(γ3)− β(α + γ2 + λ(1− z))

α + γ2 + λ(1− z)− γ3

] n0∑
k=1

β(α + γ1 + λ(1− z))k−1zn0−(k−1)

+ λz

[
β(γ3)− β(α + γ2 + λ(1− z))

α + γ2 + λ(1− z)− γ3

]
φn0;W (α, α + γ1 + λ(1− z))

=
π(α)n0

α + λ(1− π(α))
+ z

[
β(γ3)− β(α + γ2 + λ(1− z))

α + γ2 + λ(1− z)− γ3

] [
β(α + γ1 + λ(1− z))n0 − zn0

β(α + γ1 + λ(1− z))− z

]
+

λzπ(α)

α + λ(1− π(α))

[
β(γ3)− β(α + γ2 + λ(1− z))

α + γ2 + λ(1− z)− γ3

] [
λ(z − π(α))− γ1

λ(z − β(α + γ1 + λ(1− z)))− γ1

]
+ λz

[
β(γ3)− β(α + γ2 + λ(1− z))

α + γ2 + λ(1− z)− γ3

] [
β(α + γ1 + λ(1− z))n0 − π(α)n0

λ(z − β(α + γ1 + λ(1− z)))− γ1

]
. (10)

This completes the proof of the claim.

Before we proceed further, it is worth looking at various special cases of this result. For
instance, if we further assume ρ < 1 so that the system approaches equilibrium as t → ∞,
we can use Theorem 3.1 to study the joint distribution of the random vector

(Q(∞), A1,q(∞), A1,s(∞), R1,s(∞))

where Q(∞) represents the number of customers in the system in equilibrium, A1,q(∞)
represents the amount of time the customer currently in service spent waiting in the queue (if
there is such a customer) in equilibrium,A1,s(∞) represents the amount of time the customer
currently in service has been in service in equilibrium, andR1,s(∞) represents the remaining
amount of time the customer in service will spend in service, again in equilibrium. Standard
arguments from regenerative process theory can be used to show that this joint distribution
exists and can be interpreted as a limiting distribution, and moreover, for each z ∈ D and
each γ1, γ2, γ3 ∈ C+,

E[zQ(∞)e−(γ1A1,q(∞)+γ2A1,s(∞)+γ3R1,s(∞))] = lim
α↓0

αϕQ,A1,q ,A1,s,R1,s(α, z, γ1, γ2, γ3).

Corollary 3.1. The Laplace-Stieltjes transform of Q(∞), A1,q(∞), A1,s(∞), R1,s(∞) is as
follows:

E[zQ(∞)e−(γ1A1,q(∞)+γ2A1,s(∞)+γ3R1(∞))]

= (1− ρ) + λ(1− ρ)z

[
β(γ3)− β(γ2 + λ(1− z))

γ2 + λ(1− z)− γ3

] [
λ(z − 1)− γ1

λ(z − β(γ1 + λ(1− z)))− γ1

]
.

4. More Refined Results in Equilibrium
Our next objective is to study the conditional joint distribution, given the steady-state

queue-length is equal to n, of how long the customer currently in service waited in line

9
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before receiving service, how long that customer has spent in service, and the remaining
amount of time that customer will spend in service. The approach we will use to study this
system—once it has reached equilibrium—requires us to construct the M/G/1 queue on all
of R instead of only on [0,∞), but fortunately this is possible, and doing so results in a
system that is in equilibrium (readers interested in further details should consult Chapters 1
and 2 of Baccelli and Brémaud [6], we refrain from providing a description of shift operators
and shift-invariance here because the details are not necessary to understand what follows).
We can model the system in equilibrium by constructing a homogeneous Poisson process
N defined on the entire real line R, having points {Tn}n∈Z, where these points satisfy, with
probability one,

· · · < T−2 < T−1 < T0 ≤ 0 < T1 < T2 < T3 < · · · .

Assume further that the customer arriving at time Tn brings an amount of work {Bn}n∈Z for
processing, where the sequence {Bn}n∈Z is assumed to be i.i.d. with CDF F , and indepen-
dent of everything else. Assuming ρ := λE[B1] <∞, it is well known (see e.g. Baccelli and
Brémaud [6] for details) that the queue-length process {Q(t); t ∈ R} of the M/G/1 queue
operating under the FCFS service discipline will experience an empty state infinitely often
over (−∞, 0] (as well as over [0,∞) for that matter), and is strictly stationary, where the law
of Q(0) coincides with the limiting distribution of the number of customers in the system.
The same can be said for the workload process {W (t); t ∈ R} of the M/G/1 queue, as well
as the processes {A1,q(t); t ∈ R}, {R1,s(t); t ∈ R}, and so on.

4.1. Conditional distibution of age and residual times of the customer in service

Again, our first objective in this section is to derive an explicit formula for the conditional
joint Laplace-Stieltjes transform of A1,q(0), A1,s(0), and R1,s(0), given Q(0) = n for some
fixed integer n ≥ 1. The approach we will use to calculate this conditional joint transform
will require us to make use of the following elementary lemmas.

The first lemma addresses the collection of functions {an}n≥1, where for each integer
n ≥ 1, we define an : [0,∞)× C+ × C+ → C as

an(x, γ1, γ2) =

∫ x

0

e−γ1se−γ2(x−s)λ(λs)
n−1e−λs

(n− 1)!
ds.

Lemma 4.1. For each x ≥ 0, and each γ1, γ2 ∈ C+, we have

an(x, γ1, γ2) =

[
λ

λ+ γ1 − γ2

]n
e−γ2x −

n−1∑
ℓ=0

[
λ

λ+ γ1 − γ2

]n−ℓ
(λx)ℓe−(λ+γ1)x

ℓ!
.

Proof. This result can be established using induction. First,
Next, observe that for each integer n ≥ 1,

an+1(x, γ1, γ2) =

∫ x

0

e−γ1se−γ2(x−s)λ(λs)
n

n!
e−λsds

10
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= λn+1e−γ2x

∫ x

0

sn

n!
e−(λ+γ1−γ2)sds. (11)

Applying integration by parts to the integral found in (11) reveals that

an+1(x, γ1, γ2) = −λn+1e−γ2x
xn

n!

e−(λ+γ1−γ2)x

λ+ γ1 − γ2
+

λn+1e−γ2x

λ+ γ1 − γ2

∫ x

0

sn−1

(n− 1)!
e−(λ+γ1−γ2)sds

and this equality can alteratively be expressed as

an+1(x, γ1, γ2) = (−1)

[
λ

λ+ γ1 − γ2

]
(λx)n

n!
e−(λ+γ1)x +

[
λ

λ+ γ1 − γ2

]
an(x, γ1, γ2).

