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Abstract: This study examines an M/M/1 queueing model using a (s,Q) inventory sys-
tem and batch demand environment. The customers may request one or more items with
a maximum demand of B items. There is just one service provider and a limited number
of places available for customers to wait. A customer who arrived in accordance with the
Poisson process is forced to leave without service if the waiting space is full. The service
time and the replenishment time are assumed to have independent exponential distributions.
It is assumed that maximum batch demand B is smaller than or equal to reorder level s in
order to avoid repeated replenishment in a service. With the help of an iterative process, we
are able to derive the steady-state joint probability distribution of the number of customers
in the system and the on-hand inventory level of the queueing-inventory model. The opti-
mum values for waiting space (N), reorder level (s), and order quantity (Q) are found by
establishing a number of stationary system performance measures and estimating the total
expected cost function under an appropriate cost structure. Some numerical results for vari-
ous model parameters are provided in order to explain the key performance measures of the
system. We execute simulation results with ARENA software to validate our model. We
also perform simulation results for the equivalentM/G/1 queueing-inventory model.

Keywords: Batch demands, cost optimization, positive replenishment time,
queueing-inventory model, (s,Q) inventory policy, simulation

1. Introduction
The queueing-inventory model is a type of queueing system that includes an inventory

component, where resources are stored and utilized to serve customers. In a queueing-
inventory model, the inventory level decreases at the service rate instead of the customer
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arrival rate if there are customers waiting in the queue to be served. The service will be
discontinued if there is no inventory available and/or no customer in the system. Over the
years, researchers have received considerable attention to the study of queueing systems with
inventory control. Customers who need service enter the service facility. An item from the
stock is required to finish the customer service. As soon as a customer receives service, they
instantly leave the system which results in a one-for-one reduction in the amount of stock
on hand. A third party vendor provides the inventory. We are aware that the inventory is
often depleted with a single item in most queueing-inventory models. However, customers
might have demand for more than one item known as batch demands. The batch demands
in queueing-inventory models have drawn a lot of interest because of their potential use in
managing high volume inventory. Batch demands reduce cost associated with the fast flow
of large amount commodities. The relation between the queue and the service mechanism
with batch demands is a key aspect of the batch demand model.

The concept of batch demands can be found in many different contexts throughout our
daily life. There is a rising trend in service oriented firms to improve the standard of their
services. The queueing-inventorymodel with batch demands is commonly driven by grocery
sector, as customers frequently place bulk orders for basic commodities or goods. People
used to be hesitant to leave their homes when the COVID-19 pandemic was around. People
started to purchase commodities in significantly large quantities than normal. Because it
helped them to safely evacuate from the corona outbreak. Another instance is that customers
may like to order one or more meals when they visit to a restaurant for take away meals. In
a business-to-business trading process, a retailer often purchases products in huge quantities
from a wholesaler or a franchisee buys goods in bulk from his franchisor. The wholesaler
or franchisor deals with batch demands and may use queueing-inventory policy to manage
their stocks.

A pioneering contribution to the queueing-inventory domain was made by Sigman and
Simchi-Levi [20]. Berman et al. [1] worked for inventory control at service facilities in
which depletion of one item from stock in a service provider. Berman and Kim [2] investi-
gated the single demand service facility model, where orders are only placed when the stock
level reaches zero with instantaneous order replenishments and no orders are placed while
the system is empty. Schwarz and Daduna [17], Schwarz et al. [18] and Saffari et al. [15] all
devoted on the subject of service facilities with only one item offering for service. Schwarz
et al. [19] worked with joint queueing-inventory systems under continuous review with dif-
ferent inventory management policies. A batch service model for an infinite capacity single
server queue associated to a (s, S)-type inventory system was developed by Chakravarthy
et al. [5]. The batch size depends on specified thresholds and available inventory, where
every customer in the batch that needs to be served requires single item for service. The
reader is recommended to read Krishnamoorthy et al. [12], Karthikeyan and Sudhesh [10]
and Krishnamoorthy et al. [13] for a comprehensive review of literature on single item in-
ventory systems with service facilities. Karthick et al. [9] investigated the (s, S) continuous
review inventory system in which customers are classified into two groups: type-1 and type-
2. Various performance measures are used to estimate the overall expected cost rate, which
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is derived from the joint probability distribution of the number of customers in queue and
the stock level. Keerthana et al. [11] extended postponed inventory system by incorporat-
ing various demand distributions for inter-arrival times. The joint probability distribution of
the number of customers in the pool and the inventory level is determined using the matrix
geometric method. Samanta et al. [16] worked on a service facility with (s,Q) inventory
policy on limited waiting space. They not only determined the system length distributions
at random and post-departure epochs, but also identified the optimum waiting space, reorder
level, and order quantity that minimizes the overall estimated cost. Chakravarthy and Hayat
[4] used the well-known matrix-analytic method to study a two-vendor queueing-inventory
system wherein the lead times are exponentially distributed with parameter that varies de-
pending on the vendor, the service times are of phase type, and the demands occur according
to a Markovian arrival process. Melikov et al. [14] conducted an analysis of a perishable
inventory system with delayed feedback under the (s, S) policy, where the customers can
either leave the system with/without purchasing an item depending on the state of the server
as well as inventory level. Interested readers are referred to the works of Chakravarthy and
Subramanian [7], Divya et al. [8], Yue et al. [21], and queueing-inventory system related
references therein.