From this recursion, combined with (??), a quick induction argument can be used to establish
the claim.

The next lemma makes use of Lemma (4.1) in order to derive an expected value that will
appear in our next main result.

Lemma 4.2. For each integer n ≥ 1, each γ1, γ2 ∈ C+,

E
[∫ B

0

e−γ1se−γ2(B−s)λ(λs)
n−1e−λs

(n− 1)!
ds

]
=

[
λ

λ+ γ1 − γ2

]n
β(γ2)

−
n−1∑
ℓ=0

[
λ

λ+ γ1 − γ2

]n−ℓ
(−λ)ℓ

ℓ!
β(ℓ)(λ+ γ1).

(12)

If we further assume that F has a PDF f , then

E
[∫ B

0

e−γ1se−γ2(B−s)λ(λs)
n−1e−λs

(n− 1)!
ds

]
=

∫ ∞

0

∫ ∞

0

e−γ1se−γ2y
λ(λs)n−1e−λs

(n− 1)!
f(y + s)dyds.

(13)

Proof. First, observe that for each integer n ≥ 1,

E
[∫ B

0

e−γ1se−γ2(B−s)λ(λs)
n−1e−λs

(n− 1)!
ds

]
= E [an(B, γ1, γ2)]

and clearly

E [an(B, γ1, γ2)] = E
[[

λ

λ+ γ1 − γ2

]n
e−γ2B

]
− E

[
n−1∑
ℓ=0

[
λ

λ+ γ1 − γ2

]n−ℓ
(λx)ℓe−(λ+γ1)B

ℓ!

]

=

[
λ

λ+ γ1 − γ2

]n
β(γ2)−

n−1∑
ℓ=0

[
λ

λ+ γ1 − γ2

]n−ℓ
(−λ)ℓ

ℓ!
β(ℓ)(λ+ γ1)

11



© Fralix

which yields (12). Establishing (13) requires conditioning: here

E
[∫ B

0

e−γ1se−γ2(B−s)λ(λs)
n−1e−λs

(n− 1)!
ds

]
=

∫ ∞

0

∫ x

0

e−γ1seγ2(x−s)λ(λs)
n−1e−λs

(n− 1)!
f(x)dsdx

=

∫ ∞

0

∫ ∞

s

e−γ1se−γ2(x−s)λ(λs)
n−1e−λs

(n− 1)!
f(x)dxds

=

∫ ∞

0

∫ ∞

0

e−γ1se−γ2y
λ(λs)n−1e−λs

(n− 1)!
f(y + s)dyds

where the last equality follows from applying a simple change of variable.

We are now ready to state and prove our first main result. Note that for each t ∈ R,
Qq(t) denotes the number of customers waiting in the queue at time t, and ϕQq denotes its
generating function, i.e.

ϕQq(z) := E[zQq(0)].

Theorem 4.1. For each integer n ≥ 1, the conditional joint Laplace-Stieltjes transform of
A1,q(0), A1,s(0), and R1,s(0), given Q(0) = n is as follows:

E[e−(γ1A1,q(0)+γ2A1,s(0)+γ3R1,s(0)) | Q(0) = n] (14)

=
1

πn

n−1∑
k=0

ϕ
(k)
Qq(0)

(−γ1/λ)
k!

[[
λ

λ+ γ2 − γ3

]n−k

β(γ3)

−
n−k−1∑
ℓ=0

[
λ

λ+ γ2 − γ3

]n−k−ℓ
(−λ)ℓ

ℓ!
β(ℓ)(λ+ γ2)

]
.

Proof. The proof of this result is similar to the proof technique used to establish Theorem
3.1. For each integer n ≥ 1,

1{Q(0)=n}e
−(γ1A1,q(0)+γ2A1,s(0)+γ3R1,s(0))

=

∫
(−∞,0]

1{W (s−)≤−s,W (s−)+BN [−s,0]+1>−s}e
−γ1W (s−)e−γ2((−s)−W (s−))e−γ3(W (s−)+BN [−s,0]+1−(−s))

1{N(−s,0]=n−1}N(ds).

After taking the expected value of both sides, then applying both the Campbell-Mecke for-
mula and the Slivnyak-Mecke formula to the right-hand-side, as well as the fact that the
workload process is strictly stationary, we get

E[1{Q(0)=n}e
−(γ1A1,q(0)+γ2A1,s(0)+γ3R1,s(0))]

= λ

∫ 0

−∞
E
[
1{W (0)≤−s,W (0)+B>−s}e

−γ1W (0)e−γ2((−s)−W (0))e−γ3(W (0)+B−(−s))
] (−λs)n−1e−λ(−s)

(n− 1)!
ds

12
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= λ

∫ ∞

0

E
[
1{W (0)≤s,W (0)+B>s}e

−γ1W (0)e−γ2(s−W (0))e−γ3(W (0)+B−s)
] (λs)n−1e−λs

(n− 1)!
ds

= λE

[
e−γ1W (0)

∫ W (0)+B

W (0)

e−γ2(s−W (0))e−γ3(B−(s−W (0))) (λs)
n−1e−λs

(n− 1)!
ds

]

=
n−1∑
k=0

E
[
e−(λ+γ1)W (0) (λW (0))k

k!

]
E
[∫ B

0

e−γ2se−γ3(B−s)λ(λs)
n−1−ke−λs

(n− 1− k)!
ds

]
. (15)

Furthermore, we know from the distributional Little’s law that

E[zQq(0)] = E[e−λ(1−z)W (0)]

which further implies that for each integer ℓ ≥ 1,

ϕ
(ℓ)
Qq
(z) = E[(λW (0))ℓe−λ(1−z)W (0)]

which clearly exists for all z ∈ C satisfying Re(z) < 1, and moreover,

ϕ
(ℓ)
Qq
(−γ1/λ) = E

[
(λW (0))ℓe−(λ+γ1)W (0)

]
.

After applying both this observation and (12) to (15), then simplifying, we arrive at the claim.

Many of the results from [4] follow as a consequence of Theorem 4.1, as the following
corollary illustrates.

Corollary 4.1. For each integer n ≥ 1, and each γ1, γ2 ∈ C+,

E[e−(γ1A1,s(0)+γ2R1,s(0)) | Q(0) = n] (16)

=
π0
πn

[(
λ

λ+ γ1 − γ2

)n

β(γ2)−
n−1∑
ℓ=0

(
λ

λ+ γ1 − γ2

)n−ℓ
(−λ)ℓ

ℓ!
β(ℓ)(λ+ γ1)

]

+
n−1∑
k=0

πk+1

πn

( λ

λ+ γ1 − γ2

)n−k

β(γ2)−
n−(k+1)∑

ℓ=0

(
λ

λ+ γ1 − γ2

)n−k−ℓ
(−λ)ℓ

ℓ!
β(ℓ)(λ+ γ1)

 .
Moreover, when the service time distribution F is absolutely continuous with PDF f , the
conditional distribution of A1,s(0) and R1,s(0) given Q(0) = n has a joint PDF of the form

fA1,s(0),R1,s(0)|Q(0)=n(s, y) =
π0
πn

λ(λs)n−1e−λs

(n− 1)!
f(s+ y)

+
n∑

k=1

πk
πn

λ(λs)n−ke−λs

(n− k)!
f(s+ y), s, y > 0. (17)

13
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Proof. Formula (16) is a special case of (14) in Theorem 4.1. In order to establish (17),
observe first from our proof of Theorem 4.1 that for each γ1, γ2 ∈ C+,

E[1{Q(0)=n}e
−(γ1A1,s(0)+γ2R1,s(0))]

=
n−1∑
k=0

(π01{k=0} + πk+1)E
[∫ B

0

e−γ1se−γ2(B−s)λ(λs)
n−k−1e−λs

(n− k − 1)!
ds

]
and applying (13) to this expression yields

E[1{Q(0)=n}e
−(γ1A1,s(0)+γ2R1,s(0))]

=
n−1∑
k=0

(π01{k=0} + πk+1)

∫ ∞

0

∫ ∞

0

e−γ1se−γ2y
λ(λs)n−k−1e−λs

(n− k − 1)!
f(y + s)dyds.

From this formula, we quickly observe that the conditional joint density of A1,s(0) and
R1,s(0), given Q(0) = n indeed exists.

It should be noted that this conditional joint density appears (somewhat implicitly) in
Equation (24) on page 121 of [4], as they derive it from the conditional PDF of A1,s(0)
givenQ(0) = n, while further noting that givenA1,s(0) andQ(0) ≥ 1, R1,s(0) andQ(0) are
independent.

4.2. Conditional age and residual moments of the customer in service

We next turn our attention to deriving various conditional moments of A1,q(0), A1,s(0),
andR1,s(0), givenQ(0) = nwhere n is a fixed positive integer. In Sigman and Yechiali [24],
the authors used a rate conservation law to derive a recursion satisfied by the conditional kth
moment of the residual service time, given Q(0) = n for each integer n ≥ 1. We use an
alternative approach, and in the process of doing sowe show how these conditional moments,
as well as other moments that involve both A1,q(0) and A1,s(0) can be stated more explicitly
using residual distributions.

Recall that given a nonnegative random variable B having CDF F , the residual of B is
a nonnegative random variable R1,B whose CDF is given by F(1,e), where for each t ≥ 0,

F(1,e)(t) :=
1

E[B]

∫ t

0

P(B > s)ds.

We use the notation (1, e) in F(1,e) as sometimes this CDF is referred to as the equilibrium
CDF associated with F . The LST of R1,B is β(1,e), which satisfies

β(1,e)(α) =
1− β(α)

αE[B]

for each α ∈ C+. We can also speak of ‘residuals of residuals’ in that for each integer
m ≥ 1, Rm+1,B is simply the residual of Rm,B , where Rm,B has CDF F(m,e) and LST β(m,e).
Properties of these residual distributions are covered in the Appendix.

The following lemma will be used in the derivation of our next main result.

14
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Lemma 4.3. Letm1,m2 be nonnegative integers. Then for each integer n ≥ 1,

E
[∫ B

0

sm1(B − s)m2
λ(λs)n−1e−λs

(n− 1)!
ds

]
=
λE[Bm2+1]

(m2 + 1)

(−1)m1(−λ)n−1

(n− 1)!
β
(m1+n−1)
(m2+1,e) (λ).

(18)

Proof. First, observe that from Proposition A.2,

E
[∫ B

0

sm1(B − s)m2
λ(λs)n−1e−λs

(n− 1)!
ds

]
=

∫ ∞

0

sm1E[(B − s)m21{B>s}]
λ(λs)n−1e−λs

(n− 1)!
ds

= λE[Bm2 ]
(−1)m1(−λ)n−1

(n− 1)!

∫ ∞

0

(−s)m1+n−1e−λsP(Rm2,B > s)ds

= λE[Bm2 ]E[Rm2,B]
(−1)m1(−λ)n−1

(n− 1)!
β
(m1+n−1)
(m2+1,e) (λ).

Using Proposition A.1, we get

E[Bm2 ]E[Rm2,B] = E[Bm2 ]
E[B1+m2 ](

1+m2

m2

)
E[Bm2 ]

=
E[Bm2+1]

(m2 + 1)

which means

E
[∫ B

0

sm1(B − s)m2
λ(λs)n−1e−λs

(n− 1)!
ds

]
=
λE[Bm2+1]

(m2 + 1)

(−1)m1(−λ)n−1

(n− 1)!
β
(m1+n−1)
(m2+1,e) (λ)

which proves the claim.

Theorem 4.2. For each integer n ≥ 1, the following statements are true: (a) for each pair
of positive integersm2 andm3,

E[A1,s(0)
m2R1,s(0)

m3 | Q(0) = n] =
π0
πn

λE[Bm3+1]

(m3 + 1)

(−1)m2(−λ)n−1

(n− 1)!
β
(m2+n−1)
(m3+1,e) (λ) (19)

+
n−1∑
k=0

πk+1

πn

λE[Bm3+1]

(m3 + 1)

(−1)m2(−λ)n−k−1

(n− k − 1)!
β
(m2+n−k−1)
(m3+1,e) (λ).