There have been new interest in batch demands which is different from all of the models
based on single commodity demand discussed above. However, fewer research has been
carried out to address batch demands. To the best of our knowledge, Yue et al. [22] is the
first study to handle the batch demands in M/M/1 queueing-inventory system. We iden-
tified two recent research articles on batch demands carried out by Chakravarthy [3], and
Chakravarthy and Rumyantsev [6]. Yue et al. [22] investigated an infinite waiting space
M/M/1 queueing-inventory system that incorporated batch demands and lost sales (specif-
ically, partial-lost sales and full-lost sales). The batch demand size for each arrival is trun-
cated geometric distribution, ensuring that the batch size is limited. When the amount of
items on hand is smaller than the quantity of requests from an arriving customer, a partial-
loss sale occurs, in which case the customer takes everything from the inventory; in a full-loss
sale, however, the customer departs the store without purchasing anything from the inven-
tory. They made the assumption that the inventory is managed in accordance with the (s, S)
policy which used global searching approach to obtain the optimal reorder level s for the
specified S. Chakravarthy [3] studied two models dealing with an infinite waiting space
M/M/1 queueing-inventory system that incorporated batch demands. He assumed that the
batch size of demands is random with a finite support and analyzed the models under (s, S)
policy to manage the inventory. When a customer arrives and the server is empty or is serv-
ing a customer and finds there is no inventory, he assumed that all of the customers are lost.
The customer’s requirements are satisfied to a minimum by the inventory that is available at
the start of service and the desired requirements. He presented the steady-state analysis of
the models using the conventional matrix-analytic technique. Chakravarthy and Rumyant-
sev [6] generalized the queueing-inventory model studied in Chakravarthy [3] by taking into
account MAP arrivals and PH-type service times. They used the matrix-analytic method to
produce the analytical results for the single server model, whereas ARENA simulation was
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used to examine the multi-server model.
In this paper, we investigate an M/M/1 queueing model with (s,Q) inventory policy

and batch demands. The waiting space for customers is finite. The demand is considered to
be random with finite support and not go over the reorder level. When the requested demand
exceeds the inventory on hand, the customer leaves the system with available inventory. An
arriving customer get lost only when the waiting area is full. We calculate the joint steady-
state probability distribution for the length of customer in system and the amount of inventory
that is currently on hand in the queueing-inventory system. Using a few performance criteria,
we investigate a whole framework to calculate the overall expected cost. The optimum
waiting capacity (N), reordering threshold (s), and order size (Q) are calculated numerically.
The structure of the cost function is extremely complex makes it challenging to determine
any unimodality. However, using the numerical data, we have graphically demonstrated that
the cost function is convex. Key performance measures of the system are explained with a
few numerical results for different model parameters. We used ARENA software to validate
ourmodel by performing simulation results. The correspondingM/G/1 queueing-inventory
model was also simulated and the results are shown.

The structure of this paper is as follows: Section 2 presents the description of the queueing-
inventory model. Section 3 explores the steady-state joint distribution of inventory level and
number of customers in the system. Section 4 contains some key performance measures and
cost function. Numerical results are presented in Section 5. The paper concludes in Section
6.

2. Model Description
We consider an M/M/1 queueing model with (s,Q) inventory policy and batch de-

mands. Under (s,Q) policy, we consider the service facility with a maximum inventory
size of (Q + s) units excluding the items in service. Customers enter the system following
a Poisson process with a rate of λ > 0. The waiting space is N excluding one customer
in the service, so that an arriving customer who sees N customers in the queue will be re-
jected. The service time is assumed to be exponential distribution with a rate of µ > 0.
Each arrival may demand one or more items, but they are not permitted to make requests for
more than B items. It is assumed that the demands’ batch sizeX is random with probability
mass function (p.m.f.) P (X = i) = αi, i = 1, 2, . . . , B. Furthermore, let α̃j =

∑B
k=j αk,

where j = 1, . . . , B. If the requested demand is greater than the available inventory then the
customer leaves the system with the available inventory. In order to avoid repeated replen-
ishment in a service, we assume that batch size B is below or equal to reorder threshold s.
The service will not start until the next replenishment arrives if the server is prepared to serve
a customer but there is no inventory available. When the inventory level hits a predefined
value s, the quantity Q, (Q > s) is ordered. An external supplier replenishes the inventory
using an exponential distribution with a rate of γ > 0. Figure 1 illustrates the proposed batch
demand model.
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Figure 1. Flowchart for the proposed batch demand model.

3. Steady State Analysis
In this section, we determine the steady-state joint probability distribution of inventory

level in stock and number of customers in the system. For this purpose, we define the fol-
lowing random variables at time t to establish the state of the system:

• I(t) = number of items present in inventory (stock) excluding items in service (if any),
• N(t) = number of customers present in the system,

• ξ(t) = state of the server, ξ(t) =
{

0, server is idle,
1, server is busy.

The state of the system at time t is defined by the Markov chain {I(t), N(t), ξ(t) : t ≥ 0}.
In the steady-state, let us define their joint probabilities as

ω(i, 0) = lim
t→∞

P [I(t) = i, N(t) = 0, ξ(t) = 0], i = 0, 1, 2, . . . , Q+ s,

υ(0, n) = lim
t→∞

P [I(t) = 0, N(t) = n, ξ(t) = 0], n = 1, . . . , N,

π(i, n) = lim
t→∞

P [I(t) = i, N(t) = n, ξ(t) = 1], i = 0, 1, 2, . . . , Q+ s, n = 1, . . . , N + 1.

We first construct the following difference equations in the steady-state by joining the states
of the system at time t and t+ dt in order to determine the steady-state probabilities defined
above. Using the probabilistic argument, we considered the following five scenarios sepa-
rately based on the number of customers in the system and the current inventory level.

Case 1: When the server is busy and the queue is empty

(λ+ µ)π(Q+ s, 1) = γπ(s, 1), (1)
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(λ+ µ)π(l, 1) = µ

Q+s−l∑
k=1

αkπ(l + k, 2) + λ

Q+s−l∑
k=1

αkω(l + k, 0) + γπ(l −Q, 1),

Q+ s− B ≤ l ≤ Q+ s− 1, (2)

(λ+ µ)π(l, 1) = µ
B∑

k=1

αkπ(l + k, 2) + λ
B∑

k=1

αkω(l + k, 0) + γπ(l −Q, 1),

Q ≤ l ≤ Q+ s− B − 1, (3)

(λ+ µ)π(l, 1) = µ

B∑
k=1

αkπ(l + k, 2) + λ

B∑
k=1

αkω(l + k, 0) + γαQ−lυ(0, 1),

Q− B ≤ l ≤ Q− 1, (4)

(λ+ µ)π(l, 1) = µ
B∑

k=1

αkπ(l + k, 2) + λ
B∑

k=1

αkω(l + k, 0),

s+ 1 ≤ l ≤ Q− B − 1, (5)

(λ+ µ+ γ)π(l, 1) = µ
B∑

k=1

αkπ(l + k, 2) + λ
B∑

k=1

αkω(l + k, 0), 1 ≤ l ≤ s, (6)

(λ+ µ+ γ)π(0, 1) = µ
B∑

k=1

α̃kπ(k, 2) + λ
B∑

k=1

α̃kω(k, 0). (7)

Case 2: When the server is busy and the queue is not full

(λ+ µ)π(Q+ s, n) = λπ(Q+ s, n− 1) + γπ(s, n), 2 ≤ n ≤ N, (8)

(λ+ µ)π(l, n) = µ

Q+s−l∑
k=1

αkπ(l + k, n+ 1) + λπ(l, n− 1) + γπ(l −Q,n),

Q+ s− B ≤ l ≤ Q+ s− 1, 2 ≤ n ≤ N, (9)

(λ+ µ)π(l, n) = µ
B∑

k=1

αkπ(l + k, n+ 1) + λπ(l, n− 1) + γπ(l −Q,n),

Q ≤ l ≤ Q+ s− B − 1, 2 ≤ n ≤ N, (10)

(λ+ µ)π(l, n) = µ
B∑

k=1

αkπ(l + k, n+ 1) + λπ(l, n− 1) + γαQ−lυ(0, n),

Q− B ≤ l ≤ Q− 1, 2 ≤ n ≤ N, (11)

(λ+ µ)π(l, n) = µ

B∑
k=1

αkπ(l + k, n+ 1) + λπ(l, n− 1),

s+ 1 ≤ l ≤ Q− B − 1, 2 ≤ n ≤ N, (12)
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(λ+ µ+ γ)π(l, n) = µ

B∑
k=1

αkπ(l + k, n+ 1) + λπ(l, n− 1),

1 ≤ l ≤ s, 2 ≤ n ≤ N, (13)

(λ+ µ+ γ)π(0, n) = µ

B∑
k=1

α̃kπ(k, n+ 1) + λπ(0, n− 1), 2 ≤ n ≤ N. (14)

Case 3: When the server is busy and the queue is full

µπ(l, N + 1) = λπ(l, N) + γπ(l −Q,N + 1), Q ≤ l ≤ Q+ s, (15)
µπ(l, N + 1) = λπ(l, N), s+ 1 ≤ l ≤ Q− 1, (16)

(µ+ γ)π(l, N + 1) = λπ(l, N), 0 ≤ l ≤ s. (17)

Case 4: When the server is idle and no customers in the system

λω(l, 0) = µπ(l, 1) + γω(l −Q, 0), Q ≤ l ≤ Q+ s, (18)
λω(l, 0) = µπ(l, 1), s+ 1 ≤ l ≤ Q− 1, (19)

(λ+ γ)ω(l, 0) = µπ(l, 1), 0 ≤ l ≤ s. (20)

Case 5: When the server is idle and no items in inventory

γυ(0, N) = λυ(0, N − 1) + µπ(0, N + 1), (21)
(λ+ γ)υ(0, n) = λυ(0, n− 1) + µπ(0, n+ 1), 2 ≤ n ≤ N − 1, (22)
(λ+ γ)υ(0, 1) = λω(0, 0) + µπ(0, 2). (23)

Now, we use the following iterative steps to express υ(0, n), n = 1, 2, . . . , N ; ω(l, 0), l =
0, 1, . . . , Q+s and π(l, n), l = s+1, s+2, . . . , Q+s, n = 1, 2, . . . , N+1 in terms of π(l, n),
l = 0, 1, 2, . . . , s, n = 1, 2, . . . , N + 1 in order to evaluate all the steady-state probabilities.
From (20), (23), (22) and (21), respectively, we obtain

ω(l, 0) =

(
µ

λ+ γ

)
π(l, 1), 0 ≤ l ≤ s,

υ(0, 1) =

(
λ

λ+ γ

)
ω(0, 0) +

(
µ

λ+ γ

)
π(0, 2),

υ(0, n) =

(
λ

λ+ γ

)
υ(0, n− 1) +

(
µ

λ+ γ

)
π(0, n+ 1), n = 2, 3, . . . , N − 1,

υ(0, N) =

(
λ

γ

)
υ(0, N − 1) +

(
µ

γ

)
π(0, N + 1).