Moreover (b) for each triplet of positive integersm1,m2, andm3,

E[A1,q(0)
m1A1,s(0)

m2R1,s(0)
m3 | Q(0) = n] (20)

=
n−1∑
k=0

(m1 + k)!

k!

πm1+k+1

πn

λE[Bm3+1]

(m3 + 1)

(−1)m2(−λ)n−k−1

(n− k − 1)!
β
(m2+n−k−1)
(m3+1,e) (λ).

15
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Proof. For each integer n ≥ 0, and for each set of integersm1,m2,m3 ≥ 0,

1{Q(0)=n}A1,q(0)
m1A1,s(0)

m2R1,s(0)
m3

=

∫
(−∞,0]

1{W (s−)≤−s,W (s−)+B−N [−s,0]+1>−s}W (s−)m1

× ((−s)−W (s−))m2(W (s−) + B−N [−s,0]+1 − (−s))m31{N(−s,0]=n−1}N(ds).

After taking the expected value of both sides, then applying both the Campbell-Mecke for-
mula and the Slivnyak-Mecke Theorem to the right-hand-side, we get

E[1{Q(0)=n}A1,q(0)
m1A1,s(0)

m2R1,s(0)
m3 ]

= λ

∫ 0

−∞
E[1{W (0)≤−s,W (0)+B>−s}W (0)m1((−s)−W (0))m2(W (0) + B − (−s))m3 ]

(−λs)n−1e−λ(−s)

(n− 1)!
ds

= λ

∫ ∞

0

E[1{W (0)≤s,W (0)+B>s}W (0)m1(s−W (0))m2(W (0) + B − s)m3 ]
(λs)n−1e−λs

(n− 1)!
ds

= λE

[∫ W (0)+B

W (0)

W (0)m1(s−W (0))m2(W (0) + B − s)m3
(λs)n−1e−λs

(n− 1)!
ds

]

= λE
[
W (0)m1

∫ B

0

ym2(B − y)m3
(λ(W (0) + y))n−1e−λ(W (0)+y)

(n− 1)!
dy

]
=

1

λm1

n−1∑
k=0

E
[
(λW (0))m1+k e

−λW (0)

k!

]
E
[∫ B

0

ym2(B − y)m3
λ(λy)n−(k+1)e−λy

(n− (k + 1))!
dy

]
.

Next, observe that since

E
[
(λW (0))m1+k e

−λW (0)

k!

]
=

(m1 + k)!

k!

[
π01{m1+k=0} + πm1+k+1

]
and

E
[∫ B

0

ym2(B − y)m3
λ(λy)n−(k+1)e−λy

(n− (k + 1))!
dy

]
=
λE[Bm3+1]

(m3 + 1)

(−1)m2(−λ)n−k−1

(n− k − 1)!
β
(m2+n−k−1)
(m3+1,e) (λ)

we get

E[1{Q(0)=n}A1,q(0)
m1A1,s(0)

m2R1,s(0)
m3 ]

=
1

λm1

n−1∑
k=0

(m1 + k)!

k!
(π01{m1+k=0} + πm1+k+1)

λE[Bm3+1]

(m3 + 1)

(−1)m2(−λ)n−k−1

(n− k − 1)!
β
(m2+n−k−1)
(m3+1,e) (λ).
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From this formula, it is clear that for eachm2 ≥ 0 and eachm3 ≥ 0,

E[1{Q(0)=n}A1,s(0)
m2R1,s(0)

m3 ] = π0
λE[Bm3+1]

(m3 + 1)

(−1)m2(−λ)n−1

(n− 1)!
β
(m2+n−1)
(m3+1,e) (λ)

+
n−1∑
k=0

πk+1
λE[Bm3+1]

(m3 + 1)

(−1)m2(−λ)n−k−1

(n− k − 1)!
β
(m2+n−k−1)
(m3+1,e) (λ)

and for eachm1 ≥ 1,m2 ≥ 0, andm3 ≥ 0,

E[1{Q(0)=n}A1,q(0)
m1A1,s(0)

m2R1,s(0)
m3 ]

=
n−1∑
k=0

(m1 + k)!

k!
πm1+k+1

λE[Bm3+1]

(m3 + 1)

(−1)m2(−λ)n−k−1

(n− k − 1)!
β
(m2+n−k−1)
(m3+1,e) (λ)

from which we arrive at the claim.

The following corollary shows that all of the conditional moments of R1,s(0), given
Q(0) = n, can be expressed in a surprisingly explicit form. In fact, the moment expressions
found in Theorem 4.2 are basically just as explicit, but we focus here on only the moments
of R1,s(0)

n given Q(0) as these have been studied by others in the past: the first conditional
moment of R1,s(0), givenQ(0) = n is studied in both [21, 13], and [24] explain how higher
moments can be calculated recursively (but no explicit expression for these moments is given
there).

Corollary 4.2. For each integer n ≥ 1, and each integerm ≥ 1,

E[R1,s(0)
m | Q(0) = n] =

λE[Bm+1]

(m+ 1)

[
π0
πn

(−λ)n−1

(n− 1)!
β
(n−1)
(m+1,e)(λ) +

n∑
k=1

πk
πn

(−λ)n−k

(n− k)!
β
(n−k)
(m+1,e)(λ)

]
We conclude by showing how to develop a recursion satisfied by the derivatives of each

β(m,e) transform. For each integerm ≥ 0, and each integer k ≥ 0, we define

xm,k(α) :=
(−α)kβ(k)

(m,e)(α)

k!

then it is easy to show that these terms satisfy a simple recursive scheme.

Proposition 4.1. For each integerm ≥ 0, and each integer k ≥ 1, we get

xm+1,k(α) = xm+1,k−1(α)−
xm,k(α)

αE[Rm,B]
.