From (1), (18), (8) and (15), respectively, we obtain

π(Q+ s, 1) =

(
γ

λ+ µ

)
π(s, 1),
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ω(Q+ s, 0) =
(µ
λ

)
π(Q+ s, 1) +

(γ
λ

)
ω(s, 0),

π(Q+ s, n) =

(
λ

λ+ µ

)
π(Q+ s, n− 1) +

(
γ

λ+ µ

)
π(s, n), n = 2, 3, . . . , N,

π(Q+ s,N + 1) =

(
λ

µ

)
π(Q+ s,N) +

(
γ

µ

)
π(s,N + 1).

Now, π(l, 1), ω(l, 0) and π(l, n), for 2 ≤ n ≤ N ; Q+ s−B ≤ l ≤ Q+ s− 1, are obtained
from (2), (18) and (9), respectively, with the following iterative procedure:

π(l, 1) =

(
µ

λ+ µ

)Q+s−l∑
k=1

αkπ(l + k, 2) +

(
λ

λ+ µ

)Q+s−l∑
k=1

αkω(l + k, 0) +

(
γ

λ+ µ

)
π(l −Q, 1),

l = Q+ s− 1, Q+ s− 2, . . . , Q+ s− B,

ω(l, 0) =
(µ
λ

)
π(l, 1) +

(γ
λ

)
ω(l −Q, 0), l = Q+ s− 1, Q+ s− 2, . . . , Q+ s− B,

π(l, n) =

(
µ

λ+ µ

)Q+s−l∑
k=1

αkπ(l + k, n+ 1) +

(
λ

λ+ µ

)
π(l, n− 1) +

(
γ

λ+ µ

)
π(l −Q,n),

l = Q+ s− 1, Q+ s− 2, . . . , Q+ s− B, n = 2, 3, . . . , N.

Similarly, π(l, 1), ω(l, 0) and π(l, n), for 2 ≤ n ≤ N ; Q ≤ l ≤ Q+ s−B− 1, are obtained
from (3), (18) and (10), respectively, with the following iterative procedure:

π(l, 1) =

(
µ

λ+ µ

) B∑
k=1

αkπ(l + k, 2) +

(
λ

λ+ µ

) B∑
k=1

αkω(l + k, 0) +

(
γ

λ+ µ

)
π(l −Q, 1),

l = Q+ s− B − 1, Q+ s− B − 2, . . . , Q,

ω(l, 0) =
(µ
λ

)
π(l, 1) +

(γ
λ

)
ω(l −Q, 0), l = Q+ s− B − 1, Q+ s− B − 2, . . . , Q,

π(l, n) =

(
µ

λ+ µ

) B∑
k=1

αkπ(l + k, n+ 1) +

(
λ

λ+ µ

)
π(l, n− 1) +

(
γ

λ+ µ

)
π(l −Q,n),

l = Q+ s− B − 1, Q+ s− B − 2, . . . , Q, n = 2, 3, . . . , N.

From (15), we repeatedly obtain as

π(l, N + 1) =

(
λ

µ

)
π(l, N) +

(
γ

µ

)
π(l −Q,N + 1), l = Q+ s− 1, Q+ s− 2, . . . , Q.

Further, π(l, 1), ω(l, 0) and π(l, n), for 2 ≤ n ≤ N ; Q−B ≤ l ≤ Q− 1, are obtained from
(4), (19) and (11), respectively, with the following iterative procedure:

π(l, 1) =

(
µ

λ+ µ

) B∑
k=1

αkπ(l + k, 2) +

(
λ

λ+ µ

) B∑
k=1

αkω(l + k, 0) +

(
γ

λ+ µ

)
αQ−lυ(0, 1),
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l = Q− 1, Q− 2, . . . , Q− B,

ω(l, 0) =
(µ
λ

)
π(l, 1), l = Q− 1, Q− 2, . . . , Q− B,

π(l, n) =

(
µ

λ+ µ

) B∑
k=1

αkπ(l + k, n+ 1) +

(
λ

λ+ µ

)
π(l, n− 1) +

(
γ

λ+ µ

)
αQ−lυ(0, n),

l = Q− 1, Q− 2, . . . , Q− B, n = 2, 3, . . . , N.

From (16), we repeatedly obtain as

π(l, N + 1) =

(
λ

µ

)
π(l, N), l = Q− 1, Q− 2, . . . , Q− B.

Similarly, π(l, 1), ω(l, 0) and π(l, n), for 2 ≤ n ≤ N ; s+ 1 ≤ l ≤ Q−B − 1, are obtained
from (5), (19) and (12), respectively, with the following iterative procedure:

π(l, 1) =

(
µ

λ+ µ

) B∑
k=1

αkπ(l + k, 2) +

(
λ

λ+ µ

) B∑
k=1

αkω(l + k, 0),

l = Q− B − 1, Q− B − 2, . . . , s+ 1,

ω(l, 0) =
(µ
λ

)
π(l, 1), l = Q− B − 1, Q− B − 2, . . . , s+ 1,

π(l, n) =

(
µ

λ+ µ

) B∑
k=1

αkπ(l + k, n+ 1) +

(
λ

λ+ µ

)
π(l, n− 1),

l = Q− B − 1, Q− B − 2, . . . , s+ 1, n = 2, 3, . . . , N.

From (16), we repeatedly obtain as

π(l, N + 1) =

(
λ

µ

)
π(l, N), l = Q− B − 1, Q− B − 2, . . . , s+ 1.

Now, the (N+1)(s+1) system of simultaneous linear equations in (N+1)(s+1) unknowns
are obtained from (6), (7), (13), (14), and (17) using the above results. Solving these (N +
1)(s + 1) system of simultaneous linear equations by replacing any one equation with the
normalization equation

∑N
n=1 υ(0, n)+

∑Q+s
l=0 ω(l, 0)+

∑Q+s
l=0

∑N+1
n=1 π(l, n) = 1, we get the

solution of π(l, n), l = 0, 1, 2, . . . , s, n = 1, 2, . . . , N + 1. The above iterative procedures
can be used to obtain the remaining probabilities υ(0, n), n = 1, 2, . . . , N ; ω(l, 0), l =
0, 1, . . . , Q+ s and π(l, n), l = s+ 1, s+ 2, . . . , Q+ s, n = 1, 2, . . . , N + 1.

4. Some Performance Measures with Cost Function
Here, we use the steady-state probabilities derived in Section 3 to obtain the following

performance measures and use them to develop the cost function.
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The average number of inventory (Iv) in stock is given by

Iv =

Q+s∑
l=1

lω(l, 0) +

Q+s∑
l=1

l

N+1∑
j=1

π(l, j).

The average number of customers in the queue (Ic) is expressed by

Ic =
N∑
j=1

jυ(0, j) +
N+1∑
j=1

(j − 1)

Q+s∑
l=0

π(l, j).

Let Ro represent the mean replenishment rate. Then, it can be determined as

Ro = γ

(
N∑
j=1

υ(0, j) +
s∑

l=0

ω(l, 0) +
s∑

l=0

N+1∑
j=1

π(l, j)

)
.

Let Rc be the rate of rejection of a customer from the system. Then, it can be represented as

Rc = λ

(
υ(0, N) +

Q+s∑
l=0

π(l, N + 1)

)
.

The cost function C(N, s,Q) per unit time for the proposed model is given as

C(N, s,Q) = hcIc + hvIv + (sc + pcQ)Ro + rcRc,

where the cost coefficients are as follows:

• hc (holding cost) is the cost per customer per unit time,
• hv (inventory carrying cost) is the cost per item per unit time,
• sc (setup cost) is the cost per order,
• pc (purchase price) is the cost per item,
• rc (rejection cost) is the cost of rejection of a customer because of full system capacity.

5. Numerical Analysis
This section devotes to observe several interesting behaviours in the analysis of system

performance measures and cost function with various parameter settings. We provide per-
formance measures and optimum results in the forms of tables and graphs for three different
batch sizes such as B = 4, B = 6, and B = 8. We use α1 = 0.35, α2 = 0.15, α3 = 0.25,
α4 = 0.25, when B = 4. We use α1 = 0.25, α2 = 0.15, α3 = 0.15, α4 = 0.30, α5 = 0.05,
α6 = 0.10, when B = 6. We use α1 = 0.25, α2 = 0.15, α3 = 0.05, α4 = 0.20, α5 = 0.05,
α6 = 0.10, α7 = 0.05, α8 = 0.15, when B = 8. The impact of arrival rate λ on vari-
ous performance measures is shown in Table 1. The table shows that the values of Iv seem
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to decrease when λ increases, whereas Ic, Ro, and Rc show a rising tendency as λ values
rise for each batch demand size. This implies that when λ increases, the average number of
customers waiting in the queue also increases and this leads to more rejections because of
waiting space is fixed. The effect of service rate µ on performance measures is shown in
Table 2, where the values of Iv, Ic, and Rc seem to decrease with an increase of µ, while
an increasing trend is noted with higher values of µ in the case of Ro. As the service rate
increases, the average number of customers in the queue decreases as more services are per-
formed. Rejections are reduced as a result of the fixed waiting space. Table 3 demonstrates
the effect of the replenishment rate γ. The table illustrates that the values of Iv and Ro seem
to increase as the value of γ rises, whereas a downward tendency is observed with higher
values of γ in the case of Ic. Furthermore, Rc remain almost constant as γ increases. The
lower mean replenishment rate causes an increase in inventory levels. The impact of N is
shown in Table 4. The table shows that the values of Iv and Rc tend to decrease with rising
N , while the values of Ic and Ro show an increasing trend with higher values of N . There
are more waiting spaces whenN rises, which raises the average number of customers in the
queue and reduces the number of rejections. Table 5 shows the effect of the ordering point
s on various performance measures. The information suggests that the values of Iv and Ro

tend to increase as s rises. On the other hand, the values of Ic decreases with higher values
of s whereas Rc decreases relatively very little as s increases. This is because of frequent
replenishment when s is higher for fix Q. Moreover, Table 6 demonstrates the effect of Q.
The data indicates that the value of Iv tends to increase asQ rises, while the values of Ic and
Ro tend to decrease as Q rises. Further, Rc decreases relatively very little as Q increases.
The larger order quantities reduce the frequency of orders required, which raises the average
inventory level.