This recursion reveals that all xm,k(α) terms can be calculated once the x0,k(α) terms are
known, and readers should note that these are needed in order to even calculate the transition
matrix associated with the embedded discrete-time Markov chain that keeps track of the
number of customers present in an M/G/1 queue (including the customer in service, if there
is one) right before arrival instants.
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Proof. Observe first that for each α ∈ C+, and each integerm ≥ 0,

β(m,e)(α) = 1− (αE[Rm,B])β(m+1,e)(α)

and an application of Leibniz’s differentiation formula reveals that for each integer k ≥ 1,

β
(k)
(m,e)(α) = −

[
kE[Rm,B]β

(k−1)
(m+1,e)(α) + αE[Rm,B]β

(k)
(m+1,e)(α)

]
i.e.

kβ
(k−1)
(m+1,e)(α) + αβ

(k)
(m+1,e)(α) +

β
(k)
(m,e)(α)

E[Rm,B]
.

Multiplying both sides by (−α)k−1/k! reveals

(−α)k−1β
(k−1)
(m+1,e)(α)

(k − 1)!
−

(−α)kβ(k)
(m+1,e)(α)

k!
=

(−α)k

k!

β
(k)
(m,e)(α)

αE[Rm,B]

or, equivalently,

xm+1,k−1(α)− xm+1,k(α) =
xm,k(α)

αE[Rm,B]
.

i.e.

xm+1,k(α) = xm+1,k−1(α)−
xm,k(α)

αE[Rm,B]
.

This completes the proof of the claim.

Other recursive schemes can be constructed as well by starting with the formula given
in Proposition A.3, then differentiating in various ways. We leave the development of such
recursions to the interested reader.

4.3. Conditional distribution of age and residual queueing times of other customers

Another interesting distribution to consider is the amount of time each person currently
in the system at time 0 has been in the system. For each t ∈ R, and each integer k ≥ 2, let
Ak,q(t) denote the amount of time the customer present in slot k at time t has spent in the
queue by time t, and let Rk,q(t) denote the remaining amount of time the customer present
in slot k at time t will spend in the system. Notice that for each integer k ≥ 2, there is no
need to keep track of the distribution of the amount of time the customer currently present in
slot k at time t will spend in service, as the law of this distribution clearly has CDF F , and
is independent of Q(t), Ak,q(t), and Rk,q(t). Moreover, the joint distribution of Q(t) and
Rk,q(t) is known once the joint distribution of Q(t) and R1,s(t) is known, but incorporating
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Ak,q(t) into the joint distributionmakes finding the new joint distribution amore complicated
task.

It is also possible to derive a reasonably explicit, yet admittedly somewhat unwieldly
expression for the joint distribution of the number of customers in the system, and the amount
of time the person occupying slot k at time t has been in the system. Our derivation of this
joint transform will require us to calculate, for each t ≥ 0, each integer n ≥ 2, and each
integer k ∈ {2, 3, . . . , n},

E[e−γ1(t−Tk−1)1{N(t)=n−1}] = e−γ1tE[eγ1Tk−11{N(t)=n−1}].

Proposition 4.2. For each t ≥ 0, each integer n ≥ 1, and each integer k ∈ {1, 2, 3, . . . , n},

E[eγTk1{N(t)=n}] =e
γte−λtλ

n

γn

[
k−1∑
ℓ=0

(−1)ℓ
(
n− k + ℓ

ℓ

)
(γt)(k−1)−ℓ

(k − 1− ℓ)!

+ (−1)k
n−k∑
ℓ=0

(
n− 1− ℓ

k − 1

)
(γt)ℓe−γt

ℓ!

]

We will prove this claim with an induction argument: while this is a valid proof, it is
not satisfying in terms of understanding where the identity actually comes from. In order to
get an idea of where this identity comes from, it helps to write out a few cases, then simplify
using Proposition B.1 and Corollary B.1 from the Appendix.

Proof. First consider the case where k = 1. For each integer n ≥ 1,

E[eγT11{N(t)=n}] =

∫ t

0

eγs
(λ(t− s))n−1e−λ(t−s)

(n− 1)!
λe−λsds

= e−λt

∫ t

0

eγs
(λ(t− s))n−1

(n− 1)!
ds

= e−λt

∫ t

0

(λs)n−1

(n− 1)!
eγ(t−s)ds

= e−λteγt
∫ t

0

λ(λs)n−1

(n− 1)!
e−γsds

= e−λteγt
λn

γn

[
1−

n−1∑
ℓ=0

(γt)ℓe−γt

ℓ!

]
.

Proceeding by induction, suppose the result is true for some integer k, for each n ≥ k.
Then for each integer n ≥ k,

E[eγTk+11{N(t)=n+1}]

=

∫ t

0

eγsE[eγTk1{N(t−s)=n}]λe
−λsds
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= eγte−λtλ
n+1

γn+1

∫ t

0

[
k−1∑
ℓ=0

(−1)ℓ
(
n− k + ℓ

ℓ

)
γ(γs)(k−1)−ℓ

((k − 1)− ℓ)!

+ (−1)k
n−k∑
ℓ=0

(
n− 1− ℓ

k − 1

)
γ(γs)ℓe−γs

ℓ!

]
ds

= eγte−λtλ
n+1

γn+1

[
k−1∑
ℓ=0

(−1)ℓ
(
n− k + ℓ

ℓ

)
(γt)k−ℓ

(k − ℓ)!

+ (−1)k
n−k∑
ℓ=0

(
n− 1− ℓ

k − 1

)[
1−

ℓ∑
j=0

(γt)je−γt

j!

]]

= eγte−λtλ
n+1

γn+1

[
k∑

ℓ=0

(−1)ℓ
(
n− k + ℓ

ℓ

)
(γt)k−ℓ

(k − ℓ)!
+ (−1)k+1

n−k∑
ℓ=0

(
n− 1− ℓ

k − 1

) ℓ∑
j=0

(γt)je−γt

j!

]

= eγte−λtλ
n+1

γn+1

[
k∑

ℓ=0

(−1)ℓ
(
n− k + ℓ

ℓ

)
(γt)k−ℓ

(k − ℓ)!
+ (−1)k+1

n−k∑
j=0

n−k∑
ℓ=j

(
n− 1− ℓ

k − 1

)
(γt)je−γt

j!

]

= eγte−λtλ
n+1

γn+1

[
k∑

ℓ=0

(−1)ℓ
(
n− k + ℓ

ℓ

)
(γt)k−ℓ

(k − ℓ)!
+ (−1)k+1

n−k∑
j=0

(
(n+ 1)− 1− j

(k + 1)− 1

)
(γt)je−γt

j!

]

which completes the induction argument.