Table 1. Effect of λ: Fix Q = 25, s = 12, N = 14, µ = 6, γ = 3

B=4 B=6 B=8
λ 4 5 6 7 4 5 6 7 4 5 6 7
Iv 21.82 21.08 20.56 20.37 20.98 20.06 19.45 19.24 19.93 18.80 18.13 17.93
Ic 1.36 3.46 6.92 9.80 1.43 3.69 7.26 10.04 1.58 4.13 7.82 10.42
Ro 0.38 0.47 0.53 0.56 0.48 0.59 0.67 0.69 0.61 0.75 0.83 0.85
Rc 0.00 0.07 0.42 1.18 0.00 0.08 0.47 1.26 0.01 0.10 0.57 1.40

Table 2. Effect of µ: Fix Q = 25, s = 12, N = 14, λ = 6, γ = 3

B=4 B=6 B=8
µ 4 5 7 8 4 5 7 8 4 5 7 8
Iv 21.83 21.10 20.33 20.27 21.02 20.12 19.14 19.05 20.03 18.96 17.70 17.55
Ic 12.07 10.10 4.05 2.38 12.11 10.26 4.42 2.68 12.19 10.53 5.06 3.23
Ro 0.38 0.47 0.56 0.57 0.48 0.59 0.71 0.72 0.60 0.73 0.88 0.90
Rc 2.02 1.10 0.12 0.03 2.05 1.15 0.15 0.05 2.10 1.24 0.21 0.08

11



© Verma, Samanta, Sapna Isotupa

Table 3. Effect of γ: Fix Q = 25, s = 12, N = 14, λ = 4, µ = 6

B=4 B=6 B=8
γ 4 5 6 7 4 5 6 7 4 5 6 7
Iv 22.61 23.08 23.40 23.63 21.97 22.57 22.97 23.26 21.17 21.92 22.43 22.79
Ic 1.33 1.32 1.31 1.31 1.36 1.33 1.32 1.32 1.42 1.37 1.34 1.33
Ro 0.38 0.38 0.38 0.38 0.49 0.49 0.49 0.49 0.62 0.62 0.62 0.62
Rc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4. Effect of N : Fix Q = 25, s = 12, λ = 4, µ = 6, γ = 3

B=4 B=6 B=8
N 9 10 11 12 9 10 11 12 9 10 11 12
Iv 21.84 21.83 21.82 21.82 21.00 20.99 20.99 20.98 19.96 19.95 19.94 19.93
Ic 1.25 1.29 1.31 1.34 1.30 1.34 1.38 1.40 1.41 1.46 1.50 1.54
Ro 0.38 0.38 0.38 0.38 0.48 0.48 0.48 0.48 0.61 0.61 0.61 0.61
Rc 0.03 0.02 0.01 0.01 0.03 0.02 0.01 0.01 0.04 0.03 0.02 0.01

Table 5. Effect of s: Fix Q = 25, N = 14, λ = 4, µ = 6, γ = 3

B=4 B=6 B=8
s 9 10 11 12 9 10 11 12 9 10 11 12
Iv 18.87 19.85 20.83 21.82 18.10 19.05 20.01 20.98 17.17 18.07 19.00 19.93
Ic 1.41 1.39 1.38 1.36 1.52 1.49 1.46 1.43 1.72 1.67 1.62 1.58
Ro 0.38 0.38 0.38 0.38 0.48 0.48 0.48 0.48 0.61 0.61 0.61 0.61
Rc 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01

Table 6. Effect of Q: Fix s = 12, N = 14, λ = 4, µ = 6, γ = 3

B=4 B=6 B=8
Q 21 22 23 24 21 22 23 24 21 22 23 24
Iv 19.80 20.30 20.81 21.32 18.94 19.45 19.96 20.47 17.82 18.35 18.88 19.42
Ic 1.37 1.37 1.37 1.37 1.46 1.45 1.45 1.44 1.64 1.63 1.61 1.59
Ro 0.46 0.43 0.41 0.40 0.58 0.55 0.53 0.50 0.73 0.69 0.66 0.64
Rc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01

We now examine the optimum values of waiting capacity (N∗), reorder point (s∗) and
order size (Q∗) that minimize overall costs. It is difficult to establish the unimodality of
the cost function due to its incredibly complex structure. The entire cost value is impacted
by a few cost factors which are studied in previous sections. We carry out comprehensive
numerical experiments to verify the efficiency of our approach and test for unimodality. It
is not necessary to guarantee that the ρ = λ/µ (utilisation factor) should be smaller than 1
because there is a limited number of waiting space for customers. However, we employ a
straightforward numerical search technique for parameters to identify the optimum values
of N , s and Q. To determine the optimum results for waiting capacity, reorder point, and
order size at minimum cost, we use different rates for arrival of customers and their services.
For this numerical analysis, we assume the cost parameters as hc = 2, hv = 10, sc = 100,
pc = 10 and rc = 200.

The results for the case where λ varies but the mean replenishment is 0.5 and the service
rate is µ = 6.0 customers/unit time are shown in Table 7. The arrival rate λ varies between
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3.4 customers per unit time to 9.0 customers per unit time. It is observed in Table 7 that the
optimal waiting capacity decreases as ρ increases. This suggests that we should offer smaller
waiting area when service rate is less than arrival rate. We also observe that the optimal order
quantity increases when the arrival rate increases and ρ ≤ 1, but the order quantity remains
unchanged when ρ > 1. This implies that we should order a specific quantity in order to
manage heavy traffic. For B = 4 and B = 6, we also find that the optimal reorder level
increases marginally when the arrival rate rises and ρ ≤ 1, but the reorder level remains
unchanged when ρ > 1. The reorder level is not impacted by λ for B = 8. This implies
that we should place an order when inventory level hits the maximum level of demand. Our
findings indicate that as ρ increases, so does the optimal cost. This shows that the cost goes
up in situations with heavy traffic.

Table 7. The effect of arrival rate λ on C(N, s,Q)

B=4 B=6 B=8
ρ = λ

µ
µ = 6.0, γ = 2.0 µ = 6.0, γ = 2.0 µ = 6.0, γ = 2.0

λ = 3.4 0.57 C(57, 4, 12) = 216.08 C(54, 6, 13) = 260.01 C(46, 8, 17) = 310.72
λ = 4.6 0.77 C(47, 4, 17) = 273.68 C(44, 6, 19) = 326.35 C(37, 8, 21) = 388.67
λ = 5.5 0.92 C(26, 6, 23) = 382.25 C(23, 6, 26) = 444.04 C(20, 8, 28) = 517.93
λ = 6.0 1.0 C(20, 7, 24) = 466.11 C(18, 7, 27) = 531.48 C(16, 8, 29) = 607.66
λ = 7.0 1.17 C(13, 8, 24) = 652.06 C(12, 8, 27) = 719.66 C(11, 8, 30) = 797.90
λ = 7.5 1.25 C(11, 8, 24) = 748.49 C(11, 8, 27) = 816.60 C(10, 8, 30) = 895.24
λ = 8.0 1.33 C(10, 8, 24) = 845.92 C(9, 8, 27) = 914.31 C(9, 8, 30) = 993.25
λ = 8.5 1.42 C(9, 8, 24) = 943.99 C(9, 8, 27) = 1012.61 C(8, 8, 30) = 1091.68
λ = 9.0 1.5 C(8, 8, 24) = 1042.51 C(8, 8, 27) = 1111.15 C(7, 8, 30) = 1190.53

Table 8. The effect of service rate µ on C(N, s,Q)

B=4 B=6 B=8
ρ = λ

µ
λ = 6.0, γ = 2.0 λ = 6.0, γ = 2.0 λ = 6.0, γ = 2.0

µ = 8.0 0.75 C(54, 4, 22) = 328.19 C(50, 6, 25) = 391.68 C(44, 8, 29) = 469.24
µ = 7.5 0.80 C(44, 4, 25) = 346.31 C(40, 6, 27) = 411.46 C(35, 8, 31) = 491.51
µ = 7.0 0.86 C(35, 6, 24) = 374.74 C(32, 7, 28) = 441.96 C(27, 8, 32) = 522.86
µ = 6.0 1.0 C(20, 7, 24) = 466.11 C(18, 7, 27) = 531.48 C(16, 8, 29) = 607.66
µ = 5.5 1.09 C(15, 7, 22) = 524.30 C(13, 6, 26) = 585.23 C(13, 8, 27) = 656.76
µ = 4.6 1.30 C(9, 5, 20) = 636.27 C(9, 6, 22) = 688.30 C(9, 8, 23) = 751.55
µ = 3.4 1.76 C(6, 4, 16) = 791.87 C(6, 6, 17) = 835.90 C(5, 8, 17) = 887.89
µ = 2.5 2.4 C(4, 4, 12) = 914.59 C(4, 6, 13) = 953.38 C(4, 8, 17) = 1000.38
µ = 2.3 2.60 C(4, 4, 11) = 942.87 C(4, 6, 13) = 980.82 C(4, 8, 17) = 1027.48

The results for the case where µ varies but the mean replenishment is 0.5 and the arrival
rate is λ = 6.0 customers/unit time are shown in Table 8. The service rate µ varies between
2.3 customers per unit time to 8.0 customers per unit time. It is observed in Table 8 that the
optimal waiting capacity decreases as ρ increases. This suggests that we should offer smaller
waiting area when service rate is less than arrival rate. It is also noted that when the service
rate increases, the optimum order quantity and reorder level also increase; however, as µ
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grows, both parameters begin to decrease. This suggests that the quantity of our order and
ordering point should be determined by the service rate. The reorder level is not impacted
by µ when B = 8. This implies that we should place an order when inventory level hits the
maximum level of demand. Our findings indicate that as ρ increases, so does the optimal
cost. Figures 2 to 4 confirm the convex behaviour of the cost function.
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Figure 2. The convex representation of the cost value when ρ < 1

We also demonstrate the robustness of our optimal solutions through simulation exper-
iments using the ARENA software. The simulation findings for the M/M/1 case, as in-
dicated in Tables 9 to 11 when λ varies, have been used to validate the analytical optimal
results. It is interesting to see that the outcomes from the two approaches show a simi-
lar trend. The validation results indicate relative errors below 1%. We simulate the batch
demand analysis in theM/G/1 case due to its complex nature. The simulation-based com-
parison results for theM/M/1 case versus theM/G/1 type scenario are shown in Tables 9
to 11, where non-exponential service time is assumed to be deterministic and normal distri-
butions. We have seen that the results show a similar pattern to what the analytical method
indicated for theM/M/1 case. Furthermore, the cost behaviour of the simulation results for
theM/G/1 type and the analytical results for theM/M/1 case are shown in Figures 5 to 7
when λ varies. Furthermore, as shown by analytical results, we experienced similar patterns
during the execution time of the simulation results for the µ data sets.
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Figure 3. The convex representation of the cost value when ρ = 1
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Table 9. The simulation-based comparison of theM/M/1 case with theM/G/1 type
when B = 4