Our next result can be used to determine the joint distribution of Aj,q(0) and Rj,q(0),
conditional on Q(0) = n.

Theorem 4.3. For each integer n ≥ 1, and each integer j ∈ {2, 3, . . . , n},

E[e−(γ1Aj,q(0)+γ2Rj,q(0)) | Q(0) = n]

=
β(γ2)

j−2

πn

λn−1

γn−1
1

j−2∑
ℓ=0

(−1)j−2−ℓ

(
n− 2− ℓ

n− j

)

×

[
γℓ1
λℓ

ℓ∑
k=0

(π01{k=0} + πk+1)

[[
λ

λ− γ2

]ℓ−k+1

β(γ2)−
ℓ−k∑
m=0

[
λ

λ− γ2

]ℓ−k+1−m
(−λ)m

m!
β(m)(λ)

]]

+
β(γ2)

j−2

πn

λn−1

γn−1
1

(−1)j−1

n−j∑
ℓ=0

(
n− 2− ℓ

j − 2

)

×

[
γℓ1
λℓ

ℓ∑
k=0

ϕ
(k)
Qq
(−γ1/λ)
k!

[[
λ

λ+ γ1 − γ2

]ℓ−k+1

β(γ2)

−
ℓ−k∑
m=0

[
λ

λ+ γ1 − γ2

]ℓ−k+1−m
(−λ)m

m!
β(m)(λ+ γ1)

]]
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Proof. First observe that for each integer n ≥ 1, and each integer j ∈ {2, 3, . . . , n},

1{Q(0)=n}e
−(γ1Aj,q(0)+γ2Rj,q(0)) (21)

=

∫
(−∞,0]

1{W (s−)≤−s,W (s−)+B−N [−s,0]+1>−s}e
−γ1(−Tj−1(s))

× e
−γ2(W (s−)+B(s)+

∫
(s,Tj−1(s))

B−N [u,0]+1du−(−s))1{N(s,0]=n−1}N(ds).

This observation follows from the fact that Q(0) = n for some integer n ≥ 1 if and only
if there exists a single arrival instant s < 0 satisfying the property that the customer who
arrived at time s is currently receiving service at time zero (which means W (s−) ≤ −s
andW (s−) +B−N [−s,0]+1 > −s) and exactly n− 1 customers arrived in the interval (s, 0].
Furthermore, the customer found in slot j at time zero must have arrived at time

Tj−1(s) := inf{t ≥ s : N(s, t] = j − 1}

and if we look at the state of the system at time zero, the amount of time that customer has
spent in the queue is simply

Aj,q(0) = 0− Tj−1(s)

and the remaining amount of time that customer will spend in the queue is

Rj,q(0) = W (s−) + B−N [−s,0]+1 +

∫
(−s,Tj−1(s))

B−N [y,0]+1N(dy)− (−s)

as this represents the remaining amount of work present at time zero that is only associated
with customers who arrived before the customer arriving at time Tj−1(s).

After taking the expected value of both sides of (21), while further applying the Campbell-
Mecke formula to the right-hand-side, we get

E[1{Q(0)=n}e
−(γ1Ak,q(0)+γ2Rk,q(0))]

= λβ(γ2)
k−2

∫ 0

−∞
E[1{W (0)≤−s,W (0)+B>−s}e

−γ2(W (0)+B+s)]E[e−γ1(−Tk−1(s))1{N(s,0]=n−1}]ds

= λβ(γ2)
k−2

∫ ∞

0

E[1{W (0)≤s,W (0)+B>s}e
−γ2(W (0)+B−s)]E[e−γ1(s−Tk−1)1{N(s)=n−1}]ds.

Next, observe that

E[e−γ1(s−Tj−1)1{N(s)=n−1}]

= e−λsλ
n−1

γn−1
1

[
j−2∑
ℓ=0

(−1)ℓ
(
n− j + ℓ

ℓ

)
(γ1s)

(j−2)−ℓ

(j − 2− ℓ)!
+ (−1)j−1

n−j∑
ℓ=0

(
n− 2− ℓ

j − 2

)
(γ1s)

ℓe−γ1s

ℓ!

]
which in turn means

E[1{Q(0)=n}e
−(γ1Aj,q(0)+γ2Rj,q(0))]
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= λβ(γ2)
j−2λ

n−1

γn−1
1

j−2∑
ℓ=0

(−1)ℓ
(
n− j + ℓ

ℓ

)
E

[∫ W (0)+B

W (0)

e−γ2(W (0)+B−s) (γ1s)
(j−2)−ℓ

(j − 2− ℓ)!
e−λsds

]

+ λβ(γ2)
j−2λ

n−1

γn−1
1

(−1)j−1

n−j∑
ℓ=0

(
n− 2− ℓ

j − 2

)
E

[∫ W (0)+B

W (0)

e−γ2(W (0)+B−s) (γ1s)
ℓe−γ1s

ℓ!
e−λsds

]

= λβ(γ2)
j−2λ

n−1

γn−1
1

j−2∑
ℓ=0

(−1)ℓ
(
n− j + ℓ

ℓ

)
E
[∫ B

0

e−γ2(B−s) (γ1(s+W (0)))(j−2)−ℓ

(j − 2− ℓ)!
e−λ(s+W (0))ds

]

+ λβ(γ2)
j−2λ

n−1

γn−1
1

(−1)j−1

n−j∑
ℓ=0

(
n− 2− ℓ

j − 2

)
E
[∫ B

0

e−γ2(B−s) (γ1(s+W (0)))ℓ

ℓ!
e−(λ+γ1)(s+W (0))ds

]

= λβ(γ2)
j−2λ

n−1

γn−1
1

j−2∑
ℓ=0

(−1)j−2−ℓ

(
n− 2− ℓ

n− j

)
E
[∫ B

0

e−γ2(B−s) (γ1(s+W (0)))ℓ

ℓ!
e−λ(s+W (0))ds

]

+ λβ(γ2)
j−2λ

n−1

γn−1
1

(−1)j−1

n−j∑
ℓ=0

(
n− 2− ℓ

j − 2

)
E
[∫ B

0

e−γ2(B−s) (γ1(s+W (0)))ℓ

ℓ!
e−(λ+γ1)(s+W (0))ds

]
Furthermore, since

λE
[∫ B

0

e−γ2(B−s) (γ1(s+W (0)))ℓ

ℓ!
e−λ(s+W (0))ds

]
= λ

ℓ∑
k=0

E
[
(γ1W (0))k

k!
e−λW (0)