Exponential distribution Deterministic distribution Normal distribution
ρ = λ

µ
µ = 6.0, γ = 2.0 µ = 6.0, γ = 2.0 µ = 6.0, γ = 2.0

λ = 3.4 0.57 C(30, 4, 11) = 214.44 C(40, 3, 12) = 205.61 C(47, 3, 13) = 208.33
λ = 4.6 0.77 C(48, 4, 18) = 270.88 C(43, 4, 15) = 261.82 C(45, 4, 16) = 264.90
λ = 5.5 0.92 C(27, 6, 22) = 379.43 C(20, 6, 22) = 360.04 C(23, 6, 22) = 368.23
λ = 6.0 1.0 C(20, 7, 24) = 462.05 C(14, 6, 22) = 441.53 C(16, 7, 23) = 449.21
λ = 7.0 1.17 C(12, 8, 23) = 651.36 C(8, 7, 22) = 628.83 C(9, 7, 22) = 638.18
λ = 7.5 1.25 C(12, 8, 23) = 748.09 C(7, 8, 22) = 725.67 C(9, 7, 23) = 730.09
λ = 8.0 1.33 C(9, 8, 22) = 844.02 C(7, 8, 24) = 824.89 C(8, 8, 23) = 826.77
λ = 8.5 1.42 C(9, 8, 24) = 942.39 C(6, 7, 24) = 922.54 C(7, 7, 25) = 925.12
λ = 9.0 1.5 C(7, 8, 25) = 1040.92 C(7, 7, 25) = 1020.85 C(7, 8, 25) = 1024.46

Table 10. The simulation-based comparison of theM/M/1 case with theM/G/1 type
when B = 6

Exponential distribution Deterministic distribution Normal distribution
ρ = λ

µ
µ = 6.0, γ = 2.0 µ = 6.0, γ = 2.0 µ = 6.0, γ = 2.0

λ = 3.4 0.57 C(50, 6, 14) = 257.27 C(45, 4, 10) = 246.72 C(48, 5, 12) = 251.49
λ = 4.6 0.77 C(45, 6, 20) = 323.61 C(40, 4, 17) = 313.88 C(42, 5, 19) = 317.29
λ = 5.5 0.92 C(24, 7, 26) = 440.84 C(17, 6, 22) = 420.44 C(19, 6, 23) = 425.87
λ = 6.0 1.0 C(19, 7, 27) = 528.99 C(13, 6, 23) = 506.66 C(15, 6, 24) = 512.98
λ = 7.0 1.17 C(12, 8, 27) = 717.29 C(10, 6, 24) = 692.70 C(11, 6, 25) = 698.96
λ = 7.5 1.25 C(10, 8, 28) = 815.01 C(9, 7, 25) = 791.81 C(10, 7, 25) = 797.85
λ = 8.0 1.33 C(9, 8, 28) = 912.03 C(8, 7, 25) = 890.05 C(9, 7, 26) = 895.88
λ = 8.5 1.42 C(8, 8, 28) = 1010.77 C(7, 7, 26) = 989.39 C(7, 7, 27) = 994.88
λ = 9.0 1.5 C(7, 8, 28) = 1108.98 C(7, 7, 27) = 1087.75 C(7, 7, 27) = 1093.42

Table 11. The simulation-based comparison of theM/M/1 case with theM/G/1 type
when B = 8

Exponential distribution Deterministic distribution Normal distribution
ρ = λ

µ
µ = 6.0, γ = 2.0 µ = 6.0, γ = 2.0 µ = 6.0, γ = 2.0

λ = 3.4 0.57 C(50, 8, 19) = 316.68 C(44, 8, 16) = 305.84 C(47, 8, 17) = 309.28
λ = 4.6 0.77 C(36, 8, 23) = 381.55 C(31, 8, 20) = 369.26 C(32, 8, 21) = 374.71
λ = 5.5 0.92 C(19, 8, 28) = 496.47 C(13, 8, 25) = 477.81 C(15, 8, 26) = 482.97
λ = 6.0 1.0 C(15, 8, 29) = 585.35 C(10, 8, 26) = 562.96 C(11, 8, 27) = 568.53
λ = 7.0 1.17 C(10, 8, 30) = 776.06 C(9, 8, 27) = 754.22 C(9, 8, 28) = 759.18
λ = 7.5 1.25 C(9, 8, 30) = 877.20 C(8, 8, 28) = 855.41 C(8, 8, 29) = 860.23
λ = 8.0 1.33 C(8, 8, 31) = 970.86 C(7, 8, 28) = 948.98 C(7, 8, 29) = 953.29
λ = 8.5 1.42 C(7, 8, 31) = 1067.33 C(6, 8, 29) = 1045.38 C(6, 8, 30) = 1050.71
λ = 9.0 1.5 C(6, 8, 32) = 1168.41 C(5, 8, 30) = 1145.92 C(6, 8, 30) = 1151.53
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Figure 5. The cost behaviour of the analytical and simulation results for theM/G/1 type
when B = 4
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Figure 6. The cost behaviour of the analytical and simulation results for theM/G/1 type
when B = 6
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Figure 7. The cost behaviour of the analytical and simulation results for theM/G/1 type
when B = 8

6. Conclusion
We investigated the (s,Q) inventory system and batch demands in theM/M/1 queueing

model with finite waiting space. We determined the steady-state joint probability distribu-
tion for customers in the system and the level of inventory in stock. The findings of this
paper offer valuable implications by permitting customers to take multiple items in service.
The explicit formula for relevant performance metrics are also derived. Numerical analysis
is performed to emphasize the convex shape of the cost function. We made interesting ob-
servations of optimum waiting space, optimum order quantity and optimum order level, so
that cost will be minimized. We verified our model by performing simulation results. Fur-
thermore, we performed simulation results for the correspondingM/G/1 queueing model.
After conducting extensive numerical studies, we gained valuable managerial insights and
observed interesting outcomes in optimization of batch demand system. We believe that the
study of the model described in this research may be helpful in a range of businesses as cus-
tomers frequently demand for multiple items. For future studies, the model studied in this
paper can be extended to relax the assumption of exponential service time and use a general
service time distribution.
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