]
E
[∫ B

0

e−γ2(B−s) (γ1s)
ℓ−k

(ℓ− k)!
e−λsds

]

=
γℓ1
λℓ

ℓ∑
k=0

(π01{k=0} + πk+1)E
[∫ B

0

e−γ2(B−s)λ(λs)
ℓ−k

(ℓ− k)!
e−λsds

]

=
γℓ1
λℓ

ℓ∑
k=0

(π01{k=0} + πk+1)

[[
λ

λ− γ2

]ℓ−k+1

β(γ2)−
ℓ−k∑
m=0

[
λ

λ− γ2

]ℓ−k+1−m
(−λ)m

m!
β(m)(λ)

]
and likewise,

λE
[∫ B

0

e−γ2(B−s) (γ1(s+W (0)))ℓ

ℓ!
e−(λ+γ1)(s+W (0))ds

]
= λ

ℓ∑
k=0

E
[
(γ1W (0))k

k!
e−(λ+γ1)W (0)

]
E
[∫ B

0

e−γ1se−γ2(B−s) (γ1s)
ℓ−k

(ℓ− k)!
e−λsds

]

=
γℓ1
λℓ

ℓ∑
k=0

ϕ
(k)
Qq
(−γ1/λ)
k!

E
[∫ B

0

e−γ1se−γ2(B−s)λ(λs)
ℓ−k

(ℓ− k)!
e−λsds

]

=
γℓ1
λℓ

ℓ∑
k=0

ϕ
(k)
Qq
(−γ1/λ)
k!

[[
λ

λ+ γ1 − γ2

]ℓ−k+1

β(γ2)
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−
ℓ−k∑
m=0

[
λ

λ+ γ1 − γ2

]ℓ−k+1−m
(−λ)m

m!
β(m)(λ+ γ1)

]

we conclude that

E[1{Q(0)=n}e
−(γ1Aj,q(0)+γ2Rj,q(0))]

= β(γ2)
j−2λ

n−1

γn−1
1

j−2∑
ℓ=0

(−1)j−2−ℓ

(
n− 2− ℓ

n− j

)

×

[
γℓ1
λℓ

ℓ∑
k=0

(π01{k=0} + πk+1)

[[
λ

λ− γ2

]ℓ−k+1

β(γ2)−
ℓ−k∑
m=0

[
λ

λ− γ2

]ℓ−k+1−m
(−λ)m

m!
β(m)(λ)

]]

+ β(γ2)
j−2λ

n−1

γn−1
1

(−1)j−1

n−j∑
ℓ=0

(
n− 2− ℓ

j − 2

)

×

[
γℓ1
λℓ

ℓ∑
k=0

ϕ
(k)
Qq
(−γ1/λ)
k!

[[
λ

λ+ γ1 − γ2

]ℓ−k+1

β(γ2)

−
ℓ−k∑
m=0

[
λ

λ+ γ1 − γ2

]ℓ−k+1−m
(−λ)m

m!
β(m)(λ+ γ1)

]]

from which we get the result.
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Appendix
This Appendix contains a collection of results that are used to establish the main results

of this study.

A. Results on Residual Distirbutions
Given a nonnegative random variable B having CDF F and LST β that also satisfies

E[B] <∞, we define the nonnegative random variableRB as a nonnegative random variable
whose CDF F(1,e) is defined as follows: for each t ≥ 0,

F(1,e)(t) := P(RB ≤ t) =

∫ t

0

P(B > x)

E[B]
dx

which is a well-defined, proper CDF when E[B] < ∞. It is very well-known (and easy to
show) that the LST of RB, which we represent as β(1,e), is simply

β(1,e)(α) =
1− β(α)

αE[B]
.

We can also define ‘residuals of residuals’, in that for each integerm ≥ 1, when E[Bm+1] <
∞, we can define the random variable Rm+1,B as a nonnegative random variable having
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CDF F(m+1,e), given by

F(m+1,e)(t) :=

∫ t

0

P(Rm,B > x)

E[Rm,B]
dx

which, again, is a well-defined, proper CDF when E[Bm+1] <∞.
It is convenient to refer to Rm,B as the m-th order residual of B, where the follow the

convention that R0,B is equal in distribution to B. Such higher-order residuals have been
considered previously: a recent example of work involving these distributions includes that
of Kerner and Löpker [19], and other work featuring these higher-order residuals can be
found in the references cited therein.

Our first result is well-known (see e.g. [19]) and provides an expression for the moments
of Rn,B , when they exist.
Proposition A.1. For each integer n ≥ 0, and each integer k ≥ 0,

E[Rk
n,B] =

E[Bk+n](
k+n
n

)
E[Bn]

.

Proof. First, observe that for each integer n ≥ 1, and each integer k ≥ 1,

E[Rk
n,B] =

∫ ∞

0

xkdF(n,e)(x) =
1

E[Rn−1,B]

∫ ∞

0

xkP(Rn−1,B > x)dx

=
1

(k + 1)E[Rn−1,B]

∫ ∞

0

(k + 1)xkP(Rn−1,B > x)dx

=
E[Rk+1

n−1,B]

(k + 1)E[Rn−1,B]
.

Further iterations of this identity yield

E[Rk
n,B] =

E[Rk+2
n−2,B]

(k + 1)(k + 2)E[Rn−1,B]E[Rn−2,B]
= · · · = E[Bk+n]

[
∏n

ℓ=1(k + ℓ)]
∏n−1

ℓ=0 E[Rℓ,B]
.

The same line of reasoning reveals that

E[Rn−1,B] =
E[Bn][∏n−1

ℓ=1 (1 + ℓ)
]∏n−2

ℓ=0 E[Rℓ,B]
=

E[Bn]

n!
∏n−2

ℓ=0 E[Rℓ,B]

which implies
n−1∏
ℓ=0

E[Rℓ,B] =
E[Bn]

n!

so in conclusion,

E[Rk
n,B] =

E[Bk+n]

[
∏n

ℓ=1(k + ℓ)] (1/(n!))E[Bn]
=

E[Bk+n](
k+n
n

)
E[Bn]

proving the claim.
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Proposition A.2. For each integer n ≥ 0,

P(Rn,B > x) =
E[(B − x)n1{B>x}]

E[Bn]

for each x > 0.

Proof. We give the proof here: it can also be found in [14], but while the result the correct,
there is one misleading step in the proof found in [14], which we correct here.

The result is trivially true for the case where n = 0, and furthermore,

E[(B − x)1{B>x}] =

∫ ∞

x

(y − x)dF (y)

=

∫ ∞

x

∫ y

x

dzdF (y)

=

∫ ∞

x

∫ ∞

z

dF (y)dz

=

∫ ∞

x

P(B > z)dx = E[B]P(R1,B > x)

which proves the claim for the case where n = 1. Proceeding by strong induction, we get

E[(B − x)n+11{B>x}] =

∫ ∞

x

(y − x)n+1dF (y)

=

∫ ∞

x

∫ y

x

(y − x)ndudF (y)

=

∫ ∞

x

∫ ∞

u

(y − x)ndF (y)du

=
n∑

k=0

(
n

k

)∫ ∞

x

(u− x)n−k

∫ ∞

u

(y − u)kdF (y)du

=
n∑

k=0

(
n

k

)
E[Bk]

∫ ∞

x

(u− x)n−kP(Rk,B > u)du.

Next, observe that for 1 ≤ k ≤ n,(
n

k

)
E[Bk]

∫ ∞

x

(u− x)n−kP(Rk,B > u)du =
1

n+ 1− k
E[(Rk,B − x)n−k+11{Rk,B>x}]

=
1

n+ 1− k

(
n

k

)
E[Bk]E[Rn−k+1

k,B ]P(Rn+1,B > x)

and(
n

k

)
E[Bk]E[Rn−k+1

k,B ] =
1

n+ 1− k

(
n

k

)
E[Bk]

E[Bn+1](
n+1
k

)
E[Bk]
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=
1

(n+ 1− k)

n!

k!(n− k)!

k!(n+ 1− k)!

(n+ 1)!
E[Bn+1] =

E[Bn+1]

n+ 1

which in turn implies

E[(B − x)n+11{B>x}] =
1

n+ 1
E[(B − x)n+11{B>x}] +

n∑
k=1

E[Bn+1]

n+ 1
P(Rn+1,B > x)

from which we arrive at the claim.

Many of our results will be stated in terms of higher-order derivatives of Laplace trans-
forms of higher-order residuals of the service time distribution. The next known result pro-
vides us with a simple way to evaluate these derivatives.

Proposition A.3. Suppose E[Bn] <∞. Then

β(α) =
n−1∑
k=0

(−α)kE[B
k]

k!
+

(−α)nE[Bn]

n!
β(n,e)(α).

Proof. This can be established simply by repeated iterations of the following formula: for
each integer n ≥ 0,

β(n,e)(α) = 1− (αE[Rn,B])β(n+1,e)(α)

where β(0,e)(α) = β(α).

Proposition A.4. Let B be a nonnegative random variable. Then for each integer n ≥ 0,∫ ∞

0

e−γsP(B > s)
(λs)ne−λs

n!
ds = E[B]

(−λ)nβ(n)
(1,e)(λ+ γ)

n!
.

Proof. Here∫ ∞

0

e−γsP(B > s)
(λs)ne−λs

n!
ds = λnE[B]

∫ ∞

0

sne−(λ+γ)s

n!

P(B > s)

E[B]
ds

= E[B]
(−λ)nβ(n)

(1,e)(λ+ γ)

n!

proving the claim.

B. A Useful Summation Identity
The following proposition is most likely well-known to experts in discrete mathematics

and theoretical computer science, but we were not aware of it previously, so in order to help
the reader we will provide a clear statement of the result, as well as a proof.
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Proposition B.1. Let {aℓ}ℓ≥0 be any sequence of complex numbers. For each integer n ≥ 0,
and each integer k ≥ 1, we have

n∑
ℓ1=0

ℓ1∑
ℓ2=0

· · ·
ℓk−1∑
ℓk=0

aℓk =
n∑

j=0

(
n+ (k − 1)− j

k − 1

)
aj.

Proof. It takes a little experimentation to actually see the pattern, but once the pattern has
been found, an induction proof (induction on k) is easy to give. First, for each integer n ≥ 0,

n∑
ℓ1=0

aℓ1 =
n∑

j=0

aj =
n∑

j=0

(
n+ (1− 1)− j

0

)
aj

so the statement is trivially true for all n ≥ 0 when k = 1.
Assume now that the statement is true for a fixed k (and for each n ≥ 0). Then for each

integer n ≥ 0,

n∑
ℓ1=0

ℓ1∑
ℓ2=0

· · ·
ℓk−1∑
ℓk=0

ℓk∑
ℓk+1=0

aℓk+1
=

n∑
ℓ1=0

 ℓ1∑
ℓ2=0

· · ·
ℓk−1∑
ℓk=0

ℓk∑
ℓk+1=0

aℓk+1


=

n∑
ℓ1=0

ℓ1∑
j=0

(
ℓ1 + (k − 1)− j

k − 1

)
aj

=
n∑

j=0

n∑
ℓ1=j

(
ℓ1 + (k − 1)− j

k − 1

)
aj

=
n∑

j=0

(
n+ (k + 1− 1)− j

k + 1− 1

)
aj

which proves the claim.

The next corollary follows from an application of Proposition B.1, combined with what
is often referred to as the ‘hockey-stick identity’: for each integer k ≥ 0, and each integer
n ≥ 0,

n∑
ℓ=0

(
k + ℓ

k

)
=

(
k + n+ 1

k + 1

)
.

Corollary B.1. For each integer n ≥ 0, and each integer k ≥ 1, we have

n∑
ℓ1=0

ℓ1∑
ℓ2=0

· · ·
ℓk−1∑
ℓk=0

(1) =

(
n+ k

k

)
.
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Proof. Using Proposition B.1, combined with the hockey-stick identity, we get

n∑
ℓ1=0

ℓ1∑
ℓ2=0

· · ·
ℓk−1∑
ℓk=0

(1) =
n∑

j=0

(
n+ (k − 1)− j

k − 1

)
=

(
n+ k

k

)
proving the claim.
